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The model of scientific paradigms spreading throughout the community of agents with memory
is analyzed. The case of two competing ideas is analyzed for various networks of interactions. The
pace of adopting a new idea by a community is considered, along with the distribution of time after
which the new idea replaces the old one. The results are then extended onto the more general case
when more than two ideas compete.

PACS numbers: 87.23.Ge, 02.50.Le, 05.65.+b

I. INTRODUCTION

There is a tendency to separate certain periods in the
history of civilizations, such as Renaissance or Enlighten-
ment, which qualitatively differ from each other by dom-
inating trends in science, art or customs. In the human
population innovations constantly emerge and it is not
likely that it will ever reach some kind of equilibrium
— ”end of history” [1]. The changes (evolutionary and
revolutionary ones) happen due to the interactions and
exchange of innovative ideas [2–4] at the level of individ-
uals, communities or even civilizations. Eventually, ideas
spread throughout the communities [5, 6]. Some of the
ideas gain broad (even global) acceptance and popularity,
replacing old ones [7].

The process of adoption of an innovative technology [8]
or a new scientific concept by individuals and communi-
ties differs from adoption of, for example, a new trend
in arts. Obsolete technologies and discarded scientific
theories, once abandoned, are not likely to be adopted
by individuals again. To model such a process, agents
should be given some kind of memory. Another impor-
tant fact is that the will of individuals to adopt a new
scientific concept depends on its global popularity. For
example, spreading of technological innovations is often
slowed down by incompatibility with existing standards.
In the field of arts, the situation is different. Old ideas
can reemerge and become popular again, such as Re-
naissance artists were inspired by Antique philosophy or
architecture.

Recently a model was introduced by Bornholdt et al.
which attempts to describe scientific revolutions [9]. The
model combines interactions between individuals with in-
fluence of the whole community. Despite its simplicity,
it managed to reconstruct key features of the dynamics
of scientific paradigms spreading, including asymmetry
between the speed of adopting a new idea by the com-
munity and the speed of its decline when new rival ideas
appear. The presented results [9] were purely numeri-
cal — the model lacked analytical calculations. In this
paper, the Markov processes theory [10] was applied to
analyze the dynamics of the system in the case of small

level of creativity of the agents, for various networks of
interactions: chain, square lattice and complete graph.

II. THE MODEL OF SPREADING OF IDEAS

The rules of the model [9] are very simple. N agents
occupy nodes of a network. Every agent has some opinion
(idea), denoted by a natural number. In each time step a
random agent i (with opinion si) is selected, along with
one of its neighbors j (with opinion sj). If agent i has
never had j’s current opinion, it adopts it with probabil-
ity Nsj/N , where Nsj denotes the number of agents shar-
ing opinion sj . Additionally, new opinions, which have
never been present in the community, can appear: with
probability α a random agent is selected, which changes
its opinion into such an innovative one.

The most important feature of the model is the mem-

ory of the agents, who do not adopt the same opinion
twice. One can find analogy between this model and evo-
lutionary dynamics models: innovations can be regarded
as mutations which allow the affected individuals outper-
form their rivals. Lack of any evident fitness parameter,
which would describe how well a specie is adapted to the
environment, is not necessarily a drawback of such an in-
terpretation, as the fitness of a specie is alway a posteriori

knowledge [11].
There are some general features of the evolution of the

system, independent on the interactions network topol-
ogy. For very small α at most two opinions exist simul-
taneously (other cases are neglectable due to their much
smaller probability). This case was analyzed for various
networks in sec. III.

For higher values of α, other effects have to be consid-
ered. More than two opinions coexist, which ”compete”
with each other. However, one may suppose that within
a relatively wide range of α still two opinions can be sep-
arated at every moment: the ”old” opinion which is the
most popular, but currently at the decline and the ”new”
opinion, the second most popular, which will prevail af-
ter some time (and then enter the stage of decline). This
case was analyzed in sec. IV.
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Throughout the further analysis, the number of agents
in the network is denoted by N , the ith agent’s opinion
by si and the network of interactions is described by the
adjacency matrix [aij ]. P (A) denotes probability of A
and P (A|B) — conditional probability.

III. EVOLUTION OF THE SYSTEM FOR

α < 〈T 〉−1

A. General case

When α is small enough, at most 2 opinions coexist,
referred to as opinion 0 (at the stage of decline) and opin-
ion 1 (at the stage of expansion). The evolution consists
of a few distinct periods.

