arXiv:1107.1084v1 [math.NT] 6 Jul 2011

TRIVIAL ZEROS OF p-ADIC L-FUNCTIONS AT NEAR CENTRAL POINTS

DENIS BENOIS

July 5th 2011

Using the -Z-invariant constructed in our previous paper [Ben2| we proof a Mazur-Tate-Teitelbaum style
formula for derivatives of p-adic L-functions of modular forms at near central points
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Introduction

0.1. Trivial zeros of modular forms. In this paper we prove a Mazur-Tate-Teitelbaum style
formula for the values of derivatives of p-adic L-functions of modular forms at near central points.
Together with the results of Kato-Kurihara-Tsuji and Greenberg-Stevens on the Mazur-Tate-Teitelbaum
conjecture this gives a complete proof of the trivial zero conjecture formulated in [Ben2] for elliptic
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modular forms. Namely, let f = > a,¢" be a normalized newform on I'g(N) of weight £ > 2 and
n=1

o0
character € and let L(f,s) = >_ a,n"* be the complex L-function associated to f. It is well known that
n=1

L(f,s) converges for Re(s) > % and decomposes into an Euler product
s) =& 7)™
1

where [ runs over all primes and Ey(f, X) = 1 — ;X + ¢(I)I¥"1X2. Moreover L(f,s) has an analytic
continuation on the whole complex plane and satisfies the functional equation

(20) 7 T(s) L(f, s) = i*eN*/275(2m)*F D(k — s) L(f*, k — s)

o0
where f* = Z anq" is the dual cusp form and ¢ is some constant (see for example [Mi], Theorems

4.3.12 and 4. _1 5). More generally, to any Dirichlet character n we can associate the L-function

L(f.n,s) Zn

The theory of modular symbols implies that there exist non-zero complex numbers Q;{ and (23 such
that for any Dirichlet character n one has

')

— __L(f,n,j) €Q, 1<j<k—-1

(1) L(f,n,4) =

where &+ = (—1)7!5(—1). Fix a prime number p > 2 such that the Euler factor E,(f, X) is not equal to
1. Let a be a root of the polynomial X2 —a,X +(p)p*~! in @p. Assume that « is not critical i.e. that
vp(a) <k —1. Let w : (Z/pZ)* — Q, denote the Teichmiiller character. Manin [Mn], Vishik [Vi] and
independently Amice-Velu [AV] constructed analytic p-adic L-functions Ly, o(f,w™, s) which interpolate
algebraic parts of special values of L(f,s)!. Namely, the interpolation property writes

Lyo(fow™ §) = Ealf,w™ ) L(fow? ™™, j), 1<j<k—1

where &,(f,w™,j) is an explicit Euler like factor. One says that L, o(f,w™,s) has a trivial zero at
s=jif E(f,w™,j) = 0. This phenomenon was first studied by Mazur, Tate and Teitelbaum in [MTT]
where the following cases were distinguished:

o The semistable case: p || N, k is even and o = a,, = = p#/2=1. The p-adic L-function Ly o(f,w*?, s) has
a trivial zero at the central point s = k/2.

e The crystalline case: pt N, k is odd and either a = p% or a = 6(p)p%. The p-adic L-function

Lyo(fw =l s) (respectively Lp,a(f,w%,s)) has a trivial zero at the near central point s = L (re-

spectively s = k%)
o The potentially crystalline case: p | N, k is odd and o = a,, = p%. The p-adic L-function Ly, (f, w T ,S)

I This construction was recently generalized to the critical case by Pollack-Stevens [PS] and Bellaiche [Bel]
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has a trivial zero at the near central point s = %

0.2. The semistable case. Let
s+ Gal(Q/Q) — GL(Wy).

be the p-adic Galois representation associated to f by Deligne [D1]. Assume that k is even, p || N
and a, = p¥/2=1 Then the restriction of ps on the decomposition group at p is semistable and non-
crystalline in the sense of Fontaine [Fo3]. The associated filtered (¢, N)-module Dy (W) has a basis
€q,ep such that e, = Neg, p(eq) = ape, and p(eg) = payes. The jumps of the canonical decreasing
filtration of Dg (W) are 0 and k — 1 and the Z-invariant of Fontaine-Mazur is defined to be the unique
element Z(f) € Q, such that Fil*"*Dg (V) is generated by eg — Z(f)eq. In [MTT] Mazur, Tate and
Teitelbaum conjectured that

(2) Lpo(f,w"/?, k/2) = Z(f) L(f,k/2).

We remark that L(f,k/2) can vanish. This conjecture was proved in [GS] in the weight two case and
in [St] in general using Hida theory. Another proof, based on the theory of Euler systems was found
by Kato, Kurihara and Tsuji (unpublished but see [Ka2], [PR5], [Cz3]). Note that in [St] Stevens uses
another definition of the Z-invariant proposed by Coleman [Co]. We refer to [CI] and to the survey
article [Cz4] for further information and references.

0.3. The crystalline case. Our aim in this paper is to prove an analogue of the formula (2) in the
crystalline case. Let f be a newform of an odd weight k. Fix a prime p{ N and assume that o = pg
is a root of X? — a,X + ¢(p)p*~!. Then the p-adic L-function Lpﬂ(f,w%,s) vanishes in s = k—;l
The p-adic representation Wy is crystalline at p and we denote by Dgis(Wy) the filtered Dieudonné
module associated to W;. We assume that the semisimplicity conjecture holds i.e. that the Frobenius
operator ¢ acts semisimply on Dgis(Wy). The assumption a = p% together with the semisimplicity

_—1
of ¢ implies that Dg,s (Wf( ktl ))wfp is a one-dimensional vector space which we denote by D,. The

2 -
main construction of [Ben2] associates to Dy, an element . (Wy(%EL), D,,) € Q, which can be viewed as

a direct generalization of Greenberg’s Z-invariant [Gre] to the non-ordinary case. To simplify notation
we set Z,(f) =& (Wp(EEL), D,) . The main result of this paper states as follows.
Theorem. Assume that ¢ acts semisimply on Deis(Wy) and that o = p% is a oot of X% — apX +

e(p)p*F=t. Then L, 4 (fM%’S) has a trivial zero at s = % and

, N A e(p)\ ~ E+1
o (108 552) =m0 (1= 52 E(1557).

Remarks. 1) L(f, 251) # 0 by the theorem of Jacquet-Shalika [JS].
2) Let n be a Dirichlet character of conductor M with (p, M) = 1. The study of trivial zeros

of Ly o ( 1, nw%,s) reduces to our theorem by considering the newform f ® n associated to f, =

> n(n)ang™ (see section 4.2.2).
n=1

3) If a = p*=1/2 then o* = e~ 1(p) a is a root of the quadratic polynomial associated to the dual

o0 —
form f* = > a,q¢™ and L, - (f*, w T, s) has a trivial zero at s = % Repeating the proof of the main
n=1



theorem with obvious modifications or just simply using the compatibility of the trivial zero conjecture
with the functional equation ([Ben2], section 2.3.5) we obtain that

/ * %k_l _ * E(p) T *k_l
vaa* <f , W ,T> ——ga*(f ) <1—7>L<f 7T>

4) The Z-invariant of Fontaine-Mazur which appears in the central point case (2) is local i.e. it
depends only on the restriction of the p-adic representation p; on the decomposition group at p. However,
in the near central point case the Z-invariant £, (f) is global and contains information about the
localisation map H*'(Q, Wf(%)) — HY(Q,, Wf(%))

5) Our theorem follows purely formally from the following results:

i) Computation of the image of Kato’s Euler systems zka,t, under the dual exponential map in terms
of special values of L(f,s).

ii) Construction of L, o(f, s) using Euler systems and Perrin-Riou logarithmic map [PR2].

iii) Computation of the derivative of Perrin-Riou’s logarithmic map.

We remark that i) and ii) above are deep theorems of Kato ([Ka2], Theorems 12.5 and 16.2). The
computation of the derivative of the logarithmic map in terms of the Z-invariant is the main technical
result of this paper (see Propositions 2.2.2 and 2.2.4).

6) In the potentially crystalline case the restriction of Wy on the decomposition group at p is poten-
tially crystalline and Depis(Wy) = Dperis(W;) 621U/ @) is of rank one. This situation is not covered by
our trivial zero conjecture.

