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CAYLEY-DICKSON AND CLIFFORD ALGEBRAS AS TWISTED

GROUP ALGEBRAS (2003)

JOHN W. BALES

Abstract. Given a finite group G, a set of basis vectors B = {ip|p ∈ G}
and a ‘sign function’ or ‘twist’ α : G × G → {−1, 1}, there is a ‘twisted

group algebra’ defined on the set V of all linear combinations of elements of
B over a field F such that if p, q ∈ G, then ipiq = α(p, q)ipq. This product is
extended to V by distribution. Examples of such twisted group algebras are
the Cayley-Dickson algebras and Clifford algebras. It is conjectured that the
Hilbert Space ℓ2 of square summable sequences is a Cayley-Dickson algebra.

1. Introduction

In 1972 I took a complex analysis course taught by William R. R. Transue using
a text by J. S. McNerney “An Introduction to Analytic Functions with Theoretical
Implications”[3]. An exercise in this book asked the student to decide whether the
scheme for multiplying two ordered pairs of real numbers could be extended to
higher dimensional spaces. At the time, I was also taking a course taught by Coke
Reed on the Hilbert space ℓ2 of square summable sequences of real numbers. I
decided to investigate whether a product akin to the product of complex numbers
could be extended in a meaningful way to ℓ2. My idea was to do this by equating an
ordered pair of sequences with the “shuffling” of the two sequences. Being unaware
at the time of the Cayley-Dickson construction I naively constructed a sequence of
spaces utilizing the product

(1.1) (a, b) · (c, d) = (ac− bd, ad+ bc)

This construction led to a sequence i0 = 1, i1 = i, i2, i3, · · · of unit basis vectors
for ℓ2 satisfying the twisted product

(1.2) ip · iq = η(p, q)ipq

where pq was the bit-wise “exclusive or” of the binary representations of p and q

and

(1.3) η(p, q) = (−1)<p∧q>

where p∧q is the bit-wise “and” function of p and q and < r > represents the sum
of the bits in the binary representation of r . Since the matrix associated with this
function is a Hadamaard matrix, I called this the “Hadamaard sign function.” (I
was unaware of the term ‘twist’ and of twisted group algebras at the time since my
training was in general topology, not algebra.) Seeing that the four-dimensional
‘Hadamaard space’ created by this construction was not the quaternions, but a
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space with zero divisors, I abandoned the project in 1972. In 1983, while culling
some of my papers, I came across the notes I had made on this problem and began
to look at it again. At that time I found a nice way to represent a twisted product
using inner products and conjugates (Theorem 4.10). I gave a short talk on those
results at a meeting of the Alabama Academy of Sciences in 1992 at Tuskegee
University.

Last year I read John Baez’ article ‘The Octonions’ [1] where I learned for the first
time of twisted group algebras and of Cayley-Dickson and Clifford algebras. This
motivated me to look at Cayley-Dickson and Clifford algebras. The resulting work
is presented in this paper beginning with the section titled ‘The Cayley-Dickson
Construction.’ The sections prior to that section are the most general results of my
work prior to 1985 not specifically tied to the Hadamaard twist.

2. Twisted Group Algebras

Let V denote an n -dimensional vector space over the field F. Let G denote
a group of order n. Let B = {ip | p ∈ G} denote a set of unit basis vectors for
V. Then, for each x ∈ V, there exist elements {xp | xp ∈ F, p ∈ G} such that
x =

∑

p∈G xpip.

Define a product on the elements of B and their negatives in the following manner.

Let α : G × G 7→ {−1, 1} denote a sign function on G. Then for p, q ∈ G define
the product of ip and iq as follows.

Definition 2.1.
ipiq = α(p, q)ipq

Extend this product to V in the natural way. That is,

Definition 2.2.

xy =





∑

p∈G

xpip









∑

q∈G

yqiq





=
∑

p∈G

∑

q∈G

xpyqipiq

=
∑

p∈G

∑

q∈G

xpyq α(p, q)ipq

In defining the product this way, one gets the closure and distributive properties
“for free”, as well as (cx)y = x(cy) = c(xy)

This product transforms the vector space V into a twisted group algebra. The
properties of the algebra depend upon the properties of the twist and the properties
of G.

Notation 2.3. Given a group G , twist α on G and field F , let [G,α,F] denote
the corresponding twisted group algebra. If F = R , abbreviate this notation [G,α] .

3. Twists and Field Properties

Let G denote a finite group, F a field and α a twist on G . Let V = [G,α,F].

Definition 3.1. If α(p, e) = α(e, p) = 1 where e is the identity element of G,

then α is said to an identive twist on G.
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Theorem 3.2. If α is identive, then ie is the identity element, 1, of V.

Proof. If x ∈ V, then

xie =
(

∑

p∈G xpip

)

ie =
∑

p∈G xpipie =
∑

p∈G xp α(p, e)ipe =
∑

p∈G xpip = x.

The proof for iex = x is similar. Thus, ie is the identity element, 1, of V �

Definition 3.3. If α(p, q)α(pq, r) = α(p, qr)α(q, r) for p, q, r ∈ G, then α is said
to be an associative twist on G.

Theorem 3.4. If p, q, r ∈ G and α is associative, then ip (iqir) = (ipiq) ir.

Proof.

ip (iqir) = ip (α(q, r)iqr)

= α(q, r)ipiqr = α(p, qr)α(q, r)ip(qr)

= α(p, q)α(pq, r)i(pq)r

= α(p, q)ipqir

= (ipiq) ir.

�

Theorem 3.5. If x, y, z ∈ V and if α is associative, then x (yz) = (xy) z.

Proof. yz =
∑

q∈G

∑

r∈G (yqzr) iqir, so

x(yz) =





∑

p∈G

xpip









∑

q∈G

∑

r∈G

(yqzr) iqir





=
∑

p∈G

∑

q∈G

∑

r∈G

xp (yqzr) ip (iqir)

=
∑

p∈G

∑

q∈G

∑

r∈G

(xpyq) zr (ipiq) ir

=





∑

p∈G

∑

q∈G

(xpyq) ipiq





∑

r∈G

zrir

= (xy) z

. �

Definition 3.6. If α(e, e) = 1, then α is said to be a positive twist. Otherwise,
α is a negative twist.

