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Abstract

Fix integers b > a ≥ 1 with g := gcd(a, b). A set S ⊆ N is {a, b}-multiplicative

if ax 6= by for all x, y ∈ S. For all n, we determine an {a, b}-multiplicative set

with maximum cardinality in [n], and conclude that the maximum density of an

{a, b}-multiplicative set is b
b+g

.

Erdős [2, 3, 4] defined a set S ⊆ N to be multiplicative Sidon1 if ab = cd implies

{a, b} = {c, d} for all a, b, c, d ∈ S; see [8–10]. In a similar direction, Wang [13] defined

a set S ⊆ N to be double-free if x 6= 2y for all x, y ∈ S, and proved that the maximum

density of a double-free set is 2
3 ; see [1] for related results. Here the density of S ⊆ N is

lim
n→∞

|S ∩ [n]|

n
.

Pór and Wood [7] generalised the notion of double-free sets as follows. For k ∈ N, a set

S ⊆ N is k-multiplicative (Sidon) if ax = by implies a = b and x = y for all a, b ∈ [k]

and x, y ∈ S. Pór and Wood [7] proved that the maximum density of a k-multiplicative

set is Θ( 1
log k ).

Here we study the following alternative generalisation of double-free sets. For dis-

tinct a, b ∈ N, a set S ⊆ N is {a, b}-multiplicative if ax 6= by for all x, y ∈ S. Our main

result is to determine the maximum density of an {a, b}-multiplicative set. Assume that

a < b throughout.

Say x ∈ N is an i-th subpower of b if x = biy for some y 6≡ 0 (mod b). If x is an i-th

subpower of b for some even/odd i then x is an even/odd subpower of b.

First suppose that gcd(a, b) = 1. Let T be the set of even subpowers of b. We now

prove that T is an {a, b}-multiplicative set with maximum density. In fact, for all [n],
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1Additive Sidon sets have been more widely studied; see the classical papers [5, 11, 12] and the recent

survey by O’Bryant [6]. Let N := {1, 2, . . . } and [n] := {1, 2, . . . , n}.
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we prove that Tn := T ∩ [n] has maximum cardinality out of all {a, b}-multiplicative

sets contained in [n].

The key to our proof is to model the problem using a directed graph. Let G be the

directed graph with V (G) := [n] where xy ∈ E(G) whenever bx = ay (implying x < y).

Thus S ⊆ [n] is {a, b}-multiplicative if and only if S is an independent set in G. If xyz

is a directed path in G, then x = a
b y and z = b

ay. Thus each vertex y has indegree and

outdegree at most 1. Since xy ∈ E(G) implies x < y, G contains no directed cycles.

Thus G is a collection of disjoint directed paths. Hence a maximum independent set

in G is obtained by taking all the vertices at even distance from the source vertices2,

where a vertex y is a source (indegree 0) if and only if a
by is not an integer; that is, if

y 6≡ 0 (mod b).

We now prove that the vertices at distance d from a source vertex are precisely the

d-th subpowers of b. We proceed by induction on d ≥ 0. Each vertex y of G has an

incoming edge if and only if a
by ∈ N, which occurs if and only if y ≡ 0 (mod b) since

gcd(a, b) = 1. Thus the source vertices of G are precisely the 0-th subpowers of b. This

proves the d = 0 case of the induction hypothesis. Now consider a vertex y at distance

d from a source vertex. Thus y = b
ax for some vertex x at distance d− 1 from a source

vertex. By induction, x is a (d−1)-th subpower of b. That is, x = bd−1z for some z 6≡ 0

(mod b). Thus y = bd z
a , which, since gcd(a, b) = 1, implies that z

a is an integer. Hence
z
a 6≡ 0 (mod b) and y is a d-th subpower of b, as claimed.

This proves that the even subpowers of b form a maximum independent set in G.

