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Abstract

Fix integers b > a > 1 with g := ged(a,b). A set S C N is {a, b}-multiplicative
if ax # by for all z,y € S. For all n, we determine an {a,b}-multiplicative set

with maximum cardinality in [n], and conclude that the maximum density of an

{a, b}-multiplicative set is %.

Erdés [2, 3, 4] defined a set S C N to be multiplicative Sidon' if ab = cd implies
{a,b} ={c,d} for all a,b,c,d € S; see [8-10]. In a similar direction, Wang [13] defined
a set S C N to be double-free if x # 2y for all x,y € S, and proved that the maximum
density of a double-free set is %; see [1] for related results. Here the density of S C N is

lim M .

n—00 n
Pér and Wood [7] generalised the notion of double-free sets as follows. For k € N, a set
S C N is k-multiplicative (Sidon) if ax = by implies a = b and = = y for all a,b € [k]
and z,y € S. Pér and Wood [7] proved that the maximum density of a k-multiplicative
set is @(@).

Here we study the following alternative generalisation of double-free sets. For dis-
tinct a,b € N, a set S C N is {a, b}-multiplicative if ax # by for all x,y € S. Our main
result is to determine the maximum density of an {a, b}-multiplicative set. Assume that
a < b throughout.

Say = € N is an i-th subpower of b if z = b'y for some y # 0 (mod b). If z is an i-th
subpower of b for some even/odd i then x is an even/odd subpower of b.

First suppose that ged(a,b) = 1. Let T be the set of even subpowers of b. We now

prove that T is an {a,b}-multiplicative set with maximum density. In fact, for all [n],
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! Additive Sidon sets have been more widely studied; see the classical papers [5, 11, 12] and the recent
survey by O’Bryant [6]. Let N:={1,2,...} and [n] := {1,2,...,n}.
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we prove that T, := T N [n] has maximum cardinality out of all {a,b}-multiplicative
sets contained in [n].

The key to our proof is to model the problem using a directed graph. Let G be the
directed graph with V(G) := [n] where zy € E(G) whenever bx = ay (implying = < y).
Thus S C [n] is {a, b}-multiplicative if and only if S is an independent set in G. If zyz
is a directed path in G, then x = 7y and z = gy. Thus each vertex y has indegree and
outdegree at most 1. Since zy € E(G) implies z < y, G contains no directed cycles.
Thus G is a collection of disjoint directed paths. Hence a maximum independent set
in G is obtained by taking all the vertices at even distance from the source vertices?,
where a vertex y is a source (indegree 0) if and only if §¥ is not an integer; that is, if
y # 0 (mod b).

We now prove that the vertices at distance d from a source vertex are precisely the
d-th subpowers of b. We proceed by induction on d > 0. Each vertex y of G has an
incoming edge if and only if ¢y € N, which occurs if and only if y = 0 (mod b) since
ged(a,b) = 1. Thus the source vertices of G are precisely the 0-th subpowers of b. This
proves the d = 0 case of the induction hypothesis. Now consider a vertex y at distance
d from a source vertex. Thus y = gzn for some vertex x at distance d — 1 from a source
vertex. By induction,  is a (d — 1)-th subpower of b. That is, z = b4~ 'z for some z # 0
(mod b). Thus y = bdé, which, since ged(a,b) = 1, implies that Z is an integer. Hence
2 #0 (mod b) and y is a d-th subpower of b, as claimed.

This proves that the even subpowers of b form a maximum independent set in G.
That is, T, is an {a, b}-multiplicative set of maximum cardinality in [n]. To illustrate
this proof, the following table shows two examples of the graph G with b = 3. Observe

that the i-th row consists of the i-th subpowers of 3 regardless of a.

a=1and b=3 a=2and b=3
1 2 4 5 7 8 00 11 --- |1 2 4 5 7 &8 10 11 13 14 16
N 44 I I
3 6 12 15 21 24 30 33 3 6 12 15 21 24
.44 Ll 4 4 4
9 18 36 45 63 72 90 99 9 18 36
.44 Ll 4 4
27 48 108 135 189 216 270 297 --- 27 48

2Note that this is not necessarily the only maximum independent set—for a path component with odd
length, we may take the vertices at odd distance from the source of this path. This observation readily
leads to a characterisation of all maximum independent sets in G, and thus of all {a, b}-multiplicative

sets in [n] with maximum cardinality. Details omitted.



We now bound |7,,| from above. Observe that
. , n
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We now bound |T},| from below. Observe that
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These upper and lower bounds on |7;,| imply that
bn

Hence the density of T is 1)+le and because T,, is optimal for each n, no {a,b}-
multiplicative set has density greater than l)—i—Ll‘
We now drop the assumption that ged(a,b) = 1. Let g := ged(a, b). Since ax = by

if and only if %x = gy, a set S is {a,b}-multiplicative if and only if S is {%,g -

blg b

multiplicative. Since Wil = Ty

we have the following result.

Theorem 1. Fix integers b > a > 1. Let g := ged(a,b). Then for every integer n € N,
the even subpowers ofg in [n] are an {a,b}-multiplicative set in [n] with mazimum
cardinality. And the even subpowers ofg are an {a,b}-multiplicative set with density

bi, which is maximum.
+9



Note that if ¢ = a then b > 2g and b+ g < %b, and if ¢ < a then a > 2¢ and
b+g<b+a< %b. In both cases the density bound % in Theorem 1 is at least %,
which is the bound obtained by Wang [13] for the a = 1 and b = 2 case.

In conclusion, we propose a further generalisation of double-free sets. Let A, B C N.
Say S C N is {A, B}-multiplicative if az = by implies {a,z} = {b,y} for all a« € A
and b € B and z,y € S. One case is easily dealt with. For some prime number b, let
A:=[b—1] and B := {b}. Then ged(a,b) =1 for all a € A. Thus the even subpowers

of b are { A, B}-multiplicative, and have maximum density.
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