Theorem 3.7. If α is associative, then α(e, p) = α(p, e) = α(e, e).

Proof. α(e, e)α(e, p) = α(e, e)α(ee, p)
= α(e, ep)α(e, p) = α(e, p)α(e, p) = 1.
Thus α(e, p) = α(e, e).
α(p, e)α(e, e) = α(p, ee)α(e, e)
= α(p, e)α(pe, e) = α(p, e)α(p, e) = 1.
Thus α(p, e) = α(e, e) �

Corollary 3.8. Every positive associative twist is identive.
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Theorem 3.9. The twist α is associative if and only if, for p, q, r ∈ G α(p, q)α(q, r) =
α(p, qr)α(pq, r)

Proof. Multiplying each side of the equation
α(p, q)α(pq, r) = α(p, qr)α(q, r) by α(q, r)α(pq, r) yields
α(p, q)α(q, r) = α(p, qr)α(pq, r). So the two conditions are equivalent. �

Theorem 3.10. If α is positive and associative, then < V,+, · > is a ring with

unity.

Proof. Follows immediately from Theorems 3.2 and 3.5 and Corollary 3.8. �

Theorem 3.11. For each p ∈ G, α
(

p, p−1
)

ip−1 and α
(

p−1, p
)

ip−1 are right and

left inverses, respectively, of ip.

Proof.

ip
(

α
(

p, p−1
)

ip−1

)

= α
(

p, p−1
)

ipip−1

= α
(

p, p−1
) (

α
(

p, p−1
)

ipp−1

)

= ie = 1
(

α
(

p−1, p
)

ip−1

)

ip = α
(

p−1, p
)

ip−1ip

= α
(

p−1, p
) (

α
(

p−1, p
)

ipp−1

)

= ie = 1

�

Definition 3.12. If α
(

p, p−1
)

= α
(

p−1, p
)

for p ∈ G, then α is an invertive

twist on G.

Theorem 3.13. If p ∈ G and if α is invertive, then ip has an inverse

i−1
p = α

(

p, p−1
)

ip−1 = α
(

p−1, p
)

ip−1 .

Proof. Follows immediately from Theorem 3.11 and Definition 3.12. �

Definition 3.14. If α is invertive, and x ∈ V, then let x∗ =
∑

p∈G x∗
pi

−1
p denote

the conjugate of x.

Theorem 3.15. If α is an invertive twist on G, and if x, y ∈ V, then

(i) x∗ =
∑

p∈G α
(

p−1, p
)

x∗
p−1 ip

(ii) x∗∗ = x

(iii) (x+ y)
∗
= x∗ + y∗

(iv) (cx)
∗
= c∗x∗ for all c ∈ F.

Proof.

(i) Let q−1 = p. Then

x∗ =
∑

q∈G

x∗
qi

−1
q

=
∑

q∈G

x∗
q α
(

q, q−1
)

iq−1

=
∑

p∈G

α
(

p−1, p
)

x∗
p−1 ip
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(ii) Let z = x∗. Then

z =
∑

p∈G

α
(

p−1, p
)

x∗
p−1 ip

=
∑

p∈G

zpip

where zp = α
(

p−1, p
)

x∗
p−1 . Then zp−1 = α

(

p, p−1
)

x∗
p, and

z∗p−1 = α
(

p, p−1
)

xp. So

x∗∗ = z∗

=
∑

p∈G

α
(

p−1, p
)

z∗p−1 ip

=
∑

p∈G

α
(

p−1, p
)

α
(

p, p−1
)

xpip

=
∑

p∈G

xpip = x

(iii)

(x+ y)∗ =
∑

p∈G

(xp + yp)
∗
i−1
p

=
∑

p∈G

(

x∗
p + y∗p

)

i−1
p

=
∑

p∈G

x∗
pi

−1
p +

∑

p∈G

y∗pi
−1
p

= x∗ + y∗.

(iv)

(cx)
∗
=
∑

p∈G

(cxp)
∗
i−1
p

=
∑

p∈G

c∗x∗
pi

−1
p

= c∗
∑

p∈G

x∗
pi

−1
p

= c∗x∗

�

4. Proper Sign Functions

Definition 4.1. The statement that the twist α on G is proper means that if
p, q ∈ G, then

(1) α(p, q)α
(

q, q−1
)

= α
(

pq, q−1
)

(2) α
(

p−1, p
)

α(p, q) = α
(

p−1, pq
)

.

Theorem 4.2. Every positive associative twist is proper.

Proof.
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(1) α(p, q)α
(

q, q−1
)

= α
(

pq, q−1
)

α
(

p, qq−1
)

= α
(

pq, q−1
)

α(p, e) = α
(

pq, q−1
)

α(e, e) = α
(

pq, q−1
)

(2) α
(

p−1, p
)

α(p, q) = α
(

p−1p, q
)

α
(

p−1, pq
)

= α(e, q)α
(

p−1, pq
)

= α(e, e)α
(

p−1, pq
)

= α
(

p−1, pq
)

�

Theorem 4.3. Every proper twist is positive, identive and invertive.

Proof. Suppose α is proper.
Then α(p, e)α

(

e, e−1
)

= α
(

pe, e−1
)

. That is, α(p, e)α(e, e) = α(p, e). So, α(e, e) =
1. Thus, α is positive.
Furthermore, α(e, q)α

(

q, q−1
)

= α
(

eq, q−1
)

= α
(

q, q−1
)

. So, α(e, q) = 1.

Also, α
(

p−1, p
)

α(p, e) = α
(

p−1, pe
)

= α
(

p−1, p
)

. So α(p, e) = 1. Thus, α is
identive.
And since α

(

p, p−1
)

α
(

p−1, p
)

= α
(

pp−1, p
)

= α(e, p) = 1, it follows that α
(

p, p−1
)

=

α
(

p−1, p
)

. So α is invertive. �

Theorem 4.4. If α is a proper twist on G, then (ipiq)
∗ = iq

∗ip
∗ for all p, q ∈ G.

Proof. Since ipiq = α(p, q)ipq, (ipiq)
∗
= (α(p, q)ipq)

∗
= α(p, q)(ipq)

∗

= α(p, q)i−1
pq = α(p, q)α

(

(pq)
−1

, pq
)

i(pq)−1 .

