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Recommender systems are promising ways to filter the overabundant information in modern
society. Their algorithms help individuals to explore decent items, but it is unclear how they allocate
popularity among items. In this paper, we simulate successive recommendations and measure their
influence on the dispersion of item popularity by Gini coefficient. Our result indicates that local
diffusion and collaborative filtering reinforce the popularity of hot items, widening the popularity
dispersion. On the other hand, the heat conduction algorithm increases the popularity of the niche
items and generates smaller dispersion of item popularity. Simulations are compared to mean-field
predictions. Our results suggest that recommender systems have reinforcing influence on global
diversification.

PACS numbers: 89.75.-k, 89.65.-s, 89.20.Ff

I. INTRODUCTION.

Due to the rapid expanding of the internet, we are
overloaded by the unlimited information on the World
Wide Web [1]. For instance, one has to choose among
millions of candidate commodities to shop online. Com-
prehensive exploration is infeasible [2]. As a result, var-
ious recommendation approaches have been proposed to
help filtering the relevant information [3, 4]. For instance,
the popularity-based recommendations (PR), which rec-
ommend the most popular items to users, are commonly
adopted in online recommender systems. However, such
recommendations are not personalized such that identi-
cal items are recommended for individuals with far dif-
ferent taste. By comparison, the collaborative filtering
(CF) makes use of collective data of individual prefer-
ence and provides personalized recommendations [5, 6].
So far, CF has been successfully applied to many online
applications.

Recently, recommendation algorithms have been pro-
posed from a physics perspective [7, 8]. For instance,
diffusion is applied on the user-item bipartite networks
to explore items of potential interest for a user. This
mass diffusion (MD) algorithm is shown to outperform
CF in the recommendation accuracy [7]. However, a sim-
ilar problem as observed in PR is found in MD: diffusion-
based recommendations are biased to popular items even
individual preferences are considered. In fact, a good
recommendation algorithm should recommend items of
personal interest and at the same time maximize the di-
versity of choices.

An alternative approach based on the heat conduction
(HC) on the user-item graphs is thus introduced [8]. This
method provides users with many novel items and leads
to diverse recommendation results among users. How-
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ever, HC has low accuracy compared with MD. The para-
dox is eventually solved by combining MD with HC in a
hybrid algorithm [9], which can be well-tuned to obtain
significant improvement in both recommendation accu-
racy and item diversity.

Though they are helpful in filtering information, rec-
ommendation algorithms may impose reinforcing influ-
ence on the system, by guidance to one’s choices which
influence subsequent recommendations and hence choices
of others. The influence is amplified with successive rec-
ommendations. We note that such perspective is em-
ployed to explain the evolution movie popularity [10, 11],
which yields consistent predictions compared with ob-
served data. It is thus interesting to examine such in-
fluence on recommender systems. Unlike most existing
works which are devoted to improving recommendation
accuracy [6], our present study presents a physics per-
spective and utilizes microscopic interactions to explain
and predict macroscopic behaviors of recommender sys-
tems [12, 13].

In this paper, we use the Gini coefficient to measure the
dispersion in item popularity [14]. We note that a small
dispersion implies similar popularity among items, and
hence diverse recommendations for users. We consider
various conventional algorithms including the popularity-
based, the collaborative filtering, the mass diffusion and
the heat conduction algorithms. We focus on the physical
aspects and study numerically and theoretically the rein-
forcing influence of recommendations on the dispersion of
item popularity. The result indicates that MD and CF
reinforce the popularity of popular items, as similar to
PR. On the other hand, the heat conduction algorithm
increases the popularity of the niche items and generates
smaller dispersion in item popularity. Our results suggest
that recommender systems have reinforcing influence on
global diversification.

http://arxiv.org/abs/1106.0330v1
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FIG. 1: (Color online) The change of Gini index with time in
the APS citation system and the Baby name system.

