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On mean field solutions of kinetic exchange opinion models
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A solution for the discretised version of some recently proposed kinetic exchange opinion dynamics
models with two-agent interactions (Lallouache et. al., Phys. Rev E 82, 056112 (2010)) is provided.
A generalisation to include three-agent interactions is proposed. A phase boundary, separating
the ordered and disordered phase is obtained. It is shown that if the probability of three-agent
interaction stays below a threshold, the phase transition is continuous in nature, while above the
threshold it becomes discontinuous. The threshold is a tri-critical point on the phase boundary,
having different exponent values from those of the continuous transition.

I. INTRODUCTION

The dynamics of opinion formation in a society and emer-
gence of consensus are being extensively studied recently
[1–8]. It is a standard practice to model such complex
phenomena using the tools of statistical mechanics. Al-
though many intricacies of real societies are lost in the
process, such minimal modelling often yields intriguing
features in terms of their social as well as physical as-
pects.
The key feature in modelling opinion formation is to

quantify opinions in terms of real numbers. Depending
on the need and variety of the model, opinion is often
quantified as discrete or continuous variables between two
or more choices. Also the process of interaction between
the agents is a vital ingredient. While several choices
to model such interactions exist, one way is to consider
an interaction as a ‘scattering process’ where the agents
are stochastically influenced by each others opinions (see
e.g., [9–12]).
Recently an opinion formation model [13] based on

such ‘kinetic exchange process’ between two individuals
was proposed (LCCC model hereafter). Resembling the
model for wealth exchange in a society [14], this model
has a single parameter that determines the ‘conviction’
of an individual. It was shown that beyond a certain
value of this conviction parameter, the society reaches
a ‘consensus’, where one of the two choices (positive or
negative) provided to the individuals prevails, thereby
spontaneously breaking a discrete symmetry. The values
of the opinions, however, are continuous in [-1,1].
A generalisation was proposed subsequently [15], in

which the ‘self-conviction’ and the ability to influence
others were taken as independent variables. This two-
parameter model has a simple phase boundary along
which apparent non-universality was observed (for de-
tailed discussion on the critical behavior of a class of
model of this kind see [16]). Subsequent extensions in
terms of including “noise” [17] and also to study a gener-
alised map-version [18] for this class of models were also
done.
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In the present paper, a discretised version of the LCCC
model and its generalised version are analysed in the
mean-field limit, which is exact here. Also a general-
isation in terms of three-agent interactions is proposed.
From the expression of the order parameter it is seen that
for pure three-agent interactions the transition is discon-
tinuous (giving hysteresis like behavior as well) but for
mixture of two-agent and three-agent interactions, the
nature of transition depends on the relative probabilities
of the two types (two-agents and three-agents) of inter-
actions.
The paper is organised as follows: In the next section

a description of the model and its generalised version
are given with mention to the modifications made here.
In the next section the mean-field calculations to find
the expression for order parameter is presented. Then in
sec. IV the three-agent generalisation is introduced with
the analysis of the order of transition. In sec. V, the
phase boundary obtained for the model with both two-
agent and three-agent interactions are present. Finally
the results are discussed.

II. MODEL

A very simple pair-wise interaction model for opinion for-
mation in a well-connected group of individual is pre-
sented in Ref.[13]. The opinion of an individual in the
society is represented by a real number which can con-
tinuously vary within the limit −1 ≤ oi ≤ +1. At any
time t an agent with opinion oi(t) interacts with another
randomly chosen agent with opinion oj(t). After the
interaction the i-th agent retains a fraction of his/her
own opinion (which depends on the agent’s ‘conviction’)
and is stochastically influenced by the j-the agent. The
amount of the influence, of course, depends upon the j-th
agent’s ‘conviction’. The dynamics of the LCCC model
evolves following the equation

oi(t+ 1) = λioi(t) + λjǫoj(t). (1)

The parameter λm represents the conviction of m-th
agent and ǫ is a stochastic variable uniformly distributed
between [0,1]. If the opinion of an agent reached the
higher (lower) extreme +1 (−1), then of course its opin-
ion value was prevented from further increase (decrease).
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N such exchanges (where N is the total number of
agents) constitute a single Monte Carlo time step. For
simplicity, the society was assumed to be homogeneous
in the sense that all λm’s were same (say, λ).
The steady state characterisation of this model were

done using two measures. One is the average opinion

of the agents O = 1
N |

N
∑

i=1

oi| representing the measure of

global consensus and the other is the fraction of agents
having extreme opinions

C =
1

N

N
∑

i=1

[δ(1− oi) + δ(1 + oi)] , (2)

where δ(x) is the Dirac-delta function.
Extensive Monte Carlo (MC) study [13] yields that in

LCCC model, above λc ≈ 2
3
, O 6= 0 and below λc, O = 0.