0.4. Trivial zeros of Dirichlet L-functions. Let 1 be a primitive Dirichet character modulo N and
let pf N be a fixed prime. The p-adic L-function of Kubota-Leopoldt L,(nw, s) satisfies the interpolation
property A A '

Ly(w,1—j) = 11— (' 7)(p)p ) Linw' 7,1 ~5), j>1
Assume that 1 is odd and (p) = 1. Then L(n, 0) # 0 but the Euler like factor 1—(nw'=7) (p)p’ ~! vanishes

at j =1 and L,(nw, s) has a trivial zero at s = 0. Fix a finite extension L/Q, containing the values of
n. Let x denote the cyclotomic character and let ord, : Gal(Q,*/Q,) — L be the character defined by
ord, (Fr,) = —1 where Fr, is the geometric Frobenius. Then H'(Q,, L) = Hom(Gal(Q3"/Q,), L) is the
two-dimensional L-vector space generated by log x and ord,. Since p{ N and 7(p) = 1 the restriction of
L(n) on the decomposition group at p is a trivial representation. The localization map

Ky - HI(Q,L(W)) - HI(QWL)

is injective and identifies H!(Q, L(n)) with a one-dimensional subspace of H'(Q,, L). It can be shown
that Im(k,) is generated by an element of the form

(3) log x + Z(n) ord,

there £ (n) € L is necessarily unique. Applying Proposition 2.2.4 to the Euler system of cyclotomic
units we obtain a new proof of the trivial zero conjecture for Dirichlet L-functions

(4) L, (nw,0) = —Z(n) L(n,0).

This formula was first proved in [Gro] as the combination of the result of Ferrero-Greenberg [FG] giving
an explicit formula for L,(nw, 0) in terms of the p-adic I'-function and the Gross-Koblitz formula [GK].
We also remark that Dasgupta, Darmon and Pollack [DDP] recently generalized (4) to totally real
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number fields F' assuming Leopoldt’s conjecture and some additional condition on the vanishing of p-
adic L-functions.

0.5. The plan of the paper. The main contents of this article is as follows. In §1 we review the
necessary preliminaries. In particular, sections 1.1-1.2 are devoted to the theory of (¢, I')-modules which
plays a key role in our definition of the Z-invariant. In section 1.3 we review the construction and main
properties of Perrin-Riou’s large exponential map.

In §2 we review the construction of the Z-invariant .Z(V, D) from [Ben2] and prove an explicit
formula for the derivative of the large logarithmic map in terms of .Z(V, D) and the dual exponential
map.

In §3 we apply this formula to Dirichlet L-functions and give a new proof of (4).

Trival zeros of modular forms are studied in §4. In section 4.1 we review basic results about the rep-
resentations Wy and specialize the general definition of the Z-invariant to the case of modular forms.
The construction of p-adic L-functions is recalled in section 4.2. Finally in section 4.3 we deduce our
main theorem from the fondamental results of Kato [Ka2].

Acknowledgements. [ am grateful to Pierre Parent for a number of very valuable discussions con-
cerning this project.

§1. Preliminaries

1.1. (¢,T')-modules. _
1.1.1. Definition of (¢,I')-modules (see [Fol], [CC1], [Cz5]). Let Q, be a fixed algebraic closure
of Q, and Gg, = Gal(@p/@p). We denote by C the p-adic completion of @p and v, : C — RU {oo}

vp ()
the p-adic valuation normalized so that v,(p) = 1 and set |z|, = (%) " Write B (r,1) for the p-adic

annulus B(r,1) = {z € C' | r < |z], < 1}. Fix a system of primitive roots of unity ¢ = ({pn)n>0, such
that an = (pn—1 for all n. Let K, = Q,({p~) be the cyclotomic extention of Q, obtained by adjoining
Cpr and let Koo = J;— ) Kp. Put I' = Gal(K/Q,), T’y = Gal(K/K,,) and denote by x : T' — Z2 the
cyclotomic character. We fix a topological generator v of I' and define a compatible system of generators
¥ of Ty, setting 41 = v?~! and 7,41 = 72 for n > 1. Fix a finite extension L/Q,. For any 0 < r < 1
define

,@(LT) = {f(X) = Zaka | ar € L and f is holomorphic on B(r, 1)} )
k€EZ

éaL(T) = {f(X) = Zaka | ar € L and f is holomorphic and bounded on B(r, 1)} .
keZ

Set é"g = U éaL(T) and #;, = U %I(-f). Then éaLT is a field endowed with the valuation
0<r<0 0<r<0

w (Z aka> = min{v,(ax) | k € Z}

keZ

and we denote by (’)}L its ring of integers. The rings (’)TL, & LT and Z, are equipped with an L-linear
action of I" and a Frobenius operator ¢ given by

7f(X) = f(r(X)),  where 7(X)=(1+X)X" -1, rel,
f(X) = fle(X)),  where o(X)=(1+X)"-1.
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The actions of I' and ¢ commute to each other. As usual we set t = log(1 + X) = > (=1)""1X"/n.

i
I

Note that ¢(t) = pt and 7(t) = x(7)t. The operator ¢ defined by

B(F(X)) = % oIS S+ X) - 1)

cr=1

is a left inverse to ¢ i.e. 1 o ¢ = id. We remark that the rings (’)TL, éBLT and Z;, are stable under the
action of 1.

Definition. i) A (¢,T',,)-module over (D@LT (resp. Z1,) is a free éag—module (resp. Z1-module) D of finite
rank d equipped with semilinear actions of I'y, and ¢ which commute to each other and such that the
induced linear map é"g ®y, D — D (resp. Z1, ®, D — D) is an isomorphism.

i1) A (¢, I'y)-module D over éaLT is said to be etale if there exists a basis of D such that the matriz of
@ in this basis is in GLd(O}L).

If D is a (¢,I';)-module over A = (D@LT or Z1, we write D* for the dual module Hom4 (D, A) and D(x)
for the module obtained from D by twisting the action of I',, by the cyclotomic character.

Let Rep; (Gk, ) be the category of p-adic representations of G, with coefficients in L i.e. the category
of finite dimensional L-vector spaces equipped with a continuous linear action of G, .

Theorem 1.1.2 ([Fol], [CC1]). There exists a natural functor V. — D' (V') which induces an equivalence
between Rep; (Gk, ) and the category of etale (¢, I",,)-modules over éaLT

From Kedlaya’s theory it follows (see [Cz5], Proposition 1.4 and Corollary 1.5) that the functor D —
X, @ &l D establishes an equivalence between the category of étale (p,I',,)-modules over é"g and the
category of (¢, I');,)-modules over Zy, of slope 0 in the sense of [Ke]. Together with Theorem 1.1.2 this
implies that the functor V. — DLg(V) defined by DLg(V) = X1 Qgi D'(V) induces an equivalence
between the category of p-adic representations and the category of (¢, I, )-modules over Z;, of slope 0.

1.1.3. Crystalline (p,I')-modules (see [Fo3], [Ber3|, [Ber4|). Recall that a filtered Dieudonné module
over K, with coefficients in L is a finite dimensional L-vector space M equipped with the following
structures:

e an L-linear isomorphism ¢ : M — M;

e an exhaustive decreasing filtration (Fil' Mg, );cz on My, = K, ®q, M by (K, ®q, L)-submodules.
It is well known (see for example [Fo3]) that filtered Dieudonné modules form a tensor category MF%
which is additive, has kernels and cokernels but is not abelian. The unit object 1 of MF?R is the one
dimensional vector space L with the trivial action of ¢ and the filtration given by

. L, ifi<0,
Fil'l1 = o
0, if:>0.

If M is a one-dimensional Dieudonné module and m is a basis vector of M, then ¢(m) = am for some
a € L. Set ty (M) = vy(cr) and denote by ¢t (M) the unique filtration jump of M. If M has a dimension

d d
d>1,set ty(M) = tn(AM) and ty(M) = tg(AM). A Dieudonné module M is said to be weakly

admissible if t (M) =ty (M) and if tg(M') < tn(M’) for any p-submodule M’ of M equipped with
the induced filtration. Weakly admissible modules form a subcategory of MF?R which we denote by
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If D is a (¢,T',)-module over Z;, we set
-@cris(D) = (D ®%’L %L[l/t])rn :
Then Z..is(D) is a finite-dimensional L-vector space equipped with a natural action of ¢. The embed-

dings =™ %’g) — (L ® K4)[[t]] which sends X onto (,met/P" — 1 allow to define an exhaustive
decreasing filtration on Z.,i5(D) g, (see [Berl], ). Moreover dimy Z..is(D) < rg(D) and we say that D

n

is crystalline if the equality holds here.
Proposition 1.1.4. i) The functor D +— Z.is(D) induces an equivalence between the category of
crystalline (¢, T',)-modules and MF .

i) If V is a p-adic representation of Gk, then .@Cris(DLg(V)) is canonically and fonctorially isomor-
phic to Fontaine’s crystalline module Dyis(V). In particular, Deis induces an equivalence between the
category of crystalline (p,1',)-modules of slope 0 and MF}’}f
Proof. The first statement is the main result of [Ber4]. The second statement follows from [Berl],
Theorem 0.2.

