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Abstract

We enumerate the number of 0/1-matrices avoiding 2 x 2 submatrices satisfying
certain conditions. We also provide corresponding exponential generating functions.

1 Introduction

Let M(k,n) be the set of k x n matrices with entries 0 and 1. It is obvious that the
number of elements in the set M(k,n) is 2. It would be interesting to consider the
number of elements in M (k,n) with certain conditions. For example, how many matrices
of M(k,n) do not have 2 x 2 submatrices of the form (}3) or (99)? In this article we
will give answers to the previous question and other questions.

Consider M(2,2), the set of all possible 2 x 2 submatrices. For two elements P and Q
in M(2,2), we denote P ~ @ if () can be obtained from P by row or column exchanges.
It is obvious that ~ is an equivalence relation on M (2,2). With this equivalence relation,
we have seven equivalent classes in Table [l We let ¢(k,n;a) be the number of k x n
0/1-matrices which do not have 2 x 2 submatrices in «, where « is a subset of M(2,2).

Our goal is to express ¢(k,n;«) in terms of k and n explicitly for each a in the
set {Aq, Ao, A3, Ay, As, Ag, A7}. We can easily notice that ¢(k,n; As) = ¢(k,n; As) and
o(k,n; Ag) = o(k,n; A7) by swapping 0 and 1. We also notice ¢(k,n; Ay) = ¢(n, k; As)
by transposing the matrices. Moreover, given the equivalence relation ~, if we define the
new equivalent relation P ~' Q by P ~ @Q or P = @', then A, U A5 becomes a single
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Table 1: from A; to Ay

equivalent class. Also if we define another new equivalent relation P ~" QQ by P ~ @ or
P=(}1)—Q, then Ay U A3 and Ag U A7 become a single equivalent class respectively.

In fact, ¢(k,n; Ay) is well known (see [2, [6, [7]) and 0/1-matrices avoiding type A;
are called 0/1-lonesum matrices (we will define and discuss it in 2.2]). Lonesum matrices
are the primary motivation of this article and its corresponding work. Except for the
aforementioned case, we have not found any literature concerning other cases.

In this paper we calculate ¢(k,n;«), where a’s are Ay (equivalently Asz), A, (equiva-
lently As), AsUA3, AjUA5 and AgUA;. Finding a closed form of ¢(k, n; Ag) = ¢(k,n; A;)
is still open to us.

2 Preliminaries

2.1 Definitions and Notations

A matrix P is called 0/1-matrix if all the entries of P are 0 or 1. From now on we consider
0/1-matrices only, so we will omit “0/1” if it causes no confusion. Let M (k,n) be the
set of k x n-matrices. Clearly, if k,n > 1, M(k,n) has 2*" elements. For convention we
assume that M (0,0) = {0} and M(k,0) = M(0,n) = 0 for positive integers k and n.

Given a matrix P, a submatrix of P is formed by selecting certain rows and columns
from P. For example if P = (e fg h) then P(2,3;2,4) = (f };)

i jkl
Given two matrices P and (), we say P contains (), whenever () is equal to a submatrix

of P. Otherwise say P avoids (). For example (0 0 é) contains (¢ 3) but avoids (§79).
For a matrix P and a set a of matrices, we say that P avoids the type set a if P avoids
all the matrices in a. If it causes no confusion we will simply say that P avoids a.

Given a set « of matrices, let ¢(k,n; ) be the number of k£ X n matrices avoiding «.
From the definition of M(k,n), for any set «, we have ¢(0,0;a) = 1 and ¢(k,0;a) =
#(0,n;a) = 0 for positive integers k and n. Let ®(x,y; «) be the exponential generating
function for ¢(k,n; ), i.e.,

O(z,y; o ZZd)knoz —1+ZZ¢kna

n>0 k>0 n>1 k>1



Let ®(z; ) be the exponential generating function for ¢(n,n;a), i.e.,

O(z;a) == Zgb(n, n; a) % .
n>0 ’
2.2 Type A; (Lonesum matrices)