1. All the agents share the same opinion 0. The length
of this stage of stagnation is a random variable of
the distribution

P (Tstag) = (1 − α)Tstagα (1)

and the mean value

〈Tstag〉 =

∞
∑

Tstag=0

Tstag(1 − α)Tstagα

=
α− 1

α
≈ 1

α
. (2)

2. An innovative opinion 1 appears.
3. Opinion 1 spreads across the community. The time

of expansion of opinion 1 will be denoted T and
is a random variable distribution dependent on the
interactions network topology.

4. When all the agents share opinion 1, the state of
the system is equivalent to the initial one.

The state of the system is characterized by one variable
— number n of agents sharing opinion 1. The problem
reduces to the problem of expansion of opinion 1 through-
out the community, starting from one agent with opinion
1 at time t = 0. The generic master equation has only
two terms:

∂

∂t
P (n, t) = P (n− 1, t)Wn,n−1 − P (n, t)Wn+1,n, (3)

where transition rates from state n to n + 1 (for n ∈
[1, N − 1]) are equal to

Wn+1,n ≡ Wn =
n

N

N−1
∑

k=1

P (ki = k)P (i ∈ ∂S1|ki = k)(4)

· P (sj = 1|aij = 1 ∧ i ∈ ∂S1 ∧ ki = k),

where ki is the degree of node i and ∂S1 ≡ ∂{i : si =
1} ≡ {i : si = 0∧∃aij=1sj = 1} denotes the set of agents
sharing opinion 0, which have at least one neighbor with
the opposite opinion. For n = N so defined transition
rates are automatically equal to 0, since ∂S1 = ∅.

It can be proved that if all the transition rates are
different (k 6= j ⇒ Wk 6= Wj), the solution of Eq.(3) is

P (n, t) =

n
∑

k=1

Cn
k e

−Wkt, (5)

where

Cn
k ≡

n−1
∏

i=1

Wi

n
∏

j=1
j 6=k

1

Wj −Wk
. (6)

Let us note that if WN = 0 and ∀1≤n<NWn > 0, the
distribution evolves into

lim
t→∞

P (n, t) = δnN , (7)

(all the agents share opinion 1), which is an expected
result.

The system evolves from state n = 1 to n = N during
expansion time T , which is a random variable whose dis-
tribution depends on the network topology and the initial
condition. Thus, for each type of network the range of α
has to be estimated for which the approximation of only
2 competing opinions makes sense: α ∈ (0, 〈T 〉−1). In
general

P (T = t) = WN−1P (N − 1, t− 1) ≈ 1

N
P (N − 1, t), (8)

and

〈T 〉 ≈
∫ ∞

0

tP (T = t)dt ≈ 1

N

N−1
∑

k=1

CN−1
k

W 2
k

. (9)

B. Chain topology

Let us consider the case when the agents occupy nodes
of a chain. For simplicity, periodic boundary conditions
will be assumed.

This specific topology makes the problem quite simple
and in the first approximation it is not necessary to an-
alyze the master equation (3). The average number of
agents sharing opinion 1 can be derived from the follow-
ing recursive equation:

{ 〈n(0)〉 = n(0) = 1

〈n(t + 1)〉 = 〈n(t)〉 + 2
N

1
2
〈n(t)〉
N = 〈n(t)〉

(

1 + 1
N2

)

,
(10)

which has the solution

〈n(t)〉 =

(

1 +
1

N2

)t

≈ et/N
2

. (11)

On the average, after time

〈T 〉 = N2 logN (12)
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opinion 1 will stop spreading as it will be shared by the
whole community. The situation will be stable until an-
other innovation appears. From this condition the range
of α can be estimated for which this approximation makes
sense: the average time between new innovations, α−1,
should be higher than 〈T 〉:

α <
1

〈T 〉 =
1

N2 logN
. (13)

For the more exact analysis of the problem one has to
consider the master equation (3). In the case of chain
topology







P (ki = k) = δk2
P (i ∈ ∂S1|ki = 2) = 2

N
P (sj = 1|aij = 1 ∧ i ∈ ∂S1 ∧ ki = 2) = 1

2 .

Eventually, the transition rates from state n to n+ 1 are
equal to Wn = n

N2 and the master equation has the form

∂

∂t
P (n, t) = P (n− 1, t)

n− 1

N2
− P (n, t)

n

N2
. (14)

Let us stress that this equation does not take into con-
sideration the limitation on the n variable, which cannot
be grater than N . This will be discussed further.