The description of the filtered module D,is(V') is particulary simple if V' crystalline over Q, (or

more generally over an unramified ground field). Set & = & LT N L[[X]] and 2} = %1, N L{[X]]. Thus

& = 0L[[X]] [%] and Z; coincides with the ring of power series which are holomorphic on the open

unit disc. If V is a p-adic representation of Gg, we let DT (V) denote the union of (p,I')-stable &;'-
submodules of DT (V). Tt is easy to see that D* (V) is the maximal &, -submodule of DT(V') stable under
¢ and I'. In [Cz2], Theorem 1 Colmez proved that V' is crystalline if and only if It D (V) =dimy V.

Together with the results of Wach [Wa] this implies that
r
Deris(V) = <D+(V) ®(§L+ '%Zr>
(see [Ber3], Proposition 3.4).

1.2. Cohomology of (¢, I')-modules.
1.2.1. Fontaine-Herr complexes (see [H1], [H2], [Liu]). Let A be either é"LT or Zr,. Recall that we
fixed a generator vy, € I';,. If D is a (¢, I';,)-module over A we shall write H*(D) for the cohomology of
the complex
Cos(D) : 0D LDED LD 0
where f(z) = ((¢ — Da, (v — 1)) and ¢g(y,2) = (7 — 1)y — (¢ — 1) z. A short exact sequence of
(¢, T'),)-modules
0—-D —-D—=D"—0
gives rise to an exact cohomology sequence:
0— H°(D') - H'(D) — H'(D") — H'(D') — --- — H*(D") — 0.
The cohomology of (¢,T'),)-modules over #Z;, satisfies the following fondamental properties (see [Liu],
Theorem 0.2):

e Euler chracteristic formula. H*(D) are finite dimensional L-vector spaces and the usual formula

for the Euler characteristic holds

> (1) dim; H (D) = —[K, : Q)] rg4, (D).
i=0
e Poincaré duality. For each ¢ = 0,1, 2 there exist functorial pairings
H'(D) x H* (D" (x)) = H*(#1(x)) ~ L

which are compatible with the connecting homomorphisms in the usual sense.
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Proposition 1.2.2. Let V' be a p-adic representation of Gk, . Then

i) The continuous Galois cohomology H*(K,,,V') is canonically (up to the choice of v, ) and functo-
rially isomorphic to H*(DT(V)).

i) The natural map DY(V) — Diig(V) induces a quasi-isomorphism of complezes C, (DT (V)) —
Cor(Dli(V)).

Proof. see [H1] and [Liu], Theorem 1.1.

1.2.3. Iwasawa cohomology (see [CC2]). If V is a p-adic representation of Gg, and T" is an Oy -lattice
of V stable under Gg, we define

Hi(Q,T)= lm  H{(K,T)

COrKn/Kn71

and H{ (Q,,V) = H{,(Qp, T) ®z, Q,. Since DT(V) is etale, each 2 € DT(V) can be written in the form

d
x = Zal«p(ei) where {e;}¢_, is a basis of Df(V) and a; € @‘"LT Therefore the formula
i=1

d
(0 (Zai @(ez‘)> = ZW%) ei

defines an operator ¢ : Df(V) — Df(V) which is a left inverse for . The Iwasawa cohomology
H{,(Qp, V) is canonically (up to the choice of v) and functorially isomorphic to the cohomology of the
complex

cl,..(vV) - DI(Vv) 2% Di(V),

The projection map prv,, : Hi,(Qp, V) — H'(K,,V) has the following description in terms of (¢, I')-
modules. Let z € DT (V)¥=!. Then (¢ — 1)x € DT(V)¥=% and by Lemma 1.5.1 of [CC1] there exists
y € DT(V) such that (7, — 1)y = (¢ — 1) x. Then pry,, sends cl(z) to cl(y, ). This interpretation of the
Iwasawa cohomology in terms of (¢, I')-modules was found by Fontaine (unpublished but see [CC2]).

1.2.4. The exponential map (see [BK], [Ne], [Ben2]). Let D be a (¢,I',,)-module. To any cocycle
a = (a,b) € Z'(C, (D)) one can associate the extension

0—D—D, %, —0

defined by
D,=D® Ze, (p—1le=a, (yn—1)e=h.

As usual, this gives rise to a canonical isomorphism H!(D) ~ Ext% o Fn)('@L’ D). We say that the class

cl(a) of a in H*(D) is crystalline if dimz, Peyis(Do) = dimz Peris(D) + 1 and define
H}(D) = {cl(a) € H'(D) | cl(a) is crystalline }
(see [Ben2], section 1.4). If M is a filtered Dieudonné nodule over K, with coefficients in L we set

H'(K,, M) = Extype (1,M),  i=0,1.
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We remark that H*(K,,, M) can be computed explicitly as the cohomology of the complex

s (M) : ML (Mg, [Fi°Mg, ) ® M

cris

where the modules are placed in degrees 0 and 1 and f(d) = (d (mod Fil®Mf, ), (1 — ) (d)) (see [Ne],
[FP]). Assume that D is a crystalline (¢, ',,)-module and define the tangent space of D over K,, by

tp(Kyn) = Zeris(D) g, /Filogcris(D)Kn.
It follows from Proposition 1.1.4 that the functor Z,,;s induces a canonical isomorphism
H'(K,, Deris(D)) — H}(D).
We define the exponential map
expp g,  D(Kn) ® Deris(D) — H'(D)

as the composition of this isomorphism with the natural projection tp (K, )® Zeis(D) — HY (K, De1is(D))
and the embedding H}(D) — H'(D).

If V is a crystalline representation and D = Dlig(V) then the isomorphism H'(D) ~ HY(K,,V)

identifies H ;(D) with H (K, V) of Bloch-Kato (see [Ben2|, Proposition 1.4.2). Let
tV(Kn) - (Dcris(v)/FﬂODcris(V)) ®Qp Kn

denote the tangent space of V. By Proposition 1.21 of [Ne] the following diagram commutes and
identifies our exponential map with the exponential map expy ., —of Bloch-Kato ([BK], §4)

exp D,K,

tD(Kn) Hl(D)
ty(K,) —fn HY(K,, V).

Let
[ ; ] : -@criS(D)Kn X ‘@CriS(D*(X))Kn - L®Qp K”

be the canonical duality. The dual exponential map
exXppe(y) .k, ¢ H (D*(X)) = Fil’Zeris(D* (X)) ¢,

is defined as the unique map such that

expp g, () Uy = Trg, o, [z, expE*(XLKn (y)]

for all z € .@Cris(D)KH, y € .@Cris(D*(x))Kn.
1.2.5. (p,I')-modules of rank 1 (see [Cz5], [Ben2]). With each continuous character § : Q; — L*
one can associate the (¢,I')-module of rank one % (0) = Zpes defined by v(es) = d(x(v))es and
©(es) = d(p)es. Colmez proved that any (p,I')-module of rank one over %y, is isomorphic to one and
only one of Z(d) ([Cz5], Proposition 3.1). It is easy to see that Z(d) is crystalline if and only if



10

there exists k € Z such that §(u) = u” for all u € Z, ([Ben2], Lemma 1.5.2). In this case Zeis(ZL(6))

is the one-dimensional vector space generated by t *es with Hodge-Tate weight equal to —k and ¢
acts on Peis(#Z1(8)) as multiplication by p~*§(p). The computation of the cohomology of crystalline
(¢, T')-modules of rank 1 reduces to the following four cases. (We refer to [Cz5], sections 2.3-2.5 and to
[Ben2], Proposition 1.5.3 and Theorem 1.5.7 for proofs and more details).

o d(u) = u™™ (u € Z3) for some m > 0 but §(xz) # x~™. In this case H(Z(d)) = 0 for i = 0,2,
H'(Z1(9)) is a one-dimensional L-vector space and H (% (9)) = 0.

o §(x) = =™ for some m > 0. In this case H*(ZL(0)) = Deris(Z1(5)) and H?(#Z(5)) = 0. The

map
i5 ¢ Deris(ZL(6)) ® Deris(#1,(0)) — H (ZL(9)),
is(z,y) = cl(—z,log x(7)y)

is an isomorphism. We let i5 s and i5. denote its restrictions on the first and second direct summand
respectively. Then Im(is f) = H}' (#1(6)) and we have a canonical decomposition

(5) HY(%1(0)) ~ Hp(%1(5)) © He (%L (9))
where H} (#1,()) = Im(is,.). Set

X = 15,7 (t"es) = —cl(t™,0) e,

Ym = is.c(t"es) = log x(v) cl(0, ™) €.