This is related to the lonesum matrices. A lonesum matrix is a 0/1-matrix determined
. . 101 .
uniquely by its column-sum and row-sum vectors. For example, 001) is a lonesum
matrix since it is a unique matrix determined by the column-sum vector (2,0, 3) and the
101 . . 101
row-sum vector (2, 1,2)*. However ((1) 0 (1)) is not, since ( 19 (1)) has the same column-sum

vector (2,0,2) and row-sum vector (2,1, 1)".
Theorem 2.1 (Brewbaker [2]). A matriz is a lonesum matriz if and only if it avoids A;.
Theorem 2T implies that ¢(k, n; A;) is equal to the number of k£ x n lonesum matrices.
Definition 2.2. Bernoulli number B,, is defined as following:
L /mA+1
By =1, Z_;( Z_ )Bizo.
The exponential generating function for the Bernoulli number is

" xe”
I RAE
n! er —1

n>0

Note that

n

B yman MES(n,m)
By=2 (-1 m+1 "’

m=0
where S(n,m) is the Stirling number of the second kind. The poly-Bernoulli number, first
introduced by Kaneko [6], is defined as

n

B = 3oy A,

m=0

and its exponential generating function is

ZB(k)z_n _ Ll —e™)
" n!

1—e@ 7’
n>0

where Lig(z) is the polylogarithm
xm
Lig(x) := Z —
m>1 mk
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Bernoulli numbers are nothing but poly-Bernoulli numbers with k£ = 1. Sanchez-Peregrino [10]

proved that BS™ has the following simple expression:
min(k,n)
B{M= > (m)’S(n+1m+1)S(k+1m+1).
m=0

Brewbaker [2] and Kim [7] proved that the number of k x n lonesum matrices is the
poly-Bernoulli number B, So we have the following result.

Proposition 2.3. The number of k X n matrices avoiding Ay is equal to Bﬁfk), i.€e.,

min(k,n)
$(k,n; Ay = D (m)*S(n+1,m+1)S(k+1,m+1). (1)
m=0
In particular, for the square matrices of size n, we have

p(n,n; Ay) = Bo™ = Z:(m!)2 S(n+1,m+1)>%.

n
m=0

The generating function ®(z,y; A;), given by Kaneko [6], is

O(z,y; Ar) = eV " [(e” = 1)(e¥ — 1)]" = . (2)

m>0

We also easily obtain ®(z; A;) as follows:

’fL

O(z;A)) = ZgbnnAl —'

n>0
= ZZ D™ m!S(n,m)(m + 1)" z'
n>0 m>0 n:
12)"
— Z vaS n,m) M
m>0 n>0 )
_ Z(l - e—(m—l—l)z)m ) (3)
m>0

3 Main Results

3.1 Type A; (or type Aj3)

By row exchange and column exchange we can change the original matrix into a block
matrix as in Figure [l Here [0] (resp. [1]) stands for a 0-block (resp.1l-block) and [0*]
stands for a 0-block or an empty block. Diagonal blocks are [1]’s except for the last block
[0*], and the off-diagonal blocks are [0]’s.



(1] (0] (0] [0%]

0] (1] [0] [07]
0] 0] (1] [07]
(0] (0] [0] [07]

Figure 1: A matrix avoiding A, can be changed into a block diagonal matrix.

Theorem 3.1. The number of k X n matrices avoiding As is given by

min(k,n)
$(k,n; Ay) = > mlS(n+1,m+1)S(k+1,m+1). (4)

m=0

In particular, for the square matriz of size n, we have

d(n,m; Ay) = Z m! S(n+1,m + 1)

m=0

Proof. Let = {C},Cs,...,Cpyi1} be a set partition of [n + 1] into m + 1 blocks. Here
the block C’s are ordered by the largest element of each block. Thus n+1 is contained in
Cini1. Likewise, let v = {Dy, Do, ..., D,,,1} be a set partition of [k+ 1] into m+ 1 blocks.
Choose 0 € Sy,41 with o(m + 1) = m + 1, where S,,11 is the set of all permutations of
length m + 1. Given (i, v, o) we define a k x n matrix M = (a; ;) by

1, (i,5) € Cy x Doy for some [ € [m)]
Qi = . .
0, otherwise

It is obvious that the matrix M avoids the type As.