Similar behavior was also obtained for C. As in usual
critical phenomena, the relaxation time shows divergence
from both sides of the critical point following a power-
law, having same exponent value on either side of the crit-
icality. Although nothing could be predicted about the
critical behavior, a mean-field like analysis gave λc = 2/3
for LCCC model (for detailed discussions see Ref.[16]).
In its generalisation [15], it was argued that the ‘self-

conviction’ λ of an agent need not, in general, be equal
to his/her ability to ‘influence’ others. In its generalised
form, therefore, the dynamical exchange process reads

oi(t+ 1) = λoi(t) + µǫoj(t), (3)

where µ represents the j-th agents ability to influence
others. In the limit λ = µ one recovers LCCC. For this
generalised model, there is a phase boundary in λ − µ
plane, having the equation λc = 1 − µc

2
. The values

of the critical exponents along this phase boundary was
reported to have strongly non-universal behavior for O
and weakly non-universal behavior for C.
The above mentioned models defy simple treatments

to find the order parameter as long as oi’s are continuous.
But it is often the case in a society that the opinions can
take only discrete values (voting ‘yes’ or ‘no’ for a ref-
erendum, or that in a two-party political scenario etc.).
While retaining the social interpretation, it significantly
simplifies analytical treatment. To that end following
modifications are made. For the LCCC model, the dy-
namical exchange equation (Eq.(1)) remains the same.
But we make λ stochastic in the sense that we put λ = 1
with probability p and 0 with probability 1−p. Also, the
parameter ǫ is either 1 or 0 with equal probability.
Under these modifications, on one hand we lift the ‘ho-

mogeneous society’ (all agents having same ‘conviction’)
assumption and on the other hand keep the opinion val-
ues discretised. However, the inhomogeneity is the sim-
plest of its kind: only ‘high’ and ‘low’ convictions are
present. The agents can change between these two states
randomly in time (λ is annealed variable). The case of
quenched λ, in this case, is a trivial limit where order
parameter becomes simply proportional to p.
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FIG. 1. Variation of the order parameter O for discrete LCCC
model and its generalised version (in the limit p = q). An-
alytical expressions given by Eq. (7) and (9) are in good
agreement with the simulation points. The critical or sym-
metry breaking point (SBP) pc = 2/3 is indicated. For the
simulation points, N = 105 system sizes were used.

In the case of the generalised version (Eq.(3)) the addi-
tional change is that like λ, we put µ = 1 with probability
q and 0 with probability 1− q.
However, regarding its variation in time: it is explic-

itly checked numerically throughout the paper that the
results do not change whether µ depends on time or not
(at least in the MF limit). Therefore, to facilitate analyt-
ical treatment, it is assumed to be randomly varying with
time. Then of course one could combine the two stochas-
tic variables µ and ǫ in Eq.(3). That would only change a
few pre-factors in the following calculations. However, to
keep the formal similarity we do not combine them here.
Now, if the initial distribution of the opinion values

are between ±1, 0, then the present modifications ensure
that it will remain discretised within that limit. Here of
course, the relevant parameters of the problem will be p
and/or q, which essentially specify the average values of
λ and µ respectively.
In the subsequent sections, a mean-field analysis of this

modified-LCCC model and its generalisations to include
three-agent terms are presented.

III. MEAN FIELD SOLUTION OF DISCRETE

LCCC MODEL

It is our intention to find an expression for the order
parameter O in terms of p and to find out the order
parameter exponent β defined as O ∼ (p − pc)

β . Subse-
quently similar expression in terms of both p and q for
the generalised model (see Eq.(3)) is also presented.
Let f0, f1 and f−1 be the fractions of agents having

opinions 0,+1 and −1 respectively. Now, since the inter-
actions are only pair-wise and both λ and µ can take only
two values, one can enumerate all possible interactions
between all possible pairs, which contribute to increase