On the other hand,

iq
∗ip

∗ = i−1
q i−1

p =
(

α
(

q−1, q
)

iq−1

) (

α
(

p−1, p
)

ip−1

)

= α
(

q−1, q
)

α
(

p−1, p
)

α
(

q−1, p−1
)

iq−1p−1

= α
(

q−1, q
)

α
(

p−1, p
)

α
(

q−1, p−1
)

i(pq)−1

Therefore, in order to show that (ipiq)
∗
= iq

∗ip
∗, it is sufficient to show that

α(p, q)α
(

(pq)
−1

, pq
)

= α
(

q−1, q
)

α
(

p−1, p
)

α
(

q−1, p−1
)

.

Beginning with the expression on the left,

α(p, q)α
(

(pq)−1, pq
)

= α(p, q)α
(

q, q−1
)

α
(

q, q−1
)

α
(

(pq)−1, pq
)

= α
(

pq, q−1
)

α
(

q, q−1
)

α
(

(pq)−1, pq
)

= α
(

(pq)−1, pq
)

α
(

pq, q−1
)

α
(

q, q−1
)

= α
(

(pq)−1, p
)

α
(

q, q−1
)

= α
(

(pq)−1, p
)

α
(

p, p−1
)

α
(

p, p−1
)

α
(

q, q−1
)

= α
(

q−1p−1, p
)

α
(

p, p−1
)

α
(

p, p−1
)

α
(

q, q−1
)

= α
(

q−1, p−1
)

α
(

p, p−1
)

α
(

q, q−1
)

= α
(

q−1, p−1
)

α
(

p−1, p
)

α
(

q−1, q
)

�

Theorem 4.5. If α is a proper twist on G and if x, y ∈ V, then (xy)
∗
= y∗x∗.
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Proof.

(xy)
∗
=









∑

p∈G

xpip









∑

q∈G

yqiq









∗

=





∑

p∈G

∑

q∈G

xpyqipiq





∗

=
∑

p∈G

∑

q∈G

(xpyqipiq)
∗

=
∑

q∈G

∑

p∈G

yq
∗ xp

∗i−1
q i−1

p

=





∑

q∈G

yq
∗i−1

q









∑

p∈G

xp
∗i−1

p





= y∗x∗

�

Definition 4.6. The inner product of elements x and y in V is 〈x, y〉 =
∑

p∈G xpy
∗
p.

Theorem 4.7. [1− α(p, p)] 〈x, ipx〉 = 0 provided α is proper and p = p−1.

Proof. ipx =
∑

q xqipiq =
∑

q α(p, q)xqipq =
∑

r α(p, pr)xprir where q = pr.

2 〈x, ipx〉 = 2
∑

r

α(p, pr)xrxpr

= 2 α(p, p)
∑

r

α(p, r)xrxpr

= α(p, p)
∑

r

α(p, r)xrxpr + α(p, p)
∑

q

α(p, q)xqxpq

= α(p, p)
∑

r

α(p, r)xrxpr + α(p, p)
∑

r

α(p, pr)xprxr

= α(p, p)
∑

r

α(p, r)xrxpr + α(p, p)α(p, p)
∑

r

α(p, r)xrxpr

= [α(p, p) + 1]
∑

r

α(p, r)xrxpr

= [α(p, p) + 1]α(p, p)
∑

r

α(p, pr)xrxpr

= [1 + α(p, p)] 〈x, ipx〉

Thus [1− α(p, p)] 〈x, ipx〉 = 0. �

Corollary 4.8. If p = p−1, α is proper and α(p, p) = −1, and if x ∈ V , then
〈x, ipx〉 = 0.

Theorem 4.9. [1− α(p, p)] 〈x, x ip〉 = 0 provided α is proper and p = p−1

Proof. The proof is similar to that of Theorem 4.7. �
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Theorem 4.10. If α is a proper twist on G, and if x, y ∈ V, then

xy =
∑

r∈G

〈x, iry
∗〉 ir =

∑

r∈G

〈y, x∗ir〉 ir

Proof.

(i) y∗ =
∑

s∈G α
(

s, s−1
)

y∗
s−1 is. Let p = rs. Then

iry
∗ =

∑

s∈G

α
(

s, s−1
)

y∗s−1iris

=
∑

s∈G

α(r, s)α
(

s, s−1
)

y∗s−1irs

=
∑

s∈G

α
(

rs, s−1
)

y∗s−1irs

=
∑

p∈G

α
(

p, p−1r
)

y∗p−1rip

Thus,

〈x, iry
∗〉 =

∑

p∈G

(

p, p−1r
)

xpy
∗∗
p−1r

=
∑

p∈G

α
(

p, p−1r
)

xpyp−1r

(ii) x∗ =
∑

s∈G α
(

s−1, s
)

x∗
s−1 is. Let q = sr. Then

x∗ir =
∑

s∈G

α
(

s−1, s
)

x∗
s−1 isir

=
∑

s∈G

α
(

s−1, s
)

α(s, r)x∗
s−1 isr

=
∑

s∈G

α
(

s−1, sr
)

x∗
s−1 isr

=
∑

q∈G

α
(

rq−1, q
)

x∗
rq−1 iq

So 〈y, x∗ir〉 =
∑

q∈G α
(

rq−1, q
)

xrq−1yq.

(iii)

xy =
∑

p∈G

∑

q∈G

xpyqipiq

=
∑

p∈G

∑

q∈G

α(p, q)xpyqipq

=
∑

q∈G

∑

p∈G

α(p, q)xpyqipq

Let pq = r. Then p = rq−1 and q = p−1r.

Thus,
xy =

∑

r∈G

∑

q∈G α
(

rq−1, q
)

xrq−1yqir =
∑

r∈G 〈y, x∗ir〉 ir.
And
xy =

∑

r∈G

∑

p∈G α
(

p, p−1r
)

xpyp−1rir =
∑

r∈G 〈x, iry
∗〉 ir. �

Corollary 4.11. If α is proper, then 〈xy, ir〉 = 〈x, iry
∗〉 = 〈x∗ir, y〉 .
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The twists on a group G form an abelian group S(G), with the associative and
proper twists forming closed subgroups SA(G) and SP (G) respectively.