Due to the simple form of the transition rates, the
equation (14) can be solved using the method of charac-
teristic function G:

G(s, t) ≡ 〈eins〉. (15)

This approach has such an advantage over using (5), that
the solutions are automatically in a compact form. The
master equation (14) with the initial condition P (n, 0) =
δn0 leads to the partial differential equation with the ini-
tial condition

{

∂
∂tG(s, t) + 1

iN2

(

eis − 1
)

∂
∂sG(s, t) = 0

G(s, 0) = eis,
(16)

which has the solution

G(s, t) =
1

1 − et/N2(1 − e−is)
. (17)

After short algebra it can be proved that

G(s, t) =
∞
∑

n=1

1

et/N2 − 1

(

1 − e−t/N2
)n

eisn, (18)

so

P (n, t) = e−t/N2
(

1 − e−t/N2
)n−1

. (19)

This is valid for n < N . In order to take into considera-
tion the limitation on the n variable, one has to consider
the accumulation of probability at point n = N :

P (n = N, t) =

∞
∑

m=N

e−t/N2
(

1 − e−t/N2
)m−1

=
(

1 − e−t/N2
)N−1

. (20)
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FIG. 1: (Color online) Chain graph topology,
N = 64, 128, 256 nodes, α ≪ 1/〈T 〉. Evolution of the

system starting from n = 1 innovative agent: 〈n〉 versus
time. Points — simulated data. Lines — analytical

predictions (Eq.(22)).

Eventually,

P (n, t) =











e−t/N2

(

1 − e−t/N2

)n−1

, 1 ≤ n < N
(

1 − e−t/N2

)N−1

, n = N.

(21)
The mean value of n resulting from the distribution (21)
is equal to

〈n〉 = et/N
2

(

1 −
(

1 − e−t/N2
)N

)

, (22)

which for small t reduces to (11).

From the distribution P (n, t), a more exact approxi-
mation of 〈T 〉 than Eq.(12) can be obtained. According
to Eq.(8),

P (T = t) ≈ 1

N
e−t/N2

(

1 − e−t/N2
)N−2

, (23)

and

〈T 〉 =
∞
∑

t=0

tP (T = t)

≈ 1

N

∫ ∞

0

te−t/N2
(

1 − e−t/N2
)N−2

dt

= N2HN−1 ≈ N2(log(N) + γ), (24)

where Hn is the nth harmonic number and γ denotes
the Euler-Mascheroni constant. Harmonic numbers grow
approximately as fast as the natural logarithm, so the
approximated solution (12) is actually very close to (24).
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FIG. 2: (Color online) Chain graph topology, N = 64
nodes, α ≪ 1/〈T 〉. Evolution of the system starting

from P (n, t = 0) = δn1. Points are obtained from the
numerical solution of the master equation (14). Lines —

analytical predictions (Eq.(21)).
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FIG. 3: (Color online) Chain graph topology,
α ≪ 1/〈T 〉. Distribution of the time of expansion T for
different system sizes N . Points — simulations, lines —
analytical predictions (Eq.(23)). (Inset) Mean time of

expansion 〈T 〉 versus system size N : simulations (points
with error bars) compared with the analytical

predictions (line) (Eq.(24)).

C. Complete graph topology

Let us consider the situation when interaction is pos-
sible between every pair of agents, i.e. ∀(i,j)aij = 1.
Referring to the generic master equation (3),







P (ki = k) = δk,N−1

P (i ∈ ∂S1|ki = N − 1) = N−n
N

P (sj = 1|aij = 1 ∧ i ∈ ∂S1 ∧ ki = N − 1) = n
N−1 ≈ n

N

and the transition rates in the master equation are equal
to

Wn+1,n ≡ Wn =
N − n

N
· n

N − 1
· n
N

≈ n2(N − n)

N3
. (25)

The boundary conditions are automatically considered,
since P (0, t) = 0 and WN+1,N = 0. Eventually, the mas-
ter equation has the form

∂

∂t
P (n, t) = P (n− 1, t)

(n− 1)2(N − n + 1)

N3
(26)

− P (n, t)
n2(N − n)

N3
.

If all the transition rates are different (j 6= k ⇒ Wj 6=
Wk, which is satisfied if equation N = a(1 + b + b2)
does not have solutions a, b among natural numbers), the
solution can be written in the form of the sum (5):

P (n, t) =

n
∑

k=1

Cn
k e

−k2(N−k)t/N3

, (27)

where

Cn
k ≡

n−1
∏

i=1

i2(N − i)

n
∏

j=1
j 6=k

1

j2(N − j) − k2(N − k)

= (n− 1)!2
(N − 1)!