II. DISPERSION OF ITEM POPULARITY

We quantify the influence of recommender systems by
measuring the changes in the dispersion of item popular-
ity after successive recommendations. If the dispersion is
large, some items dominate in popularity and users have
limited choices. On the other hand, if the dispersion is
small, items have similar popularity and users enjoy di-
verse recommendations.
To quantify such global diversity, we make use of Gini

coefficient G [14] to measure the dispersion of item pop-
ularity, as in the case of individual wealth. In addition to
wealth, it has been used to measure dispersion in sociol-
ogy, science and engineering. Mathematically, it is given
by

G = 1− 2

∫ 1

0

C (x) dx, (1)

where C(x) is the normalized cumulative popularity
when items are ranked in ascending order of popularity,
with x being the normalized rank. Specifically, G = 0
corresponds to uniform popularity among items, while
G = 1 corresponds to maximal dispersion.
To see how Gini coefficient quantifies the changes in

popularity dispersion we study as examples the scien-
tific citation data and the baby name data. The sci-
entific citation data is based on the citation relation in
the APS (American Physics Society) journals from 1893
to 2009 [15], and the baby name data is based on the
first names taken from US Social Security Administra-
tion, and contain the top 1000 boy and girl names every
year from 1880 to 2009 [16]. What we are interested most
is how the dispersion changes with time in these two sys-
tems. The results are reported in Fig. 1 from which
we can see the Gini coefficient keeps increasing in APS
citation system while decreasing in baby name system.
Due to the technological advances, ones get access to far
more information than before. Good papers can thus
have wider spread and are cited more which leads to a
larger dispersion and hence lower global diversity. Simi-
larly, parents know more candidate names for babies, and
the system shows increasing diversification.
The above examples show that the changes in global

diversity are well captured by the Gini coefficient. We
thus make use of Gini coefficient to examine the influence

FIG. 2: (Color online) An illustrative example of the evolution
of the bipartite network. The red node corresponds to the
active user, and the red link corresponds to the choice made
by the user according to recommendation results.

of recommender systems on popularity dispersion.

III. THE REINFORCING INFLUENCE OF

RECOMMENDER SYSTEMS

We investigate in this section the influence of recom-
mender systems on the global diversity by examining dis-
persion in item popularity. Here, we consider four rec-
ommendation algorithms including mass diffusion (MD),
heat conduction (HC), user-based collaborative filtering
(UCF), item-based collaborative filtering (ICF). In ad-
dition, we consider two benchmark algorithms including
popularity-based recommendation (PR) and random rec-
ommendation (RR), corresponding to the recommenda-
tions of respectively most popular and random items.
We first give brief descriptions of the MD algorithm.

Consider a system ofN users andM items represented by
a bipartite network with adjacency matrix A, where the
element aiα = 1 if user i has collected object α, and aiα =
0 otherwise (throughout this paper we use Greek and
Latin letters, respectively, for object- and user-related
indices).
For a target user i, the algorithm starts by assigning

one unit of resources to objects collected by i, and re-
distributes the resource through the user-item network.
We denote the vector f as the initial resources on items
where fα is the resource possessed by object α. The re-

distribution is represented by f̃ = W f, where

wαβ =
1

kβ

M∑

l=1

alαalβ

kl
, (2)

is the diffusion matrix, with kβ =
∑N

i=1
aiβ and kl =∑M

γ alγ denoting the degree of object β and user l respec-
tively. Technically, recommendations for a given user i

are obtained by setting the initial resource vector fi in ac-
cordance with the objects the user has already collected,
that is, by setting f i

α = aiα. The resulting recommenda-
tion list of uncollected objects is then sorted according to
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f̃ i
α in descending order. Physically, the diffusion is equiv-
alent to a three-step random walk starting with ki units
of resources on the target user i. The recommendation

score of an item is taken to be the resources on the item
after the diffusion. The scores for objects that user i have
already collected are set to 0. The recommendation list
for user i is generated by ranking all his/her uncollected
objects in descending order of their final resources.
The HC algorithm works similar to the MD algorithm,

but instead of a diffusion process, the scores are evaluated
by a conduction process as represented by

wαβ =
1

kα

M∑

l=1

alαalβ

kl
. (3)

Physically, the temperature of an object is considered to
be the average temperature of its nearest neighborhood,
i.e. its connected objects. The higher the temperature
of an item is, the higher its recommendation score.
The CF algorithms provide recommendations based on

user or item similarities. It is divided into two main
categories: the user-based CF and the item-based CF. In
UCF, the recommendation score of an item is evaluated
based on the similarity between the target user and the
users who collected the item. The final recommendation
score for each item can be written as

f̃ i
α =

N∑

j=1

sijajα. (4)

where sij is the similarity between user i and j.
In ICF, the recommendation score of an item is evalu-

ated based on its similarity with the collected items of the
target user. Similarly, the final recommendation score for
each item can be written as

f̃ i
α =

M∑

β=1

sαβaiβ . (5)

where sαβ is the similarity between item α and β.
The measure of similarities used in CF is subject to

definition. Here we define the measure of similarity as
the number of common neighbors [17] in the bipartite
networks.
With the above mentioned algorithms, we consider a