Question 4.12. Do SA(G) and SP (G) have any interesting properties?

5. Addendum on Associative Sign Functions

Theorem 5.1. Suppose α is an associative twist on the group G. For each p ∈ G,

let Lp denote a matrix whose rows and columns are indexed by G, such that if

Lp = (lrs) , then lrs =

{

α(p, s) if r = ps

0 otherwise

Then for every p, q ∈ G , LpLq = α(p, q)Lpq.

Proof. Let Lp = A = (ark) and Lq = B = (bks) .

then ark =

{

α(p, k) if r = pk

0 otherwise

and bks =

{

α(q, s) if k = qs

0 otherwise
.

Thus

LpLq = AB = (ark) (bks)

=

{

α(p, k)α(q, s) if r = pk and k = qs

0 otherwise

=

{

α(p, qs)α(q, s) if r = pqs

0 otherwise

=

{

α(p, q)α(pq, s) if r = pqs

0 otherwise

= α(p, q)Lpq

�

Corollary 5.2. If α is associative on G, and U is the set of all linear combinations
of { Lp | p ∈ G} over F , then U is isomorphic to [G,α,F].

6. The Cayley-Dickson Construction

This and the following sections contain examples of two sign function spaces or
‘twisted group algebras’: the Cayley-Dickson spaces and the Clifford Algebras.

Let S0 denote the real numbers. Define Sn+1 = Sn×Sn. Given (a, b) and (c, d)
in Sn+1, define their product as

(a, b)(c, d) = (ac− db∗, a∗d+ cb)

and their conjugate as

(a, b)
∗
= (a∗,−b)

This is the Cayley-Dickson construction. It defines an infinite sequence of algebras
S0, S1, S2, · · · , withS0 = R being the reals, S1 = C being the complex numbers,
S2 = H the quaternions, S3 = O the octonions, S4 the sedenions, etc.
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7. Ordered Pairs as Shuffled Sequences

Let x = x0, x1, x2, · · · ∈ ℓ2 and y = y0, y2, y3, · · · ∈ ℓ2. Let the ordered pair
(x, y) denote the “shuffled” sequence x0, y0, x1, y1, · · · ∈ ℓ2. Define the conjugate
of x as x∗ = x0,−x1,−x2, · · · . Then it immediately follows that

(x, y)∗ = (x∗,−y)

Equate a real number α with the sequence α, 0, 0, 0, · · · = (α, 0). The unit basis
vectors of the space ℓ2 are

• i0 = 1, 0, 0, · · · = (1, 0) = (i0, 0) = 1
• i1 = 0, 1, 0, 0, · · · = (0, 1) = (0, i0) = i

• i2 = 0, 0, 1, 0, · · · = (i1, 0) = j

• i3 = 0, 0, 0, 1, 0, · · · = (0, i1) = k

• i2n = (in, 0) for n ≥ 0
• i2n+1 = (0, in) for n ≥ 0

Note that this scheme for numbering the basis vectors for the Cayley-Dickson alge-
bras produces a different numbering from those in common use for octonions and
upwards. Yet it arises naturally from the equivalence of ordered pairs and shuffled
sequences.

8. The Sign Function and Product of Basis Vectors

Let G denote the set of whole numbers {0, 1, 2, 3, · · · }.
Let Gn = {p | 0 ≤ p < 2n} .
If p ∈ G, 2p will denote twice the value of p. But for literals p and q, pq will

denote the bit-wise ‘exclusive or’ of the binary representations of p and q.

For example, if p = 9 and q = 11, the binary representations are p = 1001
and q = 1011. Applying the ‘exclusive or’ operation to the corresponding bits of
the two numbers yields pq = 0010. Thus, pq = 2. The set G is a group under
this operation, with identity element 0. Furthermore, p2 = 0 for all p ∈ G. Thus,
p = p−1 for each element p in the group. Gn is a subgroup of G for each n ≥ 0.
Gn = Z2×Z2×· · ·×Z2 = Zn

2 is the direct product of n copies of the cyclic 2-group
Z2 , also known as the dyadic group of order n. The group operation satisfies the
following properties:

(1) (2p)(2q) = 2pq
(2) (2p)(2q + 1) = 2pq + 1
(3) (2p+ 1)(2q) = 2pq + 1
(4) (2p+ 1)(2q + 1) = 2pq

The Cayley-Dickson product of unit vectors satisfy the following

(1) i2pi2q = (ip, 0)(iq, 0) = (ipiq, 0)
(2) i2pi2q+1 = (ip, 0)(0, iq) = (0, i∗piq)
(3) i2p+1i2q = (0, ip)(iq, 0) = (0, iqip)
(4) i2p+1i2q+1 = (0, ip)(0, iq) = −(iqi

∗
p, 0)

Theorem 8.1. There is a twist γ(p, q) mapping G×G into {−1, 1} such that if

p, q ∈ G, then ipiq = γ(p, q)ipq.

Proof. Assume 0 ≤ p < 2n and 0 ≤ q < 2n and proceed by induction on n.

If n = 0, then p = q = 0 and ipiq = i0i0 = i0 = γ(p, q)ipq provided γ(0, 0) = 1.
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Suppose the principle is true for n = k. Let n = k + 1. Let 0 ≤ p < 2n and
0 ≤ q < 2n. Then there are numbers r and s such that 0 ≤ r < 2k and 0 ≤ s < 2k

and such that one of the following is true:

• p = 2r, q = 2s
• p = 2r, q = 2s+ 1
• p = 2r + 1, q = 2s
• p = 2r + 1, q = 2s+ 1

(1) Assume p = 2r, q = 2s. Then

ipiq = i2ri2s = (iris, 0)

= (γ(r, s)irs, 0) = γ(r, s)(irs, 0)

= γ(r, s)i2rs = γ(2r, 2s)i(2r)(2s)

= γ(p, q)ipq

provided γ(2r, 2s) = γ(r, s).
(2) Assume p = 2r, q = 2s+ 1. Then ipiq = i2ri2s+1 = (0, i∗ris).