(N − n)!

n
∏

j=1
j 6=k

1

j2(N − j) − k2(N − k)
(28)

The expansion time T distribution P (T ) can be derived
from the P (n, t) distribution:

P (T = t) ≈ 1

N
P (N−1, t) =

1

N

N−1
∑

k=1

CN−1
k e−k2(N−k)t/N3

.

(29)
The analytical predictions are in agreement with the

simulations (Fig. 4–6).

D. Square lattice topology

Let us consider the square lattice topology. Periodic
boundary conditions will be assumed, so each agent has 4
neighbors. The first approximation would be to assume
that the cluster of agents sharing opinion 1 grows uni-
formly in each direction, so at each moment it is circle-
shaped, with radius of the circle equal to r =

√

n/π.
Referring to the generic master equation (3),















P (ki = k) = δk,4

P (i ∈ ∂S1|ki = 4) =

{

2
√
πn

N if 1 ≤ n < N
0 if n ≥ N

P (sj = 1|aij = 1 ∧ i ∈ ∂S1 ∧ ki = 4) = 1
4 ,
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FIG. 4: (Color online) Complete graph topology,
N = 64 nodes, α ≪ 1/〈T 〉. Evolution of the system
starting from P (n, t = 0) = δn1. Points are obtained

from the numerical solution of the master equation (27).
Lines — analytical predictions (Eq.(27)).
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FIG. 5: (Color online) Complete graph topology,
N = 32, 64, 128 nodes, α ≪ 1/〈T 〉. Evolution of the

system starting from n = 1 innovative agent: 〈n〉 versus
time. Points — simulated data. Lines — analytical

predictions (obtained from Eq.(27)).

and the transition rates in the master equation are equal
to

Wn+1,n ≡ Wn =

√
πn3/2

2N2
(1 − δnN ). (30)

Similarly as in the case of complete graph topology,
the solution of the master equation

∂

∂t
P (n, t) = P (n− 1, t)

√
π(n− 1)3/2

2N2
(1 − δn−1,N )(31)

− P (n, t)

√
πn3/2

2N2
(1 − δnN ).
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FIG. 6: (Color online) Complete graph topology,
α ≪ 1/〈T 〉. Distribution of the time of expansion T for
different system sizes N . Points — simulations, lines —

analytical predictions (Eq.(29)).
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FIG. 7: (Color online) Square lattice topology,
N = 64, 169, 256 nodes, α ≪ 1/〈T 〉. Evolution of the

system starting from n = 1 innovative agent: 〈n〉 versus
time. Points — simulated data. Lines — analytical

predictions (obtained from Eq.(5) with transition rates
(30)).

can be expressed in the form the sum of products (5).
Having compared the results of such an approximation
with the simulations (Fig. 7), one has to say that this ap-
proach significantly overestimates the pace of the growth
of the new opinion cluster.
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IV. EVOLUTION OF THE SYSTEM FOR

α & 〈T 〉−1

A. Chain topology

For α higher than 1/N2 logN Eq.(10) has to be ex-
tended by terms describing the appearing of new clusters
of ideas, which would slower the process of expansion of
opinion 1. In the first approximation it will be assumed
that the only important new clusters are those appear-
ing inside the cluster of opinion 1 and that they do not
overlap with each other. Their growth is described by
Eq.(11). The recursive equation for 〈n(t)〉 is now

〈n(t + 1)〉 = 〈n(t)〉
(

1 +
1

N2

)

(32)

−
t

∑

τ=0

α
〈n(τ)〉
N

〈∆nnew(t− τ)〉

= 〈n(t)〉
(

1 +
1

N2

)

− α

N3

t
∑

τ=0

〈n(τ)〉
N

exp

(

t− τ

N2

)

.

Substituting the sum with the integral and stating that
〈n(t)〉 = exp

(

t/N2
)

f(t) leads to the following equation
for f(t):

f ′(t) +
α

N3

∫ t

0

f(τ)dτ = 0, (33)

which, assuming the same initial conditions as in Eq.(10)
(single innovation at time t = 0), has the solution

f(t) = cos (λt) , (34)

where λ ≡
√

α/N3. The complete formula for the first
approximation of 〈n(t)〉 is therefore

〈n(t)〉 = exp

(

t

N2

)

cos (λt) . (35)

As it should have been expected, for α → 0 this approx-
imation converges to the previous one (Eq.(11)).