That is, Tn is an {a, b}-multiplicative set of maximum cardinality in [n]. To illustrate

this proof, the following table shows two examples of the graph G with b = 3. Observe

that the i-th row consists of the i-th subpowers of 3 regardless of a.

a = 1 and b = 3 a = 2 and b = 3

1 2 4 5 7 8 10 11 · · · 1 2 4 5 7 8 10 11 13 14 16 · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

3 6 12 15 21 24 30 33 · · · 3 6 12 15 21 24 · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

9 18 36 45 63 72 90 99 · · · 9 18 36 · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

27 48 108 135 189 216 270 297 · · · 27 48 · · ·
...

...
...

...
...

...
...

...
...

2Note that this is not necessarily the only maximum independent set—for a path component with odd

length, we may take the vertices at odd distance from the source of this path. This observation readily

leads to a characterisation of all maximum independent sets in G, and thus of all {a, b}-multiplicative

sets in [n] with maximum cardinality. Details omitted.
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We now bound |Tn| from above. Observe that

Tn =
{

b2iy : 0 ≤ i ≤ 1
2 logb n, 1 ≤ y ≤

n

b2i
, y 6≡ 0 (mod b)

}

.

Thus

|Tn| ≤

⌊(logb n)/2⌋
∑

i=0

⌈

b− 1

b

n

b2i

⌉

≤ 1 + 1
2 (logb n) +

(b− 1)n

b

∑

i≥0

1

b2i

≤ 1 + 1
2 (logb n) +

(b− 1)n

b

b2

b2 − 1

= 1 + 1
2 (logb n) +

bn

b+ 1
.

We now bound |Tn| from below. Observe that

Tn = [n] \
{

b2i+1y : 0 ≤ i ≤ 1
2((logb n)− 1), 1 ≤ y ≤

n

b2i+1
, y 6≡ 0 (mod b)

}

.

Thus

|Tn| ≥ n−

⌊((logb n)−1)/2⌋
∑

i=0

⌈

b− 1

b

n

b2i+1

⌉

≥ n− 1
2 ((logb n) + 1)−

(b− 1)n

b2

∑

i≥0

1

b2i

≥ n− 1
2 ((logb n) + 1)−

(b− 1)n

b2
b2

b2 − 1

= n− 1
2 ((logb n) + 1)−

n

b+ 1

=
bn

b+ 1
− 1

2 ((logb n) + 1) .

These upper and lower bounds on |Tn| imply that

|Tn| =
bn

b+ 1
+Θ(logb n) .

Hence the density of T is b
b+1 , and because Tn is optimal for each n, no {a, b}-

multiplicative set has density greater than b
b+1 .

We now drop the assumption that gcd(a, b) = 1. Let g := gcd(a, b). Since ax = by

if and only if a
gx = b

gy, a set S is {a, b}-multiplicative if and only if S is {a
g ,

b
g}-

multiplicative. Since b/g
b/g+1 = b

b+g , we have the following result.

Theorem 1. Fix integers b > a ≥ 1. Let g := gcd(a, b). Then for every integer n ∈ N,

the even subpowers of b
g in [n] are an {a, b}-multiplicative set in [n] with maximum

cardinality. And the even subpowers of b
g are an {a, b}-multiplicative set with density

b
b+g , which is maximum.
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Note that if g = a then b ≥ 2g and b + g ≤ 3
2b, and if g < a then a ≥ 2g and

b + g ≤ b + a < 3
2b. In both cases the density bound b

b+g in Theorem 1 is at least 2
3 ,

which is the bound obtained by Wang [13] for the a = 1 and b = 2 case.

In conclusion, we propose a further generalisation of double-free sets. Let A,B ⊂ N.

Say S ⊂ N is {A,B}-multiplicative if ax = by implies {a, x} = {b, y} for all a ∈ A

and b ∈ B and x, y ∈ S. One case is easily dealt with. For some prime number b, let

A := [b− 1] and B := {b}. Then gcd(a, b) = 1 for all a ∈ A. Thus the even subpowers

of b are {A,B}-multiplicative, and have maximum density.
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