If r 6= 0, then

ipiq = −(0, iris) = −(0, γ(r, s)irs)

= − γ(r, s)i2rs+1 = γ(2r, 2s+ 1)i(2r)(2s+1)

= γ(p, q)ipq

provided γ(2r, 2s+ 1) = − γ(r, s) when r 6= 0.
If r = 0, then

ipiq = i0i2s+1 = (0, i0is)

= (0, γ(0, s)is) = γ(0, s)i2s+1

= γ(0, 2s+ 1)ipq = γ(p, q)ipq

provided γ(0, 2s+ 1) = γ(0, s).
(3) Assume p = 2r + 1, q = 2s. Then

ipiq = i2r+1i2s = (0, isir)

= γ(s, r)(0, isr) = γ(s, r)i2sr+1

= γ(2r + 1, 2s)i(2r+1)(2s) = γ(p, q)ipq

provided γ(2r + 1, 2s) = γ(s, r).
(4) Assume p = 2r + 1, q = 2s + 1. Then ipiq = i2r+1i2s+1 = −(isi

∗
r , 0). If

r 6= 0, then

ipiq = (isir, 0) = γ(s, r)(isr , 0)

= γ(s, r)i2sr = γ(2r + 1, 2s+ 1)i(2r+1)(2s+1)

= γ(p, q)ipq
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provided γ(2r + 1, 2s+ 1) = γ(s, r) when r 6= 0.
If r = 0, then

ipiq = i1i2s+1 = −(isi
∗
0, 0)

= −(isi0, 0) = − γ(s, 0)(is, 0)

= − γ(s, 0)i2s = γ(1, 2s+ 1)i1(2s+1)

= γ(p, q)ipq

provided γ(1, 2s+ 1) = − γ(s, 0).

Thus, the principle is true for n = k + 1 provided the twist is defined as required
in these four cases. �

Corollary 8.2. The requisite properties of the sign function are

(1) γ(0, 0) = 1
(2) γ(2r, 2s) = γ(r, s)
(3) If r 6= 0 then γ(2r, 2s+ 1) = − γ(r, s)
(4) γ(0, 2s+ 1) = γ(0, s) = 1
(5) γ(2r + 1, 2s) = γ(s, r)
(6) If r 6= 0 then γ(2r + 1, 2s+ 1) = γ(s, r)
(7) γ(1, 2s+ 1) = − γ(s, 0) = −1

Let us apply Theorem 8.1 and Corollary 8.2 to the example of finding the Cayley-
Dickson product of the basis vectors i9 and i11. The process is easier if 9 and 11 are
written in their binary representations 1001 and 1011. Their product under the ‘bit-
wise exclusive or’ group operation is 0010, or 2. Thus, i9i7 = γ(1001, 1011)i0010.
The twist can be worked out using Corollary 8.2 as follows:

γ(1001, 1011) = γ(101, 100) (by Corollary8.2.6)

= γ(10, 10) (by Corollary8.2.5)

= γ(1, 1) (by Corollary 8.2.1)

= −1 (by Corollary 8.2.7)

Thus, i9i11 = −i2.

The following establishes the “quaternion properties” of the twist

Theorem 8.3. If 0 6= p 6= q 6= 0 then

(1) γ(p, p) = −1
(2) γ(p, q) = − γ(q, p)
(3) γ(p, q) = γ(q, pq) = γ(pq, p)

Proof. These follow by induction from Corollary 8.2. �

Theorem 8.4. If p, q ∈ G, then

(1) γ(p, q) γ(q, q) = γ(pq, q)
(2) γ(p, p) γ(p, q) = γ(p, pq)

Thus γ is a proper twist.

Proof. If either p or q is 0, or if p = q, the results are immediate from Corollary
8.2. If 0 6= p 6= q 6= 0, the results follow from Theorem 8.3. �
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Since γ is proper, Theorem 4.10 applies. That is, if x and y are in Sn, then

xy =
∑

r

〈x, iry
∗〉 ir

=
∑

r

〈x∗ir, y〉 ir

Note that, since γ(p, p) = −1 for p 6= 0, the Cayley-Dickson conjugate is equiva-
lent to the conjugate defined in Definition 3.14.

9. Is ℓ2 a Cayley-Dickson Algebra?

My original goal was to extend the Cayley-Dickson product to the space ℓ2 of
square summable sequences. If, for elements x, y ∈ ℓ2 , the product xy is defined
as above, then xy is a number sequence since 〈x, iry

∗〉 < ∞ for each r , but xy is
not obviously square-summable.

Since the components of the product xy are 〈x, iry
∗〉 , if iry

∗ naturally formed
an orthogonal sequence, with r ranging over the non-negative integers, then xy

would be square summable. Unfortunately, iry
∗ forms an orthogonal sequence

only for S1 = C , S2 = H and S3 = O .

Theorem 9.1. If n < 4, p, q ∈ Gn, x ∈ Sn and 0 6= p 6= q 6= 0, then

〈ipx, iqx〉 = 0

In S4 the sedendions, however, 〈i2x, i5x〉 6= 0 for general values of x .
It is not difficult to show that x2 is square summable if x is square summable.

Definition 9.2. If x ∈ ℓ2 define the norm ‖ x ‖ =
√

〈x, x〉.

Theorem 9.3. If r 6= 0, then 〈x, irx〉 = 〈x, xir〉 = 0

Proof. Since γ(r, r) = −1 for r 6= 0 and since γ is proper, the result follows from
Theorems 4.7 and 4.9. �

Theorem 9.4. If x ∈ ℓ2, then ‖ x ‖2 = xx∗ = x∗x

Proof. xx∗ =
∑

r 〈x, irx〉 ir = 〈x, x〉 = ‖ x ‖2 and x∗x =
∑

r 〈x ir, x〉 ir = 〈x, x〉 =
‖ x ‖2 by Theorem 9.3. �

Corollary 9.5. If x ∈ ℓ2, then x−1 = x∗

‖x ‖2 .

Theorem 9.6. If x ∈ ℓ2, then x2 = 2x0x− ‖ x ‖2.

Proof. Since x+x∗ = 2x0, it follows that x2+xx∗ = 2x0x, thus x2 = 2x0x−xx∗ =
2x0x− ‖ x ‖2. �

Corollary 9.7. If x ∈ ℓ2 and if Re(x) = 0 , then x2 = −‖ x ‖2 where Re(x) =
1
2 (x+ x∗) .