scenario of recommender systems as follows. At every
step a random user is selected as the active user, based on
whom the recommendation scores of all items are eval-
uated. For simplicity, we assume that the active user
would accept the recommendation results and select the
uncollected item with the highest recommendation score,
i.e. adding a link between the active user and the item in
the bipartite network. An illustrative example is shown
in Fig. 2. The red node corresponds to the active user,
and the red link corresponds to the choice made by the
user according to recommendation results.
In one marco-step of our simulation, we randomly

choose 10 percent of users as active users. After each

macro-step, we evaluate the dispersion the item popu-
larity by Gini coefficient. Note that we do not consider
the growth of the system since introducing new users or
items may involve the cold start problem for them [18].
The datasets we will examine are the subsets of data ob-
tained from four online systems: Movielens, Netflix, de-
licious and Amazon. These data are random samplings
of the whole records of user activities in these websites,
the descriptions of data are given in Table I.

TABLE I: Description of the data

network Users Items Links Sparsity

Movielens 943 1, 682 82, 520 5.20 · 10−2

Netflix 3, 000 3, 000 197, 248 2.19 · 10−2

Delicious 1, 000 18, 700 63, 290 3.40 · 10−3

Amazon 5, 000 12, 377 36, 391 5.88 · 10−4

We show in Fig. 3 the evolution of Gini coefficient in
simulations as a function of macro-step. As we can see,
the Gini coefficient increases in the presence of MD, UCF
and ICF algorithms. This corresponds to their reinforc-
ing influences on the system, leading to a wider dispersion
of item popularity after successive recommendations. A
further evidence can be seen in Fig. 4, which shows that
popular items become more popular, while neglecting the
rest of the items. This corresponds to an undesired influ-
ence, as choices and visions for users become more limited
in the presence of these recommendation algorithms.

We can further understand the reinforcing influences
of the MD, UCF and ICF recommender systems by com-
paring their Gini coefficients with the unpersonalized
popularity-based algorithm. As shown in Fig. 3, similar
trends are observed between the four algorithms. We can
examine the underlying reasons in Fig. 4, which shows
that the MD, UCF, ICF and PR algorithms only rec-
ommend to users the most popular items. These results
imply that the changes in the distribution of item pop-
ularity are similar in these four algorithms. Therefore,
personalized elements in the MD, UCF and ICF algo-
rithms do not increases the global diversity as compared
to the unpersonalized PR algorithm.

On the other hand, the HC algorithm behaves quite
differently from the other algorithms. As we can see
in Fig. 3, it generally decreases the Gini coefficient in
Movielens and Netflix, where density of links is high.
In sparse systems, the three-step conduction process can
only reach some items with large degree, and inevitably
add links to hot items. This leads to an increasing Gini
coefficient. Moreover, the HC method is also different
from the random recommendations as we can see from
Fig. 4. Instead of uniform addition of links, it inclined
to add links to items with small degree. It implies that
the HC algorithm does not reinforce the popularity of
hot items as the MD and CF algorithms.
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FIG. 3: (Color online) The change of the Gini coefficient for
items’ popularity when using different recommendation meth-
ods in real systems. The results are averaged on 100 indepen-
dent realizations.
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FIG. 4: (Color online) The items popularity increment when
using different recommendation method in real systems. The
results are averaged on 100 independent realizations.

IV. THE MEAN-FIELD APPROXIMATION

To better understand their influences of recommender
systems, we derive analytically the distribution of item
scores after the recommendation processes. The major
difficulty in analysis comes from the particular network
topology of each dataset, which embeds the non-trivial
correlations between users and items [19, 20]. Here we
focus on the recommendation influences, and assume a
simple topology where users and items are randomly con-
nected [21]. This corresponds to a crude mean-field ap-
proximation, but such assumption facilitates the analysis
and the illustration of physical behaviors underlying the

recommendation algorithms.

To begin our analysis, we derive the probability piα
that a user i and an item α are connected in a random
graph. Suppose we start with ki cavities on user i and
kα on item α, which are respectively the degree of i and
α. If one cavity is picked randomly among the items, the
probability that α being picked is kα∑

M
β=1

kβ
. It implies that

piα = 1 − (1 − kα∑
M
β=1

kβ
)ki , where (1 −

kα∑
M
β=1

kβ
)ki is the

probability that i is not connected to α. As
∑M

β=1
kβ ≫

kα, expansion to the first order of kα leads to piα ≈

1 − (1 − ki
kα∑

M
β=1

kβ
) = kikα

c
, where c =

∑M

β=1
kβ is the

total number of links in the bipartite network.