o d(u) =u™ (u € L) for somem > 1 but §(x) # |z|x™. Then H'(Zr(d)) = 0fori =0,2, H'(ZL(9))
is a one-dimensional L-vector space and H} (Z1(8)) = HY(ZL(0)).

e §(z) = |z|z™ for some m > 1. Then H°(%(§)) = 0 and H?*(%(0)) is a one-dimensional L-vector

space. Moreover xd~!(z) = 2'~™ and there exists a unique isomorphism

is ¢ Deris(RL(0)) ® Deris(#1,(8)) — H (#1(5))
such that
is(a, B) Uiys—1(z,y) = [B, 2] — [a, Y]
where [, ] @ Deris(ZL(0)) X Deris(Zr(xd~ 1)) — L is the canonical pairing. Denote is,y and is. the

restrictions of is on the first and second direct summand respectively. Then Im(is ) = H} (Z1(6)) and
again we have a canonical decomposition

(6) HY(%1(8)) =~ Hj(Z1(5)) © H (%L (9))
where HY(#1,(0)) = Im(is.c).
More explicitly, let o, = — (1 — %) cl(a,y,) and B, = <1 — %) log x(v) cl(B,) where

U = %8*’” (% + %a) es,  (I—p)a=(1-x()7) (% + %) :
_ (=

B mam’l <b%> es, (1—9) (%) = (1=x()o

d
and 0 = (14 X)ﬁ Then H} (%1 (0)) and H; (%1(0)) are generated by a,, and B, respectively and

one has

(7) oy UXy 1 = IBm UYm-1 = 0, Xy Uym_1 = _1> IBm Uxpmo1 = 1.
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Proposition 1.2.6. Let §(x) = |z|a™ where m > 1. Then d,, = t~™es is a basis of Deris(#Z1(9)) and
the exponential map sends (dp,,0) to Q.

Proof. See [Ben2|, Theorem 1.5.7 ii).

1.3. The large exponential map.

1.3.1. The large exponential map (see [PR2], [Cz1], [Benl], [Ber2]). In this section we review the
construction and basic properties of Perrin-Riou’s large exponential map [PR2]. Let p is an odd prime
number. We let denote A = O [[I']] the Iwasawa algebra of I' over Op,. Define

H ={f(n-DIfez},  AHN) =LA@z, H#(T).

—2
Thus #(I") = é@ojf&i where §; = Zw*’(g)g. We equip 4 (T") with twist operators Tw,, : (') —
= geEA

H(T) defined by Tw,,(f(71—1)68:) = f(x(71)™y1 — 1) §i—m. The ring 5#(T) acts on %Z; and (%] )¥="

is the free J#(I')-module generated by (1 + X) ([PR2], Proposition 1.2.7). Let V be a crystalline

representation of Gg,. We will assume that H%(Q,,V(m)) = 0 for all m € Z. As HY(K,V) =
@© V(m)%% (—m) this assumption implies that H°(K ., V) = 0 and therefore that H{, (Q,,V) is a free

meZ

Ag,- module of rank d = dim (V). In particular, for each n the map H{, (Q,,V)r, — H*(K,,V) is

injective.

Set D(V) = (%’Z“)w:o @1, Dais(V) and define a map Zy,, : D(V) — HY (K, Deris(V)) by

P (z’;l(a ® @) Fa(C — 1), —a(O)) o> 1,
—(0,(1=p e a(0)) if n = 0.

In particular, if Des(V)?=! = 0 the operator 1 — ¢ is invertible on Ds(V) and

<1 _pfl(’pfl

= -
Hv,o(a) 1—o

a(()),()) .

For any m € Z let Twy,,,, : H{,(Qp, V) — Hy, (Qp, V(m)) denote the twist map Twy,,, (z) =z ®@e®™.

Theorem 1.3.2. Let V be a crystalline representation of Gg, such that H°(Qp,V(m)) = 0 for all
m € Z. Then for any integers h and m such that Fil="D (V) = Deis(V) and m + h > 1 there exists
a unique J€(I')-homomorphism

EXp (yn @ D(V(m)) = H(T) @ny, Hiy (Qy, V(m))

satisfying the following properties:
1) For any n > 0 the diagram

£
EXPY (m),h

D(V(m)) ——— H) D, Hiy(Qp, V(m))

E;(m),nl prv(m)an{

(h—1)! eXPV (m), Kp
H'(Ky, Deris(V(m))) HY(K,,V(m))
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commutes.
ii) Let e; = e1 @t denote the canonical generator of Deyis(Qp(—1)). Then

EXp%/(m+1),h+1 = _wa/(m)’l o Expf,(m)’h o (0®ey).
iii) One has
EXDY () 1 = EhEXDY ()

log(~1)
log x(v1) "

Proof. The first proof of this theorem was given in [PR2] where Expj,,(a) was defined only for o
such that 0"a(0) € (1 — p™p)Deis(V) for all m € Z. We remark that this condition is not neces-
sary (see [PR4] or [Benl], section 5.1). Other proofs can be found in [Czl], [Benl] and [Ber2]. We
recall here the construction of Expj,; in terms of (¢,I')-modules found by Berger [Ber2] which will
be used in the proof of Proposition 2.3.2 below. The action of #(T") on DT(V)¥=! induces an in-

jection J(I') @4, DI (V)¥=1 — Djig(V)¢:1. Composing this map with the canonical isomorphism

where £, =m —

H{,(K,V) ~ DI(V)¥=! we obtain a map (') ®4,, Hf,(K,V) < Djig(V)“’:l. It is not difficult to
h—1

check that £, acts on %1, as m — td and an easy induction shows that [] ¢x = (—1)"t"0". Let h > 1
k=0

be such that Fil=™"Dis(V) = Deris(V). To simplify the formulation, assume that Ds(V)?=1 = 0. For
any a € D(V) the equation

b gmg,
(p-nF=a- L0

m=1

tm

m)!

has a solution in 2] ® Deis(V) and we define
lo
vala) = %ﬁ) bh1lph—2 - Lo(F(X)).

It is easy to see that Qf,, (o) € D;Eg(V)@Z’:l. In [Ber2], Theorem II.13 Berger shows that €, , (o) €
(L) ®4q, DT (V)¥=! and coincides with Expy, p, ().

1.3.3. The logarithmic maps. The Iwasawa algebra A is equipped with an involution ¢ : A — A
defined by «(7) = 771, 7 € I'. If M is a A-module we set M* = A ®, M and denote by m + m' the
canonical bijection of M onto M*. Thus Am* = (¢(A\)m)* for all A € A, m € M. Let T be a Op-lattice
of V stable under the action of Gig,. The cohomological pairings

()7 o HY(K,, T) x HY(K,, T*(1)) — Oy,
give rise to a A(T')-bilinear pairing

< ] >T : HIIW(QIHT) X Hllw(Q;D?T*(l))L — A
defined by

<1"ayb>T = Z (T_ll:nayn)T,nT mod (’Yn - 1)a nz=l1
Tel'/T,,

(see [PR2], section 3.6.1). By linearity we extend this pairing to
(L Yyt HD) @ B (@ T) x A (D) @4 HL (@ T (1)) = H#/(T).
For any 1 € D¢is(V*(1)) the element 1 =1 ® (1 4+ X) lies in D(V*(1)) and we define a map
£%/,17h,17 : Hllw(@pvv) - %(F)
by

%/,17h,17(x) = <.%‘, Expi/i*(l),h(n)lvv'
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Lemma 1.3.4. For any j € Z one has

2%/(*1%*}%77@61 (TWil(IL’)) = Tw, (£%71,h7n($)) .

Proof. A short computation shows that <TW§ (z), Tw= J(y)>

that TwS = —TwS we have

v = Tw_j<x,y>v(j). Taking into account

5 (1), hmen (TWE1(2)) = (TW 1 (2), BXDG ) 1 (00 €1)" )y =

<TW€—1(37)7 —Twiil (EXP;:1(1),h(m)L>V(_1) = <TW€—1(37)7TW§ (EXP@:1(1),h(77))L>V(_1) =
et L £

TW1<$,EXPv*(1),h(m >v = Tw, (Sv,1—h,n(33))

and the lemma is proved.