Theorem 9.8. If x, y ∈ ℓ2, then

xy + yx = 2 (y0x+ x0y) + ‖ x ‖2 + ‖ y ‖2 − ‖ x+ y ‖2 ∈ ℓ2

Proof. Since xy + yx = (x + y)2 − x2 − y2 the result follows immediately from
Theorem 9.6. �



14 JOHN W. BALES

Definition 9.9. If x, y ∈ ℓ2, define the dyadic convolution of x and y as

x ∗ y =
∑

r

(

∑

p

xpypr

)

ir.

Remark 9.10. The convolution is simply the product which results from the trivial
twist ι(p, q) = 1 for all p, q ∈ G.

Conjecture 9.11. If x, y ∈ ℓ2, then x ∗ y ∈ ℓ2.

Definition 9.12. If x, y ∈ ℓ2, define the commutator of x and y as

[x, y] = xy − yx.

Theorem 9.13. If x, y ∈ ℓ2, then

[x, y] =
∑

r

(

∑

p

[γ(p, pr)− γ(pr, p)]xpypr

)

ir

=
∑

r>1





∑

0<p6=r

γ(p, r) (xpryp − xpypr)



 ir

Proof.

[x, y] = xy − yx =
∑

r

[〈x, iry
∗〉 − 〈x, y∗ir〉] ir

〈x, iry
∗〉 =

〈

∑

p

xpip, ir
∑

q

γ(q, q)yqiq

〉

=

〈

∑

p

xpip,
∑

q

γ(r, q) γ(q, q)yqirq

〉

=

〈

∑

p

xpip,
∑

q

γ(rq, q)yqirq

〉

=

〈

∑

p

xpip,
∑

p

γ(p, pr)yprip

〉

=
∑

p

γ(p, pr)xpypr
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〈x, y∗ir〉 =

〈

∑

p

xpip,

(

∑

q

γ(q, q)yqiq

)

ir

〉

=

〈

∑

p

xpip,
∑

q

γ(q, r) γ(q, q)yqiqr

〉

=

〈

∑

p

xpip,
∑

q

γ(q, qr)yqirq

〉

=

〈

∑

p

xpip,
∑

p

γ(pr, p)yprip

〉

=
∑

p

γ(pr, p)xpypr

Thus,

[x, y] =
∑

r

(

∑

p

[γ(p, pr)− γ(pr, p)]xpypr

)

ir

Then

2[x, y] =
∑

r

{[

∑

p

(γ(p, pr)− γ(pr, p))xpypr

]

ir +

[

∑

q

(γ(q, qr) − γ(qr, q)) xqyqr

]

ir

}

=
∑

r

{[

∑

p

(γ(p, pr)− γ(pr, p))xpypr

]

ir +

[

∑

p

(γ(pr, p)− γ(p, pr)) xpryp

]

ir

}

=
∑

r

{

∑

p

[γ(pr, p)− γ(p, pr)] (xpryp − xpypr)

}

ir

=
∑

r

{

∑

p

γ(p, p) [γ(r, p)− γ(p, r)] (xpryp − xpypr)

}

ir

If r = 0 or p = 0 or r = p , then γ(r, p)− γ(p, r) = 0. If p 6= 0 then γ(p, p) = −1.
And if 0 6= p 6= r 6= 0 , then γ(p, r) = − γ(r, p).

So,

2[x, y] =
∑

r>0







∑

0<p6=r

2 γ(p, r) (xpryp − xpypr)







ir.

Thus,

[x, y] =
∑

r>0







∑

0<p6=r

γ(p, r) (xpryp − xpypr)







ir.

�

Corollary 9.14. [x, y] is square summable if x ∗ y is.

Corollary 9.15. xy is square summable if x ∗ y is.
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10. Clifford Algebra

In Clifford algebra, the same basis vectors B = {ip|p ∈ G} will be used, as well
as the same group G of non-negative integers with group operation the bit-wise
‘exclusive or’ operation. Only the twists will differ.

In Clifford algebra, the basis vectors are called ‘blades’. Each blade has a nu-
merical ‘grade’.

i0 = 1 is the unit scalar, and is a 0-blade.
i1, i2, i4, · · · , i2n · are 1-blades, or ‘vectors’ in Clifford algebra parlance.
i3, i5, i6, · · · are 2-blades or ‘bi-vectors’. The common characteristic of the sub-

scripts is the fact that the sum of the bits of the binary representations of the
subscripts is two.

i7, i11, i13, i14, · · · are 3-blades or ‘tri-vectors’, etc.
The grade of a blade equals the sum of the bits of its subscript.
As was the case with Cayley-Dickson algebras, this is not the standard notation.

However, it has the advantage that the product of basis vectors satisfies ipiq =
φ(p, q)ipq for a suitably defined Clifford twist φ .

In the standard notation, 1-blades or ‘vectors’ are denoted e1, e2, e3, · · · , whereas
2-blades or ‘bivectors’ are denoted e12, e13, e23, · · · etc.

Translating from the e -notation to the i -notation is straightforward. For ex-
ample, the 3-blade e134 translates as i13 since the binary representation of 13 is
1101 with bits 1, 3 and 4 set. The 2-blade e23 = i6 since the binary representation
of 6 is 110, with bits 2 and 3 set.

Stated more formally, the “ i” notation is related to the “ e” notation in the
following way: If pk ∈ {0, 1} for 0 ≤ k < n, and if p =

∑

k pk2
k then ip =

∏

k e(k+1)pk
.

There are four fundamental multiplication properties of 1-blades.

(1) The square of 1-blades is 1.
(2) The product of 1-blades is anticommutative.
(3) The product of 1-blades is associative.
(4) Every n -blade can be factored into the product of n distinct 1-blades.

The convention is that, if j < k, then ejek = ejk, thus ekej = −ejk.