Conversely, let M be a k x n matrix avoiding type As. Set (k + 1) x (n + 1) matrix
M by augmenting zeros to the last row and column of M. By row exchange and column
exchange we can change M into a block diagonal matrix B, where each diagonal is 1-block
except for the last diagonal. By tracing the position of columns (resp. rows) in M, B gives
a set partition of [n+1] (resp. [k+1]). Let {C4,Cy, ..., Chgr} (vesp. {D1, Do, ..., Dpi1})
be the set partition of [n+1] (resp. [k+1]). Note that the block C;’s and D;’s are ordered
by the largest element of each block. Let o be a permutation on [m] defined by o (i) = j
if C; and D; form a 1-block in B.



M= 4/135/26/7
V =25/6/378/149 <«

0=3124

5 6 3 7 8 1 4 9 M - 1 2 3 4 5 6 7 8
0] |[0] [1] [0] 1010 0 1 0 0 O
2|0 0 0 00 1 00
(1 |[0] [0] [0] 30 1. 0 01 0 0 O
<= 4/0 0 1 0 0 0 1 1
s/]0 1. 0 0 1 0 0 O
0 [l [0] [0]

6/0 0 0 0 0 1 00

[0 | [0] [0] 710 0 0 00 0O 0 0 O

Figure 2: A matrix avoiding A, corresponds to two set partitions with a permutation.

The number of set partitions 7 of [n + 1] is S(n + 1,m + 1), and the number of set
partitions 7’ of [k+1] is S(n+1,k+1). The cardinality of the set of ¢’s is the cardinality
of Sy, i.e., m!. Since the number of blocks m + 1 runs through 1 to min(k,n) + 1, the
sum of S(k+1,m+1)S(n+1,m+ 1)m! gives the required formula.

O

Example 1. Let p1 = 4/135/26/7 be a set partition of [7] and v = 25/6,/378/149 of [9] into
4 blocks. Let o = 3124 be a permutation in Sy such that o(4) = 4. From (u, v, o) we can
construct the 6 x 8 matrix M which avoids type As as in Figure

To find the generating function for ¢(k, n; As) the following formula (see [5]) is helpful.

ZS(n+1,m+1)m:

n>0

N
¢ m/!

From Theorem B and (], we can express ®(z,y; Ay) as follows:

@(1" Y; A2)

kyn
n,k>1
ahyn
> Zm!S(n—i—1,m+1)S(/€+1,m+1)k——'

n,k>0 m>0

n k
Yy x
E S(n+1,m+1)—n' m! E Sk+1,m+1)—

! k!

n,m>0 k>0

x €T m yn
Ze(e - 1) ZS(n%—l,m—l—l)m
m>0 n>0
Z (e —1)™ iey( y—1)m

m!

m>0

exp[(e” —1)(e = 1) +x+y].

(5)



[1] [1] | [0]

[1] [0] [1] | [0]
[0] [0] |[1]

Figure 3: Possible reduced forms of matrices avoiding Ay U Aj

Remark 1. Tt seems to be difficult to find a simple expression of ®(z; Ay). The sequence
¢(n,n; Ay) is not listed in the OEIS [9]. The first few terms of ¢(n,n; Ay) (0 < n < 9)
are as follows:

1,2,12,128,2100, 48032, 1444212, 54763088, 2540607060, 140893490432, . . .