1.4. p-adic distributions (see [Cz6], chapter II, [PR2], sections 1.1-1.2). Let D(Z;, L) be the space of
distributions on Zj; with values in a finite extensions L of Q,. To each u € D(Z;, L) one can associate

its Amice transform <7, (X) € L[[X]] by
(i)u(@) X"

A0 = [ (X)) = Y ( /
Zy n=0 Z;
The map p — 47,(X) establishes an isomorphism between D(Z5, L) and (%;)¥=". We will denote by
M(p) the unique element of 7 (I") such that
M() (14 X) = A, (X).
For each m € Z the character x™ : I' — Z, can be extended to a unique continuous L-linear map
p—2
X" A() — L*. It h= > 0;hi(y1 — 1), then x™(h) = h;(x"(71) — 1) with i =m (mod (p—1)). An
i=0

easy computation shows that

[ @) = 07 0) = X7 (M),

*
P

If x € Z we set () = w™'(z) z where w denotes the Teichmiiller character. To any p € D(Z, L) we
associate p-adic functions

p—2
Write M(p) = > 6;hi(y1 — 1). Then
i=0

(8) Lp(,u,wi, S) = hl (X(’Yl)s - 1) .

To prove this formula it is enough to compare the values of the both sides at the integers
s=1 (mod (p—1)).
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We say that p is of order r > 0 if its Amice transform .7, ( Z a, X" is of order r i.e. if the

n=1
sequence |ay|,/n" is bounded above. A distribution of order r is completely determined by the values

of the integrals
Gna'p(x),  neN, 0<i<[r]
Zy
where [r] is the largest integer no greater then 7.

Set Z®) = Ly, X l];[ Z;. A locally analytic function on II;I Z; is locally constant and we say that a
P P
distribution p on Z® is of order r if for any locally constant function g(y) on J[Z; the linear map
I#p

f— o f(x)g(y)u(z,y) is a distribution of order r on Zj.

§2. The Z-invariant

2.1. The Z-invariant (see [Ben2]).

2.1.1. Definition of the .Z-invariant. In this section we review the definition of the .Z-invariant
proposed in our previous article [Ben2]. We consider only representations which are crystalline at p
because it is sufficient for the goals of this paper. Namely let S be a finite set of primes and Q%) /Q
be the maximal Galois extension of Q unramified outside S U {oo}. Fix a finite extension L/Q,. Let V'
be an L-adic representation of Gg i.e. a finite dimensional L-vector space equipped with a continuous
linear action of Gg. We write H5(Q, V') for the continuous cohomology of Gg with coefficients in V.
For any prime | Bloch and Kato [BK] defined a subgroup H}(Qq, V) of H'(Q;, V) by

ker(H'(Q, V) — HY(Q™,V)) if I # p,

1 _
Hp@. V)= { ker(H'(Qy, V) = H'(Qy,V ® Be)) i1 =p

where B,is is the ring of crystalline periods [Fo2]. The Selmer group of V' is defined as

1
HL@Q,V) = (Hs@, @i%ﬁ’)

es

We also define

HY(Q,V)

(9) H} 1y (QV)=ker [ H{(Q,V) > P Q.7

lesS—{p}

Note that this definition does not depend on the choice of S. From now until the end of this §we
assume that V satisfies the following conditions

1) Hy(Q,V) = Hy(Q,V*(1)) = 0.

2) H3(Q,V) = Hg(Q,V*(1)) = 0.

3) V is crystalline at p and De(V)?=1 = 0.

4) dimLtv(Qp) =1.

We remark that the last condition is not necessary to define the Z-invariant but it will be used in
section 2.2 below.
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The condition 1) together with the Poitou-Tate exact sequence (see [FP], Proposition 2.2.1)

Hl ’V * *
o HHQV) = HYQV) = @) - HHQVF () — -
les VD
gives an isomorphism
Hl(Ql,V)
HL V)~ —_—

Let D be a one-dimensional subspace of D¢is(V') on which ¢ acts as multiplication by p~t. Using the
weak admissibility of Dis(V) it is easy to see that D is not contained in Fil®D,s(V) and therefore

D.is(V) = Fil’D,i(V) @ D

as L-vector spaces. Let m denote the unique Hodge-Tate weight of D. By Berger’s theory [Ber4] (see
also [BC], section 2.4.2), the intersection Diig(V) N (D ®r Z[1/t]) is a saturated (p,T')-submodule of
Diig(V) of rank 1 which is isomorphic to Z(0) with §(x) = |z|x™. Thus we have an exact sequence of
(¢, T')-modules

(11) 0 — #1(5) — DI

rig

(V) =D —=0

where D = DLg(V)/%’L (8). Since Deris(D)¥=! = 0 we have H°(D) = 0 and therefore H'(Z1,(5)) injects
into H1 (DLg(V)) ~ H'(Q,, V). Moreover, from the computation
dimp H}(Q,, V) = dimpty(Q) + dimg H(Q,, V) =1

and the fact that dimy, H(%21(d)) = 1 (see section 1.2.5) it follows that H}(Qp, V) =~ H(ZL(9)). Let
Hp, (V) denote the inverse image of H'(#(9))/H}(#L(9)) under the isomorphism (10). Then

(12) Hp(V) =

and the localisation map HL(V) — H'(Q,,V) induces an injection H;(V) — H'(Z%L(8)) which can
be inserted in a commutative diagram

i

D —— HY(#(5)

o Tpf

Hp, (V) —— HY(Z1(9))

D —— H(%1(9)),

where py and p. are defined as the unique maps making this diagram commute. We remark that from
(12) it follows that p. is an isomorphism.
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Definition. The Z-invariant £ (V, D) is defined to be the unique element of L such that

prop(z)=Z(V,D)z, weD.

2.1.2. Duality. Passing to duals in (11) and taking the long exact cohomology sequence we obtain an

exact sequence
HYD*(x)) = HY(Qp, V*(1)) — HY(Zr(x6~ ")) — 0.

Moreover the map H;(Qy,, V*(1)) — Hp(Z1(x0™")) is surjective ([Ben2], Corollary 1.4.6) and

i, <H1<@p,V*<1>>

_ 1 B
H}(QP’V*(D)> = dimg Hf(QpaV) =1.

Therefore
H'(Qp,V*(1))  H' (Zr(xd™ "))

HYQp, V*(1)) — HHZL(x67"))

and the Poitou-Tate exacte sequence gives an isomorphism

L@ V) B R 007)

~

T HQ, V(1) T H ()

Now the decomposition (4) for the character 61 provides a diagram

i*

Deris(Rr(x67")) ——= HH(ZL(x07"))

* *

Pr Dy
Hi (3 (QV*(1)) —— HY(ZL(x6 7))

* *

Pe Pe

Do B (x0~1)) — HI (1 (x5~1).

Let D* = Hom(Dis(V)/D, Deyis(L(x)). Then D* is a p-submodule of D i5(V') such that De,is(V*(1)) =
D* ® Fil°D¢,i5(V*(1)) and we define the Z-invariant associated to V*(1) and D* as the unique element
Z(V*(1),D*) € L such that p} o (p2)~Hz) = L(V*(1), D*) x. Note that

(13) Z2(V*(1),D%) = =2(V,D)
(see [Ben2], Proposition 2.2.7).

2.2. Derivative of the large exponential map.
2.2.1. In this section we interpret £ (V, D) in terms of the Bockstein homomorphism associated to the
large exponential map. This interpretation is crucial for the proof of the main theorem of this paper.

We keep the notations and conventions of section 2.1. Recall (see 1.3.2) that Hl(Qp, H(T)®q, V) =
H(T) @py, HE,(Qp, V) injects into DI (V). Set

rig

H;(Qp, (1) ®q, V) = Zr(8) N H (Qy, (1) @q, V).



TRIVIAL ZEROS OF p-ADIC L-FUNCTIONS AT NEAR CENTRAL POINTS 17

The projection map induces a commutative diagram
H§(Qp, #(T) ®g, V) —— H'(Qp, #(T) ®g, V)
1 -]
HY(Z%1(9)) — HY(Qp,V)

where the bottom arrow is an injection. We fix a generator v € I' and an integer h > 1 such that
Fil " Dyis(V) = Deyis (V).

Proposition 2.2.2. For any a € D let x € D(V) be such that x(0) = a. Then
i) There exists a unique F € H}(Q,, # (') @ V) such that

(v — 1) F = Expy ().
ii) The composition map

6p : D — H§(Q,, ()2 V) — H(%#L(5))
dp(a) = pro(F)

is well defined and is explicitly given by the following formula
!
o) = T(h) (1= 7)) fogx() " iefa)

Proof. 1) Since Ds(V)¥=! = 0, the operator 1 — ¢ is invertible on D;s(V) and we have a diagram

Expif’h

HY(Qp, # (T V)

lE@,O lpro

(h—1)lex
tV(Qp) ® Dcris(V) al Hl (Qpa V)

1— pfl(pfl
here Z¢ = —
where v,o(f) < —

On the other hand, as H{, (Qp,V) is Ag,-free, the map <%”(F) ®ng, H} (Q,, V))F — HY(Q,,V) is
injective and therefore there exists a unique F' € 72 (I')®x,, Hi},(Qp, V) such that Exp§, ,(z) = (y=1) F.
Let y € D ® %’szo be another element such that y(0) = a and let Expy,,(y) = (v — 1) G. Since
#V=" = A (T) (14 X) we have y = z + (y — 1)g for some g € D ®%1Lp=0' As Expy, 1, (9) = 0, we obtain
immediately that pro(G) = pro(F') and we proved that the map dp is well defined.