Any two n -blades may be multiplied by first factoring them into 1-blades. For
example, the product of e134 and e23, is computed as follows:

e134e23 = e1e3e4e2e3

= −e1e4e3e2e3

= e1e4e2e3e3

= e1e4e2

= −e1e2e4

= −e124

Since e134 = i13 and e23 = i6, and the bit-wise ‘exclusive or’ of 13 and 6 is 11,
the same product using the ‘ i ’ notation is

i13i6 = φ(13, 6)i11

so evidently, φ(13, 6) = −1.
As in the case of the Cayley-Dickson product, the φ function may be defined

recursively.
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Since the grade of a blade ip equals the sum of the bits of p, it will be convenient
to have a notation for the sum of the bits of a binary number.

Definition 10.1. If p is a binary number, let 〈p〉 denote the sum of the bits of
p.

The sum of the bits function can be defined recursively as follows:

(1) 〈0〉 = 0
(2) 〈2p〉 = 〈p〉
(3) 〈2p+ 1〉 = 〈p〉+ 1

Lemma 10.2.
e1i2p = i2p+1

Lemma 10.3.
e1i2p+1 = i2p

Lemma 10.4.
i2pe1 = (−1)〈p〉i2p+1

Lemma 10.5.
i2p+1e1 = (−1)〈p〉i2p

Theorem 10.6. There is a twist φ(p, q) mapping G×G into {−1, 1} such that

if p, q ∈ G, then ipiq = φ(p, q)ipq.

Proof. Let Gn = {p | 0 ≤ p < 2n} with group operation “bit-wise exclusive or” as
in the Cayley-Dickson algebras.

We begin by noticing that i0i0 = φ(0, 0)i0 = 1 provided φ(0, 0) = 1.
This defines the twist for G0.

If p and q are in Gn+1, then there are elements u and v in Gn such that one
of the following is true:

(1) p = 2u and q = 2v
(2) p = 2u and q = 2v + 1
(3) p = 2u+ 1 and q = 2v
(4) p = 2u+ 1 and q = 2v + 1

Assume φ is defined for u, v ∈ Gn, then consider these four cases in order.

(1) p = 2u and q = 2v

ipiq = i2ui2v

= φ(u, v)i2uv

= φ(2u, 2v)i(2u)(2v)

= φ(p, q)ipq

provided φ(2u, 2v) = φ(u, v).
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(2) p = 2u and q = 2v + 1

ipiq = i2ui2v+1

= i2ue1i2v

= (−1)〈u〉e1i2ui2v

= (−1)〈u〉e1 φ(2u, 2v)i2uv

= (−1)〈u〉 φ(u, v)i2uv+1

= φ(2u, 2v + 1)i2uv+1

= φ(p, q)ipq

provided φ(2u, 2v + 1) = (−1)〈u〉 φ(u, v).
(3) p = 2u+ 1 and q = 2v

ipiq = i2u+1i2v

= e1i2ui2v

= e1 φ(u, v)i2uv

= φ(u, v)i2uv+1

= φ(2u+ 1, v)i2uv+1

= φ(p, q)ipq

provided φ(2u+ 1, 2v) = φ(u, v).
(4) p = 2u+ 1 and q = 2v + 1

ipiq = i2u+1i2v+1

= e1i2ue1i2v

= (−1)〈u〉e1e1i2ui2v

= (−1)〈u〉 φ(u, v)i2uv

= φ(2u+ 1, 2v + 1)i2uv

= φ(p, q)ipq

provided φ(2u+ 1, 2v + 1) = (−1)〈u〉 φ(u, v).

�

Corollary 10.7. Assume p, q ∈ Gn. The Clifford algebra twist can be defined
recursively as follows:

(1) φ(0, 0) = 1
(2) φ(2p, 2q) = φ(2p+ 1, 2q) = φ(p, q)
(3) φ(2p, 2q + 1) = φ(2p+ 1, 2q + 1) = (−1)〈p〉 φ(p, q)

Lemma 10.8. (−1)〈u〉(−1)〈v〉 = (−1)〈uv〉

Proof. This follows from the fact that 〈u〉 + 〈v〉 = 〈uv〉 + 2〈u ∧ v〉 where u ∧ v

represents the bitwise ‘and’ of u and v. �

Theorem 10.9. The Clifford twist is associative.

Proof. By Definition 3.3, the twist φ : G × G 7→ {−1, 1} is associative provided
φ(p, q)φ(pq, r) = φ(p, qr)φ(q, r) for p, q, r ∈ G. This is true for G0 since φ(0, 0) =
1.
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Suppose φ(u, v)φ(uv, w) = φ(u, vw)φ(v, w) for u, v, w ∈ Gn. Let p, q, r be in
Gn+1. Then there are u, v, w ∈ Gn such that one of the following eight cases is
true.

(1) p = 2u, q = 2v, r = 2w

Then φ(p, q)φ(pq, r) = φ(2u, 2v)φ(2uv, 2w)

= φ(u, v)φ(uv, w)

= φ(u, vw)φ(v, w)

= φ(2u, 2vw)φ(2v, 2w)

= φ(p, qr)φ(q, r)

(2) p = 2u, q = 2v, r = 2w + 1

Then φ(p, q)φ(pq, r) = φ(2u, 2v)φ(2uv, 2w + 1)

= φ(u, v)(−1)〈uv〉 φ(uv, w)

= (−1)〈uv〉 φ(u, vw)φ(v, w)

= (−1)〈u〉 φ(u, vw)(−1)〈v〉 φ(v, w)

= φ(2u, 2vw + 1)φ(2v, 2w + 1)

= φ(p, qr)φ(q, r)

(3) p = 2u, q = 2v + 1, r = 2w

Then φ(p, q)φ(pq, r) = φ(2u, 2v + 1)φ(2uv + 1, 2w)

= (−1)〈u〉 φ(u, v)(−1)〈uv〉 φ(uv, w)

= (−1)〈u〉(−1)〈u〉 φ(u, vw)(−1)〈v〉 φ(v, w)

= φ(2u, 2vw + 1)φ(2v + 1, 2w)

= φ(p, qr)φ(q, r)

(4) p = 2u, q = 2v + 1, r = 2w + 1

Then φ(p, q)φ(pq, r) = φ(2u, 2v + 1)φ(2uv + 1, 2w + 1)

= (−1)〈u〉 φ(u, v)(−1)〈uv〉 φ(uv, w)

= (−1)〈u〉(−1)〈u〉 φ(u, vw)(−1)〈v〉 φ(v, w)