3.2 Type AQ U Ag

As mentioned in Section 1, if we add a new relation — exchanging 0 and 1 — on matrices,
then A, U A3 becomes a new equivalent class. The reduced form of a matrix M avoid-
ing As U Aj is very simple as in Figure 3l In this case if the first row and the first column
of M are determined then the rest of the entries of M are determined uniquely. Hence
the number ¢(k,n; As U A3) of such matrices is

Dk, n; Ay U Ag) = 281 (k,n > 1), (7)
and its exponential generating function is
1
O(z,y; AsUA3) =1+ 3 (e* —1)(e* —1). (8)

Clearly, ¢(n,n; Ay U Az) = 22"~ for n > 1. Thus its exponential generating function is

Bz Ay U Ay) = % (" 1) ()

3.3 Type A, (or type Aj;)

Given a 0/1-matrix, 1-column (resp. 0-column) is a column in which all entries consist of
1’s (resp. 0’s). We denote a 1-column (resp. 0-column) by 1 (resp. 0). A mixed column
is a column which is neither 0 nor 1. For k& = 0, we have ¢(0,n; Ay) = dp,. In case k > 1,
i.e., there being at least one row, we can enumerate as follows:

e case 1: there are no mixed columns. Then each column should be 0 or 1. The
number of such k£ x n matrices is 2".

e case 2: there is one mixed column. In this case each column should be 0 or 1 except
for one mixed column. The number of k X n matrices of this case is 2"~ n (2% — 2).
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e case 3: there are two mixed columns. As in case 2, each column should be 0 or 1
except for two mixed columns, say, v; and v,. The number of k X n matrices of this
case is the sum of the following three subcases:

-ty =1 272() 20 S(k, 2)
- 01 + g has an entry 0: 2"7%(%) 31.S(k, 3)
- v1 + vy has an entry 2: 2"72(7) 31 S(k, 3)

e case 4: there are m (m > 3) mixed columns vy,...,v,. The number of k x n
matrices of this case is the sum of the following four subcases:

-vi 4t v, =10 277 (M) m! S(k,m)

~vp Uy = (m— 1)1 277 (M) ml Sk, m)

-1 4 -+ + vy, has an entry 0: 277" (") (m + 1)1 S(k,m + 1)
- v + -+ v, has an entry m: 2"_’”(;2) (m4+ 1)!S(k,m+1)

Adding up all numbers in the previous cases yields the following theorem.

Theorem 3.2. For k, n > 1 the number of k x n matrices avoiding Ay is given by

d(k,n; Ay) =2 Z (l i’ 1) "4+ (n* —n—4)2"2 —n(n + 3)2"T+3, (10)

>1

Proof.
ok, m; Ay) = 204 2n (?) (2% — 2) 4 272 (Z) (2!05(k,2) +3125(k,3))

N Z_g gn—m+1( ) (ml S(kym) + (m + DS (k,m + 1))

n
m
= 2) o (:l) m!S(k+1,m+1)+ (n* —n—4)2"2 — n(n + 3) 2"HH3
m=0

= 2) (z " )lk+(n2—n—4)2"_2—n(n—|—3)2”+k_3.

Note that in the proof of Theorem we use the identity
n n
| n—m _ k
Z(m)m.S(k,m)2 Z(l)z,
m>0 1>0

where both sides count the number of functions f from [k] to [n] such that each element
of [n] \ f([k]) has two colors.



The generating function ®(x,y; A4) is given by

k,n
Olr,y; Ai) = 1+ > 23 (zjfl) ﬂﬁgT%I

n>1k>1  I>1

—I—ZZ(nz—n— 2"~ 2?5_22 n(n+ 3) 2" 3]{:‘ oy

n>1 k>1 n>1 k>1

= 1+ (2e"(e¥" ) — 1) — 2¢% + 2)

+@”—D«f—ﬂk%+i)—lmy+®¥%¥x—ﬂ

2
— 269(514-1)-1-:0_Me2x+2y+(y2_1)ex+2y_ T _ w
2

2

For the n x n matrices we have

o(n,n; Ay) =2 Z <l 7_1 1) "+ (n* —n—4)2"2 —n(n+3) 2%,

>1

e +2. (11)

Thus the generating function ®(n,n; A,) is given by

TN
Z¢nnA4z—' = 2ZZ(HZ )l“ﬁ

n>0 n>0 I1>1

N Z n? —Z —4 (22)"  n(n+3) (42)"