2) Take a € D and set
(14 X)X -1
X

f(()),()). IfxeD ®%1Ll’:0 then =7, ,(z) = 0 and prog (Exp;h(x)) = 0.

r=a®/

)

o(u)

1
where ¢(u) = - log ( ) . An easy computation shows that
p

XM 4 X)X 1 B
ZE( ¢1+X)-1 >O'

¢cr=1
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Thus z € D ® Or[[X]]¥=°. Write z in the form f = (1 —¢) (y — 1) (a ® log(X)). Then
o) = (0P EXO g 1) atog(x)) = (12 ox() (- ) F
where

X

This implies immediately that F € H}(Q,, #(I') ® V). On the other hand, as D = Deyis(ZL(9))
without lost of generality we may assume that a = ¢t~™es where §(x) = |z|x". Then

F = (410 alog()) = (1) tarto (HEE)

F=(=1D)""1"™m9"log(X) es.

By 1.2.3 one has pro(F) = cl(G, F) where (1 —v)G = (1 — ¢) F and by Lemma 1.5.1 of [CC1] there
exists a unique b € gg,w:o such that (1 —+)b = ¢(X). One has

(L—7) (t"m0"bes) = (1—¢) (" ™" log(X)es) = (-1)" 11 —¢) F.
Thus G = (—1)""1h=m9"(b)es and res (Gt™1dt) = (—1)""'res (t" 19" (b)dt) es = 0. Next from the

congruence F' = (h — 1)!t"™es (mod Qp[[X]] es) it follows that res(Ft™ 1dt) = (h — 1)!es. Therefore
by [Ben2], Corollary 1.5.5 we have

(14) (1-3) Gogx() (. F) = (h = DLel(B,) = (b = Do)
On the other hand

x(v) _
(15) z(0) = a®€<(1+X;( 1>‘X0 = a(l—%> log x(7).

The formulas (14) and (15) imply that

5p(a) = (h— 1)1 (1 - %) (log x(1)) " icla).

and the proposition is proved.

2.2.3. Fix a non-zero element d € D and consider the large logarithmic map
i/*(l),l—h,d : HIlw(Qp7V*(1)) — H(I)
(see 1.3.3). Let
Hy,, 5(Q,T7 (1)) = lim H§(Q(Gpr), T*(1))

cores

denote the global Iwasawa cohomology with coefficients in 7*(1) and let

HIlw,S(Q7 V*(l)) - HIlw,S(Q7T*(1)) ®Zp Qp'

The main results of this paper will be directly deduced from the following statement.



TRIVIAL ZEROS OF p-ADIC L-FUNCTIONS AT NEAR CENTRAL POINTS 19

Proposition 2.2.4. Let z € H{, ¢(Q,V*(1)). Assume that zo = pro(z) € H§(Q,V*(1)) is non-zero
and denote by u, € D(Z;, L) the distribution defined by

M(p,) = ’Q’%/*(l),l—h,d(z)'

Consider the p-adic function

Then Ly(p,,0) =0 and

1 -1
L (1,0) = —Z(V,D) T (h) (1— 5) {d,exp*v*(l)(z()) .,

where [, |v ¢ Deris(V) X Des(V*(1)) — L is the canonical duality.

Proof. First note that by [PR1], section 2.1.7 for [ # p one has H} (Q;, V*(1)) ~ H*(Q;({p=), V*(1)) and
therefore H{, (Q;, V*(1))p is contained in Hp(Q;,V*(1)). Thus Hy, ¢(Q, V*(1)),. injects into
H}{p} (Q,V*(1)) and zo € H}{p} (Q,V*(1)). Recall that we fixed a basis d of the one-dimensional
L-vector space D = Dis(#1(9)). Let d* be the basis of Zeis(Zr(xd~ 1)) which is dual to d. Let Zg
denote the image of zy under the projection map Hl(DLg(V*(l))) — HYZ(x671)). Write zg =
aif(d*) 4+ bic(d*). Then £(V,D) = —a/b by (13). By Proposition 1.2.6 and (6) we have

(16)  |d,expy . (1y(2o) v —expy (d)U 29 = —expy, 5 (d)U zo =
= —b(if(d) Uic(d")) = =b (am Uym-1) = b.

p—2
Let M(p5) = > 0ihi(y1—1). Then L, (14, s) = ho (x(71)® — 1) by (7). From Proposition 2.2.2 it follows
i=0

that there exists F' € H}(Q,, # (') ® V) such that Exp‘if,?; (d®(1+X))=(y—1)F and

M) = £ 1)1-n.0(2) = (2, Expin(d@ (14 X)) = (77 = 1) (&, F),.

Put (z, )y, = %2;25@(’71 —1). Then Ly (piz, s) = (x(7v)™* = 1) Ho(x(71)* — 1). Since x(71) = x(7)"~"

the last formula implies that L, (4, s) has a zero at s = 0 and

(17) Ly,(kz,0) = —(log x(v)) Ho(0).
On the other hand, by Proposition 2.2.2

(18) Ho(0) = 20U (proF) =0 Udp(a) = T () (1= 3 ) (log ()™ (B0 Uile) =

— T (h) <1 - 1%)_ (log x(7)) .
From (16), (17) and (18) we obtain that

L (12, 0) = T () (1 - %)1 a = —2(V,D)T (h) (1 - %)1 [da,exp’{,*(l)(zo)}v

and the proposition is proved.
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63. Trivial zeros of Dirichlet L-functions

3.1. Dirichlet L-functions. Let n : (Z/NZ)* — C* be a Dirichlet character of conductor N.

We fix a primitive N-th root of unity {(y and denote by 7(n) = > n(a)(% the Gauss sum. The
a mod N
Dirichlet L-function -
L(n,s) = ?71(12), Re(s) > 1
n=1

has a meromorphic continuation on the whole complex plane and satisfies the functional equation

s/2 (1-s)/2
N 546, (N 1 - 5468\
<?> r ( 5 ) L(n,s) = Wy <?> r <f) L(n,1—s)

where W, = i~ N~121(n) and oy = 17%(71) From now until the end of this § we assume that 7 is
not trivial. Fix a primitive N-th root of unity (. Then for any j > 0 the special value L(n,—j) is the
algebraic integer given by

(19) L(n,—j) =

where

Fn(t) = ! Z 71771(&)

7'(77_1) a mod N1 N <%€t

(see for example [PR3], proof of Proposition 3.1.4 ). In particular

(20) L0y = L 3 )

T(T/_l) a mod N1 a 41(]{]

Moreover L(n, —j) = 0 if and only if j = 4, (mod 2).

Let p be a prime number such that (p, N) = 1. We fix a finite extension L of QQ, containing the values
of all Dirichlet characters n of conductor N. The power series

B 1 n~1(a) n~"(a)
Dy (X) = =201 > <(1+X)§]‘i,—1 - (1+X)7’Czpv“—1>

a mod N

lies in OL[[X]]¥=% and therefore can be viewed as the Amice transform of a unique mesure i, on Z.
The p-adic L-functions associated to 7 are defined to be

Ly(nw™,s) = /Z W (@) (@) (), 0<m<p-—2.

b
From (7) and (19) it follows that these functions satisfy the following interpolation property

Ly(nw™ 1—j)=(1—(nu™ ) (pp" ) Linw™7,1-4) j>1

(Iwasawa theorem, see for example [PR3], Proposition 3.1.4). Note that the Euler factor 1—(nw™ ") (p)p*~7

vanishes if m = j = 1 and n(p) = 1 and that L(n,0) does not vanish if and only if 5 is odd i.e.
n(-1)=-1.
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3.2. p-adic representations associated to Dirichlet characters. We fix a conductor N and a
prime number p such that (p, N) = 1. Set F = Q({n), G = Gal(F/Q) and let p : G ~ (Z/NZ)* denote

the canonical isomorphism normalized by ¢g({y) = Cfv(g ) 1. Fix a finite extension L/Q, containing the
values of all Dirichlet characters modulo N. If n is such a character, we identify n with the character
1 o p of the Galois group and denote by L(7)) the associated one-dimensional representation of Gg.