3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

O

p

q=1.0
Ordered initial condition
Random initial condition

FIG. 2. Variation of the order parameter O for pure three
agent interactions. When the initial condition is an or-
dered state, the discontinuous jump occurs at pc1 = 8/9 (see
Eq.(19)), while starting from the random initial condition, the
jump occurs at pc2 ≈ 0.930±0.005. This clearly shows a hys-
teresis behavior as is expected for a discontinuous transition.
System size is N = 105 for the simulation points.

and decrease of the order parameter. For example, the
probability that both the agents in an exchange process
have opinion +1 is f2

1 . Now the probability with which
one agent shifts his/her opinion to 0 is (1−p). Therefore
the process (1, 1) → (0, 1) has probability f2

1 (1−p). This
process, of course, contributes in decreasing of the order
parameter. One can enumerate all the eight processes
that contribute in changing the order parameter. In the
steady state one would expect that the terms contribut-
ing to increase and decrease should balance. Canceling
some of the terms one finds the equation

f2
1 (1− p) + f0f−1

p

2
+ f0f1(1 − p)

= f2
−1(1− p) + f0f1

p

2
+ f0f−1(1− p) (4)

This gives either f1 = f−1, (which implies disorder) or

f0 =
2(1− p)

p
. (5)

It is possible in this this case to show explicitly that in
the ordered state agents with opinion +1 and −1 cannot
coexist (making O and C identical in this and for all sub-
sequent discussions also). Therefore, the order parameter
should be

O = ±(1− f0) (6)

where the sign will depend on whether f1 or f−1 is non-
zero in the ordered (symmetry-broken) phase. On sim-
plification, the above expression yields

O = ±3(p− 2
3
)

p
. (7)

Now the fact that opinion of only one sign exists in the
ordered phase and that fraction goes continuously to zero

in the disordered phase suggests that in the disordered
phase f1 = f−1 = 0 and therefore f0 = 1. Note that the
last condition along with Eq.(5) yields pc =

2
3
. Therefore,

Eq.(7) gives β = 1. In Fig.1, Eq.7 is compared with
Monte Carlo simulations to find good agreement.
This can of course be generalised for Eq.(3). Slightly

more involved algebra would yield

f0 =
(p− 1)(q − 2)

pq
. (8)

As before, in the disordered phase f0 = 1, which yields
the equation for the phase boundary in the p-q plane as
pc = 1− qc

2
. This gives the expression for order parameter

as

O = ±2(p− pc) + (q − qc)

pq
. (9)

Therefore, no matter through which path and which
point the phase boundary is crossed, the order param-
eter exponent is β = 1. The discretised version of LCCC
model presented here belongs to the Directed Percola-
tion (DP) universality class [19]. Accordingly β = 1 is
obtained. Other exponents (not shown) also agree with
this fact.
Of course we do not expect to get Eq.(7) from Eq.(9)

by putting p = q, as this would only mean 〈λ〉 = 〈µ〉 and
not λ = µ.

IV. BEYOND PAIR-WISE INTERACTIONS:

THREE-AGENT INTERACTION AND FIRST

ORDER TRANSITION

In all previous studies regarding the kinetic exchange pro-
cesses mentioned here, interactions were always taken to
be occurring between two agents. This is partly because
two-body exchange is the simplest and also because in the
energy exchange of ideal gas too only two body interac-
tions are important. But in opinion formation, exchange
between more than two agents is perfectly possible. So
we intend to investigate the effect of such interactions in
opinion formation.
The simplest possible generalisation towards many-

body interaction is to consider three-body exchange. In
doing so, the following strategy is followed. Three agents
are chosen randomly. Then one agent modifies his/her
opinion according to that of the other two only when
the other two agrees among themselves. If they do not
agree the first agent considers the group to be ‘neutral’.
Mathematically this can be represented as

oi(t+ 1) = λoi(t) + λǫθjk(t), (10)

where,

θjk(t) = oj(t) if oj(t) = ok(t)

= 0 otherwise. (11)
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FIG. 3. The phase diagram of the model with mixture of three
agent and two agent interactions in the q-r plane, where r de-
notes the fraction of three agent interactions. The continuous
transition line follows Eq.(20), while the discontinuous transi-
tion line follows Eq.(21). Clearly, in the limits r = 0 and 1 the
transition points are 2/3 and 8/9 respectively, as is expected
from the discussions in the text.