= n! 8 n!
l I n—I+1
= = Z 2) % + (22 = 1)e** — 2z(z + 1)e*
I>1 ! n>l-1 (n—1+1)!
2 ' ! 2 2 4
= = Z ﬁ(zez) + (2 —1)e”* —2z(z + 1)e
z el
2
= = (ze* W/(=z€*)) + (22 — 1)e** — 2z(z + 1)e*
z
—2W(—=z¢?) 2 2 4
—1)e** =2 1)e* 12
ST W (=) + (2 Je 2(z +1)e™, (12)

where .
I
W(x) =Y (-n) 1;5
n>1
is the Lambert W-function which is the inverse function of f(W) = We". See [3] for
extensive study about the Lambert W-function.

Remark 2. The sequence ¢(n,n; Ay) is not listed in the OEIS [9]. The first few terms
of ¢(n,n; Ay) (0 <n <9) are as follows:

1,2, 14, 200, 3536, 67472, 1423168, 34048352, 927156224, 28490354432, . ..



3.4 Type AsU A;

If we add a new relation — transpose — on matrices, then A,U A5 becomes a new equivalent
class. By the symmetry of Ay U A5, we have

(b(]{?, n; A4 U A5) = (Z)(n, ]{Z, A4 U A5)
So it is enough to consider the case k > n. For k < 2 or n < 1, we have

¢(0,n; Ay U As) = 0,  ¢(1,m; A3 U As) =27,
$(k,0; Ay U As) = 0o, d(k, 1; Ay U As) = 2%,

Given a 0/1-vector v with length of at least 3, v is called 1-dominant (resp. 0-dominant)
if all entries of v are 1’s (resp. 0’s) except one entry.

Theorem 3.3. For k > 3 and n > 2, the number of k X n matrices avoiding Ay U As is
equal to twice the number of rook positions in the k x n chessboard. In other words,

min(k,n)
ok, AqUAs) =2 Y (Z) (Z)m!. (13)

m=0

Proof. Suppose M is a k x n matrix avoiding A, U A;. It is easy to show each of the
following steps:

(i) If M has a mixed column v, then v should be either 0-dominant or 1-dominant.

(ii) Assume that v is O-dominant. This implies that other mixed columns(if any) in M
should be 0-dominant.

(iii) Any non-mixed column in M should be a 0-column.
(iv) The location of 1’s in M corresponds to a rook position in the k x n chessboard.

If we assume v is 1-dominant in (ii) then the locations of 0’s again corresponds to a rook
position. The summand of RHS in (I3]) is the number of rook positions in the k x n
chessboard with m rooks. This completes the proof. O

The generating function ®(z,y; Ay U As) is given by

2
(I)(,flj" Y, A4 U A5) = 26$Z/+I+y _ @

—2zy +3—2e" =2’ +x(e? =2y —1)(eY — 1) +y(e" —2x —1)(e" —1). (14)

10



Note that the crucial part of the equation (I4]) can be obtained as follows:

()0 w5 - oz )n) (20)%)

- > () ()
= e —e
m)! m!
m>0

= Wty

We remark that the summands in the second line of (I4)) contribute the coefficient of z*y"
where k or n are less than 2.
For the n X n matrices we have

¢(070a A4UA5) = ]-7 ¢(1717A4UA5) = 27 ¢(2727A4UA5) = 127 and
n 2
n
; = I. >
o(n,n; Ay U As) = 2 mgzo (m) m!. (n>3)

Thus the generating function ®(z; A4 U As) is given by

(15)
Note that we use the equation

(3 () )5 -1

n>0 \m=0

which appears in [4, pp. 597-598].