We then derive the mean-field expression of recommen-
dation scores in the MD recommender system. As men-
tioned above, the MD method is based on the three-step
diffusion. The resource vector for items in the first step

and last step are denoted respectively by f and f̃. In the
second step, the resources are in users’ side and the cor-
responding vector is denoted as e. By considering the
last step of the diffusion process, the score of α from user

i is given by f̃ i
α = (1 − piα)

∑N

j=1

eijpjα

kj
. Substitution of

pjα =
kjkα

c
leads to

f̃ i
α =

(
1−

kikα

c

) N∑

j=1

(
eij

kj

kjkα

c

)
=

(
1−

kikα

c

)
kikα

c
,

(6)
as
∑

eij =
∑

f i
α = ki.

Next we derive the scores for the HC algorithms by
again considering the last step of the conduction process.
However, the total “resources” does not conserve in heat
conduction but instead the temperature of user j is given

by eij =
ki

M

∑M

γ=1

pjγ

kj
= ki

M
, where ki

M
corresponds to the

random choices of initial collected item for i. Therefore,

f̃ i
α =

(
1−

kikα

c

) N∑

j=1

(
ki

Mkα

kjkα

c

)
=

(
1−

kikα

c

)
ki

M

(7)

In the user-based CF, scores of items are evaluated
by the similarity between the target user and the users
who have collected it. The user similarity is given by

the number of common neighbors. Therefore, f̃ i
α =

(1 − piα)
∑N

j sijpjα where sij ≈
kikj

M
in the mean-field

approximation. The score for object α is then approxi-
mated by

f̃ i
α =

(
1−

kikα

c

) N∑

j=1

(
kikj

M

kjkα

c

)
=

(
1−

kikα

c

)
kikαb

cM
.

(8)

where b =
∑N

j=1
k2j is a constant for a given network.

As similar to user-based CF, the item similarity in

item-based CF can be approximated by sαβ =
kαkβ

N
in

the mean-field approximation. The score for object α is
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FIG. 5: (Color online) The simulation result and the theoret-
ical result of the total recommendation score versus the orig-
inal item degree in different recommendation engines. The
simulation results are averaged on 100 independent realiza-
tions.

then approximated by

f̃ i
α =

(
1−

kikα

c

) M∑

β=1

(
kikβ

c

kαkβ

N

)
=

(
1−

kikα

c

)
kikαd

cN
.

(9)

where d =
∑M

β=1
k2β is a constant for a given network.

In order to compare the simulated results and the
mean-field predictions, we evaluate the corresponding to-

tal scores Fα =
∑N

i f̃ i
α that a item receives from all the

users. As shown in Fig. 5, the mean-field approxima-
tion captures both the magnitude and the trend of the
recommendation scores.

Further insights are drawn by noting c ≫ kikα in most

systems, which implies f̃ i
α ∝ kikα in Eqs. (4), (5) and

(7). Since we assume that users always accept the item
with highest recommendation scores, the recommenda-
tion scores in the MD, UCF and ICF cases are thus sim-
ilar to the PR algorithm which recommends the most
popular items. This again shows the reinforcing influ-
ence of these recommendation algorithms. On the other

hand, Eq. (5) suggests f̃ i
α ∝ ki in the HC algorithm,

which is item independent as in the case of random rec-
ommendations.

Though the approximated scores of HC agree well with
RR, their behaviors are difference in terms of choices of

items. According to f̃ i
α = (1 − piα)

∑N

j=1

kipjα

kjkα
, users

select the reachable items with lowest degree after three-
step conduction, compared to the random choice. There-
fore, the HC and RR algorithms show different influence
on the dispersion of item popularity, as we can see in Fig.
3(c) and (d).
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FIG. 6: (Color online) The change of the Gini coefficient for
items’ popularity when adjusting the λ in the hybrid recom-
mendation algorithm in real systems. The results are aver-
aged on 100 independent realizations.