Before proceeding further, it is to be noted that θjk(t)
takes the value +1,−1 and 0 with probabilities f2

1 , f
2
−1

and 1− (f2
1 + f2

−1) respectively. Then just as Eq.(1) was
treated, one can enumerate all exchange processes that
contribute to increase and decrease in the order param-
eter. Again, in the steady state increase and decrease
should balance. As before, in the ordered state opinion
of only one sign exists (numerically verified). This makes
any term like fx

1 f
y
−1 (with x, y 6= 0) vanish in any state.

With this simplification we get

f3
1 (1− p) + f1f

2
−1

(

1− p

2

)

+ f0f
2
−1

p

2

+f1
[

1− (f2
1 + f2

−1)
]

(1− p)

= f3
−1(1− p) + f−1f

2
1

(

1− p

2

)

+ f0f
2
1

p

2
+

f−1

[

1− (f2
1 + f2

−1)
]

(1− p). (12)

This gives either f1 = f−1, (which implies disorder) or

f0 =
1

2
− 3

√

p− 8/9

2
√
p

, (13)

(implying order). We have neglected one solution of f0
in which it increases in the ordered phase. Using this,
the order parameter takes the form

O = ±
(

1

2
+

3
√

p− 8/9

2
√
p

)

. (14)

Clearly, the above equation gives real values for O only
when p > 8/9. Therefore, for p < 8/9 the only real solu-
tion can be f1 = f−1 i.e., O = 0. But from the form of
Eq.(14) it is clear that in the ordered phase, the minimum
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FIG. 4. Variations of the order parameter for r = 0.2(< rt),
r = 0.5(= rt) and r = 0.8(> rt). The continuous lines are
analytical results (see Eq.(19)) and the points are simulation
results with N = 105. For the first two curves, continuous
transitions are seen, as expected. For the last one (r = 0.8) a
discontinuous transition with signature of hysteresis is seen.
Inset shows the log-log plots of O versus p− pc near the tran-
sition points for the continuous transitions. From the slopes
of the curves the order parameter exponent β is found to be
1 and 1/2 for r = 0.2 and r = 0.5 respectively.

value ofO can be 1/2. Therefore, the order-disorder tran-
sition is necessarily discontinuous. To verify this further
MC simulations were performed. Depending on the ini-
tial condition, the discontinuous jump from order to dis-
order happen at two different points, thus showing hys-
teresis behavior (see Fig.2). When the initial condition
is ordered, Eq.(14) is followed upto pc1 = 8/9. After that
the order parameter jumps to zero. On the other hand,
when the initial condition is random (having almost equal
number of agents having opinions of opposite signs) then
O = 0 upto pc2 ≈ 0.930±0.005 and then suddenly jumps
to the ordered (symmetry broken) phase. Of course pc2
is the symmetry breaking point. Note that the estima-
tion of pc2 is entirely numerical here. To be absolutely
sure about occurrence of hysteresis, one particular point
(p = 0.91) is checked for large enough size (N = 106)
for two different initial conditions. It is clearly seen then
the long time saturation values are very different, as is
expected.

Hysteresis in opinion formation has been studied before
in different contexts. For example, in Ref.[20], hysteresis
was observed while modelling the influence of a strong
leader in the society. In general, hysteresis signifies the
resistance offered by the society to changes in the global
opinion, despite the fact that the very reason for its for-
mation has lost its relevance. In the present case too, the
hysteresis loop area is somewhat a measure of this ‘social
tolerance’.

Similar exercise can be made for the generalised case
described by Eq.(3). However, instead of doing so, one
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could also look at another limit of Eq.(3), where q = 1
(studied in [16] as model C). One can show that even
in this limit, a discontinuous transition can be obtained
with pc1 = (2+

√
2)/4. So one would in general expect a

discontinuous transition for all ranges of Eq.(3).

V. MIXTURE OF TWO-AGENT AND

THREE-AGENT INTERACTIONS: PHASE

DIAGRAM AND TRI-CRITICAL POINT

Let us now discuss how robust is this discontinuous tran-
sition. In the above analysis it was assumed that only
three-agent interactions are present as opposed to the
previous cases, where only two-agent interactions were
considered. Here we consider a situation where both
two-agent and three-agent interactions are allowed. In
principle interactions of all sizes should be allowed, but
this is the simplest generalisation one could make.
With probability r an exchange process is three-agent

and otherwise it is two-agent. The exchange equation is
same as Eq.(10) but now clearly

θjk(t) = 1 with probability rf2
1 + (1− r)f1

= −1 with probability rf2
−1 + (1− r)f−1

= 0 otherwise. (15)