3.5 Type AG U A7

If we add a relation — exchanging 0 and 1 — on 0/1-matrices, then AgU A7 becomes a new
equivalent class. Due to the symmetry of Ag U A7, it is obvious that

¢(k, n; AG U A7) = gb(n, k‘; AG U A7)

The k-color bipartite Ramsey number br(G; k) of a bipartite graph G is the minimum
integer n such that in any k-coloring of the edges of K, , there is a monochromatic
subgraph isomorphic to G. Beineke and Schwenk [I] had shown that br(K32;2) = 5.
From this we can see that

o(k,n; AgU A7) =0 (k,n>05).
For kK =1 and 2, we have

¢(17n7A6 UA7) = 2n7
#(2,n; AgU A7) = (n®+3n+4)2"2

11



2 4 14 | 44 | 128 | 352 | 928 | 2368
3 8 44 | 156 | 408 | 720 | 720
4 16 | 128 | 408 | 840 | 720 | 720
5
6
7

32 | 352 | 720 | 720
64 | 928 | 720 | 720
128 | 2368 | O 0

0 0

[en il Nen) ool Neoll Nan) Nan
[en il Nen) Neol] Neoll Nan) Nan)

[enll Nen) Nenl Nan)
[enll Nen) Nenl Nan)

Table 2: The sequence ¢(k,n; Ag U A7)

Note that the sequence (n? + 3n + 4)2"~2 appears in [9, A007466] and its exponential
generating function is (1 + z)%e*.
For k > 3, we have
d(3,m; AgU A7) = ¢(4,n; AgU A7) =0 forn > 17,
d(5,n; Ag U A7) = ¢(6,n; Ag U A7) =0 for n > 5,
d(k,n; Ag U A7) =0 for k > 7 and n > 3.

For exceptional cases, due to the symmetry of Ag U Az, it is enough to consider the
followings:

3(3,3; Ag U A7) = 156,  (3,4; AgU A7) = 408, (4, 4; Ag U A7) = 840,
¢(3, 5; A6 U A7) = §Z5(3, 6; Aﬁ U A7) = §Z5(4, 5, A6 U A7) = ¢(4, 6; A6 U A7) =720.

The sequence ¢(k,n; Ag U A7) is listed in Table
The generating function ®(z,y; Ag U A7) is given by

O(z,y; AgU A7) = 1+xe® +ye® + 22 (1 +y)%e® + y*(1 4+ x)%e*

2 2 2,,2 3,,3 4,4
- <x+y+x—+y—+2xy+29:2y+2a7y2+14$y)+156ﬂ+840xy

21 2! 212! 313! 414!
3,5 5,3 3,6 6,3 4,5 5,4 4,6 6,4
0 (:;!g! et e e T s T e ) (16)
In particular, the generating function ®(z; Ag U A7) is given by
B(z; Ag U A7) = 1422 + 722 +262° + 352 (17)

4 Concluding remarks

Table [3] summarizes our results. Due to the amount of difficulty, we are not able to
enumerate the number ¢(k,n; Ag) or ¢(k,n; A7). Note that ¢(k,n; Ag) is equal to the
following;:

12



‘ o H o(k,n; a) ‘ O(x,y; ) ‘ O(z; ) ‘
A (@) @)
A, (or Aj) @) ((6}) complicated
Ay U Az (@ ®) @
Ay (or As) (010) 181) @)
AyU As (@) (ne!) (I5)

Ag (or A7) || unknown | unknown | unknown

A6 U A7 Table Q] @)

=

Table 3: Formulas and generating functions according to each avoiding type a.

(a) The number of labeled (k,n)-bipartite graphs with girth of at least 6, i.e., the
number of Cy-free labeled (k, n)-bipartite graphs, where Cy is a cycle of length 4.

(b) The cardinality of the set {(By,Bs,...,Bg) : B; C[n] Vi, |B;NB;| <1Vi#j}.
For further research, we suggest the following problems.

1. Enumeration of sets of k x n 0/1-matrices avoiding each individual matrix instead
of each equivalent class by row/column exchange. For example, ¢(k,n; {({9)}).

2. In addition to 0/1-matrices, one can consider 0/1/--- /r-matrices with r > 2.

3. Consideration of the results of adding the line sum condition to each individual case
given in the first column of Table [3
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