V. STEADY GINI COEFFICIENT BY HYBRID

RECOMMENDATIONS

As we have seen from the previous sections, the MD al-
gorithm reinforces the popularity of hot items and limits
available choices, while the HC algorithm recommends
items with low popularity and increases global diversity.
It is thus interesting to examine the influence on diver-
sity if these two algorithms with opposite influences are
combined. We thus adopt the hybrid algorithm of MD
and HC proposed in [9], with the new recommendation

score h̃α given by

h̃α = λf̃MD

α + (1− λ) f̃HC

α . (10)

The parameter λ adjust the relative weight between the
two algorithms. When λ increases from 0 to 1, the hybrid
algorithm change gradually from HC to MD. We remark
that though Eq. (10) corresponds to a linear combination
of scores, the hybrid algorithm is a non-linear combina-
tion of HC and MD as users select only items with highest
scores.
The influence of the hybrid algorithm on Gini coeffi-

cient is shown in Fig. 6 as a function of λ. The lines with
different symbols correspond to Gini coefficient measured
after increasing macro-step. As we can see from Fig. 6
(a) and (b), the Gini coefficient increases with λ, cor-
responds to a transition from HC to MD recommender
systems. It is interesting to note that Gini coefficient
shows a significant increase in a short range of λ on the
Netflix and Movielens datasets, and becomes saturated
afterwards. The saturated Gini coefficient corresponds to
dominance of the MD algorithm such that only popular
items are recommended, despite the presence of HC al-
gorithm. Similar behaviors are not observed in Fig. 6 (c)
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and (d) in the Delicious and Amazon datasets, which are
sparse compared to the Netflix and Movielens datasets.
Another interesting behavior is noted in Fig. 6 (a) and

(b) when we compare the Gini coefficient after different
macro-steps of recommendations. As we can see, the lines
with different symbols intersect at a particular value of
λ, suggesting a steady Gini coefficient after the reinforce-
ment of recommendations. The corresponding value of λ
thus corresponds to the balance between the HC and MD
algorithms, leading to steady dispersion in item popular-
ity. This is desirable when one considers the reinforcing
influence on global diversity as undesired side-effect of
recommender systems. These values of λ and the cor-
responding Gini coefficient are compared respectively to
the values of λ with optimal recommendation accuracy
[6] and the Gini coefficient before recommendation algo-
rithms are implemented. These results show that high
recommendation accuracy does not always guarantee a
global diversity, leading to a paradox in recommenda-
tions.

VI. CONCLUSION

Recommendation is an effective way to solve the prob-
lem of excess information. However, it is unclear how

they allocate popularity among items. In this paper, we
simulate successive recommendations and measure their
influence on the dispersion of item popularity by Gini co-
efficient. Our result indicates that local diffusion and col-
laborative filtering reinforce the popularity of hot items,
widening the popularity dispersion. On the other hand,
the heat conduction algorithm increases the popularity
of the niche items and generates smaller dispersion of
item popularity. Simulations are compared to mean-field
approximation. Our results indicate that there is rein-
forcing influence of recommender systems on global di-
versification. This work provides a deeper understanding
of these recommendation methods, highlights the impor-
tance of the global diversity and may shine some light
for developing a new recommendation method that can
directly controls the global diversity.

Acknowledgement.

This work was partially supported by the Swiss Na-
tional Science Foundation under Grant No. (200020-
132253), the National Natural Science Foundation
of China(Grant No. 60973069) and the Sichuan
Provincial Science and Technology Department(Grant
No.2010HH0002).

[1] A. Broder, R. Kumar, F. Moghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, J. Wiener, Comput.
Netw. 33, 309 (2000).

[2] S. Maslov and Y.-C. Zhang, Phys. Rev. Lett. 87, 248701
(2001).

[3] G. Adomavicius and A. Tuzhilin, IEEE Trans. Know.
Data Eng. 17, 734 (2005).

[4] F. Cacheda, V. Carneiro, D. Fernández,V. Formoso,
ACM Trans. Web 5,1 (2011).

[5] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L.
R. Gordon and J. Riedl, Commun. ACM 40, 77 (1997).

[6] J. L. Herlocker, J. A. Konstan, K. Terveen, and J. T.
Riedl, ACM Trans. Inf. Syst. secur. 22, 5 (2004).

[7] T. Zhou, J. Ren, M. Medo and Y.-C. Zhang, Phys. Rev.
E 76, 046115 (2007).

[8] Y.-C. Zhang, M. Blattner and Y.-K. Yu, Phys. Rev. Lett.
99, 154301 (2007).

[9] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakel-
ing, and Y.-C. Zhang, Proc. Natl. Acad. Sci. 107, 4511
(2010).

[10] M. B. Diaz, M. A. Porter and J.-P. Onnela, Chaos 20,
043101 (2010).

[11] C. H. Yeung, G. Cimini, and C.-H. Jin, Phys. Rev. E 83,
016105 (2011).
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