Let n be a non trivial character of conductor N. Let S denote the set of primes dividing N. We need
the following well known results about the Galois cohomology of L(7n).

i) H*(Qu, L(n)) = H*(Q, L(xn™")) =0 for L € S.

ii) H}(Q,L(n)) = 0 and H}(Q,L(anl)) ~ (0% ®z L), In particular, H}(Q,L(anl)) =0ifnis
odd.

iii) The restriction of L(n) on the decomposition group at p is crystalline. More precisely, ¢ acts on
De;is(L(n)) as multiplication by n(p) and the unique Hodge-Tate weight of L(n) is 0.

Note that H°(Q;, L(n)) = 0 if [|N because in this case the inertia group acts non-trivially on L(n).
Together with Poincaré duality and the Euler characteristic formula this gives i). To prove ii) it is enough
to remark that Hp(F,Qp(1)) ~ 03:®Q, (see for example [Kal], §5). Finally iii) follows immediately
from the definition of D ;s.

Assume now that 7 is odd and that n(p) = 1. Then ¢ acts on Dis(L(xn™1)) as multiplication by p—!
and D = Dis(L(xn~1)) satisfies the conditions from section 2.1.1. The isomorphism (9) writes

_ H'(Qp, L(X))
O HR(Qp LX)

We denote simply by £ (xn~!) the associated .Z-invariant.

H(Q,Lxn™"))

3.3. Trivial zeros.

3.3.1. Cyclotomic units. Let F,, = F((yn). The collection zcyq = (1 — Cﬁ;n(pn)n% form a norm
compartible system of units which can be viewed as an element of Hy, s(F,L(x)) using the Kummer
maps Fy; — Hg(F,, L(x)). Twisting by " we obtain an element z.ya(—1) € Hy, 4(F,L). Shapiro’s

1
lemma gives an isomorphism of G-modules H}, (F®Q,, L) ~ H{ (Q,, L|G]*). Let e,, = €] 277_1(9) g-
geG

Since e, L[G]" = Le, -1 is isomorphic to L(n~!) we have an isomorphism

eWHIlw(F ® @;IJ?L) = Hllw(@;mL(nil))'

Moreover D s (L[G]) ~ (L[G]® F)¢ ~ L& F. The isomorphism Q[G] ~ F defined by A — \({x) induces
an isomorphism D.is(L[G]) ~ L[G] and therefore we can consider e, as a basis of Deis(L(n71)). Let

z.1(—1) denote the image of zcya(—1) in H} (Qu, L(n~")). We need the following properties of these

elements:

7771

eye1(—1)o denote the projection of 2! (—1) on HY(Qy, L(n)).

1) Relation to the complex L-function. Let z eyel

Then

1 -1
eXp*L(W)(ZZycl(_l)O) == <1 - nT@) L(U,O) €n-1

2) Relation to the p-adic L-function. Let e;_, € Deris(L(xn™')) be the basis which is dual to e,-1

and let ’Q(LE()n),o : HL, (Qp, L(n)) — (T) denote the associated logarithmic map. Then

-1

i(ﬁ),O(ZZycl(_l)) = _M(/Ln).
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We remark that 1) follows from the explicit reciprocity law of Iwasawa [Iw] together with (20). See
also [Kal], Theorem 5.12 and [HK], Corollary 3.2.7 where a more general statement is proved using the
explicit reciprocity law for Q,(r). The statement 2) is a reformulation of Coleman’s construction of
p-adic L-functions in terms of the large logarithmic map ([PR3], Proposition 3.1.4).

Theorem 3.3.2. Let n be an odd character of conductor N. Assume that p is a prime odd number
such that p4 N and n(p) = 1. Then

L'(nw,0) = Z(xn~") L(n,0).

1
Proof. Applying Proposition 2.3.4 to V = L(xn™ '), D = Deis(L(xn™!)) and z = z.,1(—1) and taking
into account 1-2) above we obtain that

/ — 1 - * * —
L (nw,0) = L) (12,0) = =L (xn™ ") <1 - 5) [enfheXpL(n)(ZO) = Z(xn~") L(n,0)

and the theorem is proved.

Corollary 3.3.3. Theorem 3.3.3 can be written in the form
L'(nw,0) = —Z(n) L(n,0).

where £(n) is the invariant defined by (3).
Proof. Tt is easy to see that Z(n) coincides with the Z-invariant .Z(L(n), D*) where D* = {0} and
therefore £ (n) = =% (xn™ 1) by (13).

§4. Trivial zeros of modular forms

4.1. The Z-invariant at near central points.

4.1.1. p-adic representations associated to modular forms. Let f = > a,¢" be a normalized

n=1
newform on I'g(NNV) of an odd weight k£ > 2 and character € and let p be a fixed prime. Deligne [D1]
associated to f a p-adic representation

ps + Gal(Q/Q) — GL(Wy).

with coefficients in a finite extension L of Q. This representation has the following properties:
i) det py is isomorphic to ex*~! where x is the cyclotomic character.
ii) If [ { Np then the restriction of ps on the decomposition group at ! is unramified and

det(1 —Fr, X | Wy) =1—a;X +e(l) 1" 1 X?

(Deligne-Langlands-Carayol theorem [Ca, [Lal).

iii) The restriction of p; on the decomposition group at p is potentially semistable with Hodge-
Tate weights (0,k — 1) [Fal]. It is crystalline if p + N and semistable non-crystalline if p || N and
(p,cond(e)) = 1. In all cases

det(1 — X | Dais(Wy)) =1 — a, X +e(p) p" 1 X2

(Saito theorem [Sal, see also [Fa2], [Ts]).
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Let L(f,s) = > a,n~® be the complex L-function associated to f. It is well known that L(f,s)

n=1
=[B!
l

decomposes into an Euler product

with Ej(f, X) =1 —a; X +e(1)IF1 X2,

4.1.2. The Selmer group. From now until the end of this § we assume that k is odd. Thus 21 and k“

are near critical points for L(f,s). Set Vy = W, (kH) Let f* denote the complex conjugatlon of f i.e.
Z anq". The canonical pairing Wy x Wy — L(1—k) induces an isomorphism Wy (451) ~ Vi(1).

We need the following basic results about the Galois cohomology of V:

i) H'(Qp, Vy) = H°(Q,, V#(1)) = 0 and dimy, H'(Qp, V) = dimg, HY(Q,, V(1)) =2.

ii) Hf(Qp, Vy) and H(Qp, V{(1)) are one-dimensional L-vector spaces.

iii) H;(Q,Vy) = H}(Q, V7 (1)) = 0.

We remark that i) follows from the fact that 0 is not a Hodge-Tate number of V; and V(1) and from
the Euler-Poincaré characteristic formula. Next ii) follows from i) together with the formula

dimy, H}(Qp, Vy) = dimp ty, (L) + dimy H(Qp, V).
Finally iii) is a deep result of Kato ([Ka2], theorem 14.2).

4.1.3. The Z-invariant. We keep previous convention and notation and assume in addition that
Wy is crystalline at p. Then the associated Dieudonné module Dis(Wy) is a two-dimensional L-vector
space and the eigenvalues a and 3 of ¢ acting on Deys(Wy) are the roots of X2 — a,X + e(p)p*~L.
Moreover |a| = || = p"= by Deligne [D2].

We will assume that ¢ acts semisimply on D.s(Wy) (which conjecturally always holds). Together
with the admissibility of Deis(Wy) this imply that a # 3 (see [Cz3], section 4.4). From the isomorphism
Deris(Vf) = Deris(W§) @ Deris (Qp(%)) it follows that Ds(Vy) has a basis dq, dg such that

k+1

- k41
o(do) =ap™ 7 do, @(dg)=pp 7 dg.

Moreover
2 ifi< B
dimy, Fil'Denis (Vy) = ¢ 1 if =551 < < 553,
0 ifi> kL

Assume that a = p%. Then p(dy) = p~tda, p(dg) # p~tds and therefore D, = Dcris(Vf)ﬁ"':Y‘f1 is a
one-dimensional filtered submodule of Dgis(Vy) of Hodge-Tate weight —k—gl. The results of section 4.1.2
imply that V} satisfies the conditions 1-4) of section 2.1.1 and therefore the Z-invariant .2 (Vy, D,) is

defined. To simplify notation we set %, (f) = Z(Vy, D, ). More precisely, the intersection Dilg(Vf) N

(Do @1, #1[1/1]) is isomorphic to % (8) with §(z) = \x|x% and we have an exact sequence of (¢, T')-
modules
0— Z1(8) = DI (Vy) = ZL(8') = 0

rig

where &' : Q5 — L* is such that §'(p) = Sp*~* and ¢'(u) = u="%". Since dimy, HY(Z%1,(5)) = 2 (see
section 1.2.5) we obtain that H'(Q,, Vy) ~ H'(%ZL(5)). In partlcular Hp (Vy) = f{p}((@ Vy) and
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Z,(f) is the slope of the image of the localization map H},{p} (Qp, V¢) — H'(Qp, V) under the canonical
decomposition H'(Q,, V) ~ H}(,@L(é)) x H(%#1(9)) (see (6)). Set a* = e~ (p)a and B* = e~ 1(p) B.
An easy computation shows that

det(l — X | Deyis(Wy+)) = (1 — " X)(1 — 7 X)
i.e. that o* and 8* are the roots of X?—a, X +¢~1(p) p*~1. From (13) we obtain that 2, (f*) = —Z.(f).