With this, one may enumerate all possibilities of increase
and decrease of the order parameter and in the steady
state it must balance:

f1
[

rf2
1 + (1 − r)f1

]

(1− p) +
f0p

2

[

rf2
−1 + (1− r)f−1

]

+f1
[

1− (f2
1 + f2

−1)r − (1− r)(f1 + f−1)
]

(1− p)

= f−1

[

rf2
−1 + (1− r)f−1

]

(1 − p) +
f0p

2

[

rf2
1 + (1 − r)f1

]

+f−1

[

1− (f2
1 + f2

−1)r − (1− r)(f1 + f−1)
]

(1− p). (16)

On simplification, this yields either f1 = f−1 which im-
plies disorder, or

pr

2
f2
0 − pf0

2
+ 1− p = 0, (17)

which gives (the only relevant solution)

f0 =
1

2r
−
√

p2/4− 2pr(1 − p)

pr
. (18)

Again as before

O = ±
(

2r − 1

2r
+

√

p2/4− 2pr(1− p)

pr

)

. (19)

The first term in the right hand side is negative as long
as r < 1/2. But the term inside the bracket has to be
positive, as it is the magnitude of the order parameter
(the sign will depend on which opinion prevails in the
ordered state). So, for r < 1/2 the transition occurs
only when by increasing p the term within the bracket

has a positive value. Before that, the other solution i.e.,
the disorder-state solution will be stable. One can show
that the condition of validity of the ordered-state solution
gives the critical line

pc =
2

3− rc
for r <

1

2
. (20)

Across this line a continuous transition takes place. In
Eq.(19) one can put p = 2/(3 − r) + ∆ (where ∆ → 0)
and show that the leading order term comes out to be
linear in ∆, implying β = 1 along this line. This critical
line, of course, terminates at (pt = 1

2
, rt = 1

2
). When

r > 1/2, the ordered-state solution Eq. (19) can be valid
whenever it gives real values for O. The last condition
gives the phase boundary:

pc =
8rc

1 + 8rc
for r >

1

2
. (21)

When r > 1/2, the minimum value possible for O from
the ordered state solution (Eq.(19)) is greater then zero.
Therefore transition across this line is necessarily discon-
tinuous. This discontinuous nature is verified numeri-
cally. A ‘hysteresis’ like behavior, as discussed in the
previous section, is also seen. The amount of discontinu-
ity, of course, is given by 1− 1

2r , which is maximum (1/2)
for pure three agent interactions (r = 1). Note that the
phase boundary equations correctly give pc = 2/3 and
pc = 8/9 limits respectively for r = 0 (from Eq.(20)) and
r = 1 (from Eq.(21)).
The point (pt =

1
2
, rt =

1
2
) is special where the critical

line terminates. It is a Tricritical Point (TCP). As is
seen generally, at TCP the exponent values are different.
Clearly,

O ∼
√

p− 4/5 (22)

giving βTCP = 1/2, which is different from β = 1 found
along the critical line.
To find the other exponent values that characterize this

TCP, one can use the following scaling relation for the
order parameter

O(t) ≈ t−δF
(

t1/ν‖∆, td/z/N
)

, (23)

where ∆ = p−pc, ν‖ is the time-correlation exponent, z is
the dynamical exponent and d is the space dimension. At
the critical point, the order parameter follows a power-
law relaxation O(t) ∼ t−δ (see inset of Fig.6 ) with δ =
0.50± 0.01.
One could then plot O(t)tδ against t(p − pc)

ν‖ . By
knowing δ, ν‖ can be tuned to find data collapse. From
Fig.5 the estimate of ν‖ is 1.00 ± 0.01. Similarly, one

can plot O(t)tδ against t/Nz/d. Again by tuning z, data
collapse is found (see Fig.6). The estimate of z/d is
0.666 ± 0.001. To find z one should put d = 4, which
is the upper critical dimension. This gives z ≈ 8/3. Sim-
ilar analysis for r < 1

2
gives z/d ≈ 1/2, here also by

putting d = 4 one gets z ≈ 2 which is expected for DP.
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FIG. 6. Data collapse for finding z for different system sizes
(N = 500, 1000, 5000, 10000, 50000) at p = 0.5 and r = 0.5
(TCP). The estimate is z/d = 0.666 ± 0.001. Inset shows the
uncollapsed data.