= φ(2u, 2vw)φ(2v + 1, 2w + 1)

= φ(p, qr)φ(q, r)

(5) p = 2u+ 1, q = 2v, r = 2w

Then φ(p, q)φ(pq, r) = φ(2u+ 1, 2v)φ(2uv + 1, 2w)

= φ(u, v)φ(uv, w)

= φ(u, vw)φ(v, w)

= φ(2u+ 1, 2vw)φ(2v, 2w)

= φ(p, qr)φ(q, r)
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(6) p = 2u+ 1, q = 2v, r = 2w + 1

Then φ(p, q)φ(pq, r) = φ(2u+ 1, 2v)φ(2uv + 1, 2w + 1)

= φ(u, v)(−1)〈vw〉 φ(uv, w)

= (−1)〈v〉 φ(u, vw)(−1)〈w〉 φ(v, w)

= φ(2u+ 1, 2vw + 1)φ(2v, 2w + 1)

= φ(p, qr)φ(q, r)

(7) p = 2u+ 1, q = 2v + 1, r = 2w

Then φ(p, q)φ(pq, r) = φ(2u+ 1, 2v + 1)φ(2uv, 2w)

= (−1)〈u〉 φ(u, v)φ(uv, w)

= (−1)〈u〉 φ(u, vw)φ(v, w)

= φ(2u+ 1, 2vw + 1)φ(2v + 1, 2w)

= φ(p, qr)φ(q, r)

(8) p = 2u+ 1, q = 2v + 1, r = 2w + 1

Then φ(p, q)φ(pq, r) = φ(2u+ 1, 2v + 1)φ(2uv, 2w + 1)

= (−1)〈u〉 φ(u, v)(−1)〈uv〉 φ(uv, w)

= (−1)〈u〉(−1)〈u〉(−1)〈v〉 φ(u, vw)φ(v, w)

= φ(u, vw)(−1)〈v〉 φ(v, w)

= φ(2u+ 1, 2vw)φ(2v + 1, 2w + 1)

= φ(p, qr)φ(q, r)

Thus φ is associative for Gn+1 if it is associative for Gn establishing the associa-
tivity of φ for all Gk. �

By Theorem 4.2, φ is proper, thus, if x, y ∈ Cn, where Cn is the n -dimensional
Clifford algebra, then by Theorem 4.10 the product xy may be computed from the
sum

xy =
∑

r∈Gn

〈x, iry
∗〉 ir

=
∑

r∈Gn

〈x∗ir, y〉 ir

where the conjugate of a multivector x is x∗ =
∑

p∈Gn
φ(p, p)xpip by Theorem

3.15 part i.

Theorem 10.10. If p ∈ Gn, then φ(p, p) = (−1)s, where s is the triangular

number T〈p〉 =
〈p〉[〈p〉−1]

2 .

Proof. The proof is by induction. It is true for G0, since if p = 0 then 〈p〉 = 0 so
s = 0, thus φ(p, p) = 1 = (−1)s.

Assume the relation is true for Gn. Let p ∈ Gn+1. Then there is a u ∈ Gn such
that either p = 2u or p = 2u+ 1.
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Suppose p = 2u. Then u ∈ Gn, so φ(u, u) = (−1)s, where s = 〈u〉[〈u〉−1]
2 . But

〈u〉 = 〈2u〉 and φ(u, u) = φ(2u, 2u) = φ(p, p). So φ(p, p) = 〈p〉[〈p〉−1]
2 .

Suppose p = 2u+ 1. Then

φ(p, p) = φ(2u+ 1, 2u+ 1)

= (−1)〈u〉 φ(u, u)

= (−1)〈u〉(−1)t where t =
〈u〉 [〈u〉 − 1]

2

= (−1)s where s = 〈u〉+
〈u〉 [〈u〉 − 1]

2

Thus,

s =
[〈u〉+ 1] 〈u〉

2

=
〈p〉 [〈p〉 − 1]

2

Thus for p ∈ Gn+1, φ(p, p) = (−1)s, where s = 〈p〉[〈p〉−1]
2 . �

Corollary 10.11. If x ∈ Cn , p ∈ Gn and if T〈p〉 is an odd triangular number,
then 〈x, ipx〉 = 0 .

Theorem 10.12. α(q, p) = α(p, q)(−1)〈p〉〈q〉−〈p∧q〉

Proof. The multiblades ip and iq contain exactly 〈p ∧ q〉 1-blade factors in com-
mon. Assume p ∧ q = 0 . Factor ip and iq into the product of 1-blades. To get
from the arrangement ipiq to the arrangement iqip, swap the left-most 1-blade
factor of iq with each of the 1-blade factors of ip resulting in 〈p〉 changes of sign.
Repeat this for each of the 〈q〉 1-blade factors of iq from left to right until each
1-blade of iq has been swapped with each of the 〈p〉 1-blades of ip. This results in
〈p〉〈q〉 changes of sign to reverse ip and iq. If p ∧ q 6= 0, then the sign will fail to
change for a total of 〈p ∧ q〉 times. Thus, in general, there will be 〈p〉〈q〉 − 〈p ∧ q〉
changes of sign in reversing the product of ip and iq. �

It is easily verified that (−1)〈p〉〈q〉 and (−1)〈p∧q〉 are associative twists on G.

The latter of these two is the Hadamaard twist. Interestingly, this is the twist which
results if, instead of the Cayley-Dickson construction, one defines the product of an
ordered pair as

(a, b)(c, d) = (ac− bd, ad+ bc)

Another interesting twist which is not associative, but proper is (−1)〈pq〉.

11. Conclusion

My primary purpose in writing this paper was to document some of my notes.
There are many questions and avenues of further research in the area of proper

twists on groups and their resulting twisted algebras.
The question whether the Hilbert space ℓ2 is a Cayley-Dickson algebra is open,

so far as I know, and would be resolved by a proof of Conjecture 9.11. In fact, a
resolution of this conjecture in the affirmative would render ℓ2 closed under any
proper twist defined on the group G of non-negative integers under the “exclusive
or” product.
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The set SP (G) of proper twists on an arbitrary group G is an abelian group.
The set SA(G) of associative twists is a subgroup of SP (G) . Do these groups
have any interesting properties?
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