4.2. p-adic L-functions of modular forms.

4.2.1. Construction of p-adic L-functions (see [AV],[Mn], [Vi],[MTT]). We conserve notations and
conventions of section 2.1. Let f be a normalized newform on I'g(N) of weight k& and character . Let
p > 2 be a prime number such that the Euler factor E,(f, X) is not equal to 1 and let o € @p be a root of
the polynomial X2 —a,X +&(p)p*~1. Assume that « is not critical i.e. that v,(a) < k—1. Manin-Vishik
[Mn], [Vi], and independently Amice-Velu [AV] proved that there exists a unique distribution s on
7®) of order vp(c) such that for any Dirichlet caracter n of conductor M prime to p and any Dirichlet
character £ of conductor p™

_ i1

(1_%> <1_ﬂ7;—5,m>f(f,n,j) if1<j<k—1andm=0,
PR g et ) if1<j<k-landm>1
amr(§)

/ N()E ()2 g () =
7.(p)

pT—1_ ~
where 7(§) = > &(a)(%. and L(f,n,j) is the algebraic part of L(f,n,7) (see (1)). For us it will be
a=1

pm
more convenient to work with the distribution Af, = x7'us,. The p-adic L-functions associated to
n: (Z/MZ)* — @; are defined by?

(21) Ly o(f,nw™,s) = / nwm(a;)<a;>s)\f,a(x) 0<m<p-—2.

7.(p)

It is easy to see that L, o(f,nw™, s) is a p-adic analytic function which satisfies the following interpo-
lation property

Lpo(fynw™, ) = Ea(fynw™, ) L(f,ne? ™™, 5), 1<j<k—-1

where

(1 . M) (1 _ ”(p)g(p)pk_j_l> if j =m (mod p— 1)

(p)p’
aT(wi—m)

(22)  &alfmw™,j) =
if j Zm (mod p—1).

4.2.2. Trivial zeros (see [MTT]). We say that L, (f,nw™,s) has a trivial zero at s = j if

ga(fanwm7j) = 0'

20ur Lyp,o(f,w™,s) coincides with L, (f, o, fw™, s — 1) of [MTT]
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From (22) it is not difficult to deduce that this occurs in the following three cases (for proofs, see [MTT],
§15).
o The semistable case: p || N, k is even and (p,cond(e)) = 1. Thus e(p) = 0, E,(f,X) =1 —a,X
and o = a, is the unique non-critical root of X? — a,X. The restriction of the p-adic representation
s+ Gal(Q/Q) — GL(Wy) on the decomposition group at p is semistable [Sa]. Let € be the primitive
character associated to e. Then &(p) # 0 and a2 = &(p)p*~2 (see [Li], theorem 3). Write a, = {pF/2!
where £ is a root of unity. Then &,(f,nw™,j) = 0 if and only if j = k/2, m = k/2 mod (p — 1) and
A(p) = €. Therefore the p-adic L-function L, ,(f, nw*/2, s) has a trivial zero at the central point s = k/2
if and only if 7(p) = &.
e The crystalline case: p { N. The restriction of p; on the decomposition group at p is crystalline
[Fa2]. By Deligne [D2], |a| = p®*~1/2 and we can write o = £p% with || = 1. Thus E,(f,nw™, 7)

1 . k-1
and 7)(p) = § or j = ——

and n(p)e(p) = £. The p-adic L-function L, o(f, nw%,s) has a trivial zero at the near-central point
k+1
2

vanishes if and only if m = j (mod p — 1), k is odd, and either j =

s = if and only if o = ﬁ(p)p% and Ly (f, nw%,s) has a trivial zero at s = % if and only if

k-1
a=n(p)elp)p = .
e The potentially crystalline case: p | N and ord,(N) = ord,(cond(¢)). Then the restriction of ps on

the decomposition group at p is potentially crystalline and Deyis(Wy) = DpcriS(Wf)Gal(@P/ Q) is one-
dimensional [Sa]. One has E,(f,X) =1—a,X and a = a, is the unique non-critical root of X2 —a, X.
Moreover £(p) = 0 and it can be shown that |a,| = P (see [O], [Li]). Thus &, (f,nw™,j) vanishes if
and only if k is odd, j = m = % and a, = ﬁ(p)p%. Therefore the p-adic L-function L, ,(f, nw% ,8)

has a trivial zero at the near-central point s = % if and only if a, = n(p)p%.

If n is a Dirichlet character of conductor M, the twisted modular form f, = Z n(n) a,q™ is not

necessarily primitive, but there exists a unique normalized newform f ® n such that

L(fﬂ% )_ f®77a HElf®77>l S)

1M

(see [AL], Theorem 3.2 for more information and details). Write L(f®n,s) = Y ag’: Ifpt M, the Euler
n=1

factors at p of Ly (f ®n,s) and L(f,n,s) coincide and «,, = an(p) is a root o} X2 —a,,X +e(p)ptt.
It is easy to see that &, (fy,w™,J) = Ea(f,nw™,j) and from the interpolation formula (22) it follows
immediately that

Lyo(fin,8) = Lpa,(f@nw H (1 — gy W m(l)<l>73 + M*Qm(l) e(l) lk71<l>f2s) .

1M

Therefore the behavior of L, o(f,nw™,s) and Ly o, (f ®n,w™, s) is essentially the same and the general
case reduces to the case of the trivial character 7.

4.3. The main result.

4.3.1. Kato’s Euler systems. Using the theory of modular units Kato [Ka2] constructed an element
ZKato € H11W7 (Wy+) which is closely related to the complex and the p-adic L-functions via the Bloch-
Kato exponential map. (See also [Ru] for the CM-case.) Set

ZKato(J) = TW (ZKato) € le S(Wf (7))
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and denote by Zkato(j)y = Pro(zkato(j)) the projection of zkato(j) on H&(Wy«(4)). The following state-
ments are direct analogues of properties 1-2) of cyclotomic units from section 3.3.1:

1) Relation to the complex L-function. One has
(23) eXp*Wf*(j)(ZKatO(j)O) = F(k_j)_lEp (f?pk_J) z(fak_]) w;‘ka 1 g] g k'_ 1

for some canonical basis w of FilODcriS(W}‘ (7)) (see [Ka2], Theorem 12.5). Note that wj,; = wj ® €1
where e; = 1 @ t.

2) Relation to the p-adic L-function. Let Qé‘oﬁ;f(k) , denote the large logarithmic map £
associated to n = d, ® ert1 € De.is(Wy). Then

(e)
Wf* (k),l,?]

(24) 210 g (oK) = M) [do @ exg, |

([Ka2], Theorem 16.2).
We can now prove the main result of this paper.

Theorem 4.3.2. Let f be a newform on T'o(N) of character € and odd weight k. Assume that p is an
odd prime such that p{ N. Then p-adic L-function L, q (f,w%,s> vanishes at s = % if and only if

a=pT. If o acts semisimply on Deyis(Wy) then
et1 k41 HOAY; el
L i) =g, == )\ )
o (102 55 =~z (1- D) 1 (11

Proof. To simplify notation set kg = % and z = Zgato (ko — 1). By Lemma 1.3.4 one has

051k (@) = T, (55, (Bcaro(R)) )
Let p, be the distribution defined by M(p,) = Eg,?)(’i) 1—k,(z). Then (23) gives
M(pz) = Twig (M(A1,0)) [da @ exgs wilw, = Twr, (M(Ara)) [daswiy—1ly,
and from (8) and (21) it follows that

LP(:UJza S) = Lp,a (fa wko’ s+ kO) [da)wzofl} Vi®

Now, applying Proposition 2.2.4 we obtain

@) Ly () [y ly, = = 2T ) (1-3) [davenpi )],
On the other hand, for j = 221 the formula (23) gives
(26) eXP*vf*(U(Zo) = F(ko)fl Ey (f,pko) Z(f, ko) W —1-

1
5) <1 - %@) and [da’wzrl]vf # 0, from (25) and (26) we obtain that

L o (f.wk ko) = —Za(f) (1 — %@) L(f,ko)

Since £, (f,pko) = (1 —

and the theorem is proved.
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