The scaling relation δ = β/ν|| is clearly satisfied here.
Therefore we see that the nature of the transition is ac-

tually determined by the relative probabilities of the two-
agent and three-agent interactions. Also the exponent
values at the tri-critical point are different from those
along the critical line.

VI. DISCUSSION

In the first part of this paper a mean-field solution of
the discretised version of a recently proposed model [13]
for opinion dynamics is given. The interactions, as in its
simplest form, are between two agents (see Eq.(1)). The
exchange process is such that an agent has a ‘convic-

tion’ with which he/she retains his/her opinion and also
gets influenced (stochastically, because it is otherwise im-
possible to incorporate all social complexities involved in
such processes) by the opinion of one randomly chosen
agent. It was shown [13, 15] from extensive MC study
that beyond a certain value of the ‘conviction’ parameter
the society undergoes a phase transition from disordered
to ordered state (where consensus is formed). In the
present study that behavior is shown analytically (see
Eq.(7)) for a discretised version of the model in mean-
field limit (which is exact here). The order parameter
exponent has been found to be β = 1. Even for the gen-
eralised version [15] (see Eq.(3)) this exponent remains
same along the phase boundary (belonging to DP uni-
versality class).

Thereafter a generalisation of this model for three-
agent interaction is reported. There is, of course, no
single choice for this kind of generalisation. But here
we have taken a plausible strategy in which an agent
can be influenced by the opinions of two other randomly
chosen agents only when those two agents agree among
themselves (have same opinion) otherwise the first agent
takes the group as ‘neutral’ (see Eq.(10)). This general-
isation has led to an interesting behavior it terms of the
order of the transition. It is seen if all interactions are
three-agent, a discontinuous transition is obtained (see
Eq.(14)) and a hysteresis loop was also observed (Fig.2).
It is to be noted that hysteresis in opinion models have
been reported before in other contexts (see e.g, [20, 21]).
In general, hysteresis in opinion dynamics models can be
taken as a signature of the tolerance of the society, or
in other words, its resistance to changes in global opin-
ion (as is also indicated in [20]). Although a direct cor-
respondence to a measurable quantity cannot be made
from these simplified models, qualitatively this hystere-
sis loop-area is somewhat a ‘measure’ of this social ‘tol-
erance’ mentioned above.

It is important to find out how far this discontinuous
nature is generic or it is an artifact of the restriction of
only three-agent interaction, as invoked by Eq.(10). Of
course it is not possible (at least very difficult) to allow
interactions of all sizes as it should be in a real soci-
ety. But to the very least one can allow both two-agent
and three-agent interactions with some probabilities. In
doing so it is found that upto the point when the proba-
bility of three-agent interactions is below 1/2, the tran-
sition is continuous (phase boundary given by Eq.(20))
and beyond that the transition is discontinuous, phase
boundary is given by Eq.(21). The point where the two-
agent and three-agent interactions are equally probable,
is a special point, because it is a tri-critical point. The
transition here is continuous, but the values of the ex-
ponents are different from those along the critical line.
Along the critical line, the exponents are of course mean-
field DP (β = 1, z = 2, ν|| = 1, δ = 1) and at TCP
they are β = 1/2, z/d ≈ .666 ± 0.001 ≈ 2/3 (z ≈ 8/3),
δ = 0.50± 0.01 ≈ 1/2, ν|| ≈ 1.00± 0.01.

At this point it is appropriate to mention that the ‘dis-
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ordered’ phase in all these versions is quite special in the
sense that all the agents are neutral in this phase. One
can avoid such situation (see [17]) and make the ‘dis-
ordered phase’ have coexistence of opinions of different
signs. But here such generalisations were not discussed.
Even without such complexities, which one can add any-
way with this, one finds intriguing features in this model.
One may note that while attempting to interpolate be-

tween a continuous and discontinuous transition, a tri-
critical point was obtained also in Ref.[22]. There too,
the tricritical point was situated at the point where the
phase boundary changed its curvature.
Finally, one must also note that in all the above cases,

the existence of a phase transition has not been proved.
What are analytically obtained are the two solutions rep-
resenting ordered and disordered states. The existence of

the phase transition, for all practical purposes, has been
assumed here.

To conclude, a mean field solution for a kinetic ex-
change model of opinion formation and its phase tran-
sition in terms of forming global consensus is presented
here. Its three-agent generalisation is proposed. Surpris-
ingly, the nature of the transition depends on the relative
probabilities of the two-agent and three-agent interac-
tions.
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