A better approximation can be obtained by substitut-
ing the term exp

(

t−τ
N2

)

by 〈n(t − τ)〉 in Eq.(33), as new
opinions can also be ”attacked” by opinions appearing
after them. The equation

〈n(t + 1)〉 = 〈n(t)〉
(

1 +
1

N2

)

(36)

− α

N3

t
∑

τ=0

〈n(τ)〉
N

〈n(t− τ)〉

is not analytically solvable, but by substituting
the sum with the integral and stating 〈n(t)〉 =

exp
(

t/N2
)

cos(λt)(1 + g(t)), where g(t) ≪ 1, an integral
equation can be obtained,

0 = −λ sin(λt) + g′(t) cos(λt) (37)

+ λ2

∫ t

0

cos(λτ)(1 + g(τ)) cos(λ(t − τ))(1 + g(t− τ))dτ,

which can be is solvable provided all the terms integral
apart from cos(λτ) cos(λ(t − τ)) are neglected. Eventu-
ally, the second approximation of 〈n(t)〉 obtains the form

〈n(t)〉 = exp

(

t

N2

)

cos(λt)(1 − log | cos(λt)| − 1

4
λ2t2).

(38)
The comparison with the simulations (Fig. 8) shows

that the last approximation (Eq.(38)) is better than the
previous ones (Eq.(11), Eq.(35)).

V. CONCLUSIONS

We have analyzed our analytical results and confronted
them with the results obtained from simulations by Born-
holdt et al. [9]. Our research suggests that the asymme-
try between the paces of growth and decline of a dom-
inant idea, observed in [9], is a generic property of the
model and should be observed for any topology of inter-
actions.

The crucial parameter of the dynamics is the α param-
eter, which describes the creativity of the agents. We
have introduced the analytical methodology which can
be used to analyze the system dynamics for various net-
works of interactions in the case when agents are almost
non-innovative (α & 0) and estimated the range of α for
which the proposed approach works properly (α < 〈T 〉−1,
where the expansion time T is a function of the system
size, depending on the interaction network topology).
For every interactions topology the evolution consists of
subsequent stages of stagnation (only one opinion/idea
present among the agents) and expansion of a newly cre-
ated opinion. The length of the periods of stagnation

Tstag is a random variable with the distribution Eq.(1)
and is independent from the network topology, whereas
the distribution of the lengths of the periods of expan-

sion P (T ) strongly depends on the network topology and
the system size. If α ≪ 〈T 〉−1, the mean time between
shifts of the dominant paradigms can be approximated
by 〈Tshift〉 ≈ 〈Tstag〉 = 1/α, which is a scaling observed
in the simulated data by Bornholdt et al. [9] (note that
the different time scale was used in [9]).

Three possible networks of interactions were taken
into consideration — chain, square lattice and complete
graph. For chain topology it was possible to find compact
forms of the analytical solutions. It was found that 〈T 〉
scales with the system size N like N2 logN and the at
the stage of expansion, the cluster of the new idea grows
like a damped exponential function Eq.(22). The analyt-
ical results are in the agreement with the simulated data.
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FIG. 8: (Color online) Chain topology, N = 128, various levels of creativity α. Comparison of approximations
Eq.(11), Eq.(35) and Eq.(38). The red crosses refer to the simulated data.

For complete graph topology the proposed approach also
results in the good agreement with the simulations, but
the compact form of the solutions Eq.(27), Eq.(29) prob-
ably does not exist. In the case of the square lattice, the
method failed to reproduce the results of the simulations.
The problem probably lies in the evidently too rough es-
timation of the shape of the cluster of the new idea as a
circle.

For higher level of creativity α, when most of the time
more than two ideas coexist, the dynamics of the sys-
tem can be found starting from the results obtained for
the near-zero-α case and using the method similar to the
perturbation method. This approach proved to be useful
in the simplest case — the chain topology. The resulting
Eq.(38) is a scaled exponent and in the limit of α → 0
the solution, as expected, converges to the near-zero-α
result Eq.(11).

Our analytical approach allowed for better understand-

ing of the dynamics of the system described by the model
and interpret some of relationships previously observed
in the simulated data [9]. The proposed methodology can
be used to analyze the dynamics of paradigms spreading
in other networks [12]. It is especially interesting since
the real networks of human contacts (including scientific
collaboration networks) exhibit some nontrivial proper-
ties, such as being scale-free [13].
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