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THE COMPUTATIONAL COMPLEXITY OF RECOGNISING

EMBEDDINGS IN FINITELY PRESENTED GROUPS

MAURICE CHIODO

Abstract. We extend a result by Lempp that recognising torsion-freeness
for finitely presented groups is Π0

2-complete; we show that the problem of
recognising embeddings of finitely presented groups is at least Π0

2-hard, Σ
0
2-

hard, and lies in Σ0
3. We conjecture that this problem is indeed Σ0

3-complete.
We use our constructions to form a universal finitely presented torsion-free
group.

1. Introduction

It is well known ([10]) that recognising the following group properties amongst
finitely presented groups are Σ0

1-complete: trivial, abelian, finite, free, nilpo-
tent, polycyclic, automatic. More recently ([11]), being word hyperbolic is
Σ0
1-complete. In addition, having solvable word problem is known to be Σ0

3-
complete ([2]). In [8] it was shown by Lempp that the problem of recognising
torsion-freeness for finitely presented groups is Π0

2-complete. In [3] it was shown
that there exists a finitely presented group whose finitely presented subgroups
are not recursively enumerable. In this paper we use the techniques established
in [3] to extend the result by Lempp, to show the following:

Theorem A (Theorem 3.6). Take an enumeration P1, P2, . . . of all finite pre-
sentations of groups. Then the set K = {〈i, j〉 ∈ N |Pi embeds in Pj as groups}
is Σ0

2-hard, Π
0
2-hard, has a Σ0

3 description, and is conjectured to be Σ0
3-complete.

The main technical result of this paper is that the Higman embedding theo-
rem can strictly preserve the orders of torsion elements:

Theorem B (Theorem 2.5). There is a uniform procedure than, on input of
a countably generated recursive presentation P , constructs a finite presentation
T (P ) such that for each k ∈ N, the group P has an element of order k if and
only if the group T (P ) has an element of order k.

As part of the proof of this, we make the following remarkable observation,
which also strengthens the result from [3] on non-enumerablilty of subgroups.

Theorem C (Theorem 4.4). There is a universal finitely presented torsion-
free group G. That is, for any finitely presented group H, we have that H →֒ G
if and only if H is torsion-free. Hence the set of finite presentations defining
subgroups of G is Π0

2-complete.
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In actual fact, G can be made to have an embedded copy of every infin-
itely generated recursively presentable torsion-free group (yet still be finitely
presented).
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2. Preliminaries

2.1. Notation. We take ϕm to be the mth partial recursive function ϕm : N →
N, and the mth partial recursive set (r.e. set) Wm as the domain of ϕm. If
P = 〈X|R〉 is a group presentation with generating set X and relators R, then
we denote by P the group presented by P . A presentation P = 〈X|R〉 is said
to be a finitely generated recursive presentation if X is a finite set and R is a
recursive enumeration of relators; P is said to be a countably generated recursive
presentation if instead X is a recursive enumeration of generators. A group G
is said to be finitely presentable if G ∼= P for some finite presentation P . If P,Q
are group presentations then we denote their free product presentation by P ∗Q,
which is given by taking the disjoint union of their generators and relators; this
extends to the free product of arbitrary collections of presentations. If X is
a set, then we denote by X−1 a set of the same cardinality as X (considered
an ‘inverse’ set to X), and X∗ the finite words on X ∪ X−1, including the
empty word. If φ : X → Y ∗ is a set map, then we write φ : X∗ → Y ∗ for the
extension of φ. We let |g| denote the order of a group element g, and say g is
torsion if 1 < |g| < ∞. Cantor’s pairing function is given by 〈., .〉 : N×N → N,
〈x, y〉 := 1

2 (x+y)(x+y+1)+y which is a computable bijection. An introduction

to the relevant concepts in recursion theory, including Π0
n and Σ0

n sets, can be
found in [12] or the introduction in [8].

2.2. Embedding theorems.

Definition 2.1. Let G be a group. We define the set TorOrd(G) := {n ∈
N | ∃g ∈ G with |g| = n ≥ 2}, the set of orders of non-trivial torsion elements
of G. Note that TorOrd(G) never contains 0 or 1.

We begin with the following three results found in [13] as theorem 11.69,
corollary 11.72, and theorem 12.18 respectively.

Theorem 2.2 (Torsion theorem for amalgamated products and HNN exten-
sions).
Let g ∈ G have finite order in G. Then:
1. If G = K1 ∗H K2 is an amalgamated product, then g is conjugate to an
element of K1 or K2. Hence TorOrd(K1 ∗H K2) = TorOrd(K1)∪TorOrd(K2).
2. If G = K∗H is an HNN extension, then g lies in the base group K. Hence
TorOrd(K∗H) = TorOrd(K).
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Lemma 2.3. Let G be a countable group with generator and relator sets that
are recursively enumerable. Then G can be uniformly embedded into some 2-
generator recursively presented group E such that TorOrd(G) = TorOrd(E).

Theorem 2.4 (Higman). Let G be a finitely generated recursively presented
group. Then G can be uniformly embedded into some finitely presented group
H such that TorOrd(G) = TorOrd(H).

In both cases, the group so constructed is built up from amalgamated prod-
ucts and HNN extensions, beginning with G and some finitely generated free
groups. Hence, by theorem 2.2, TorOrd(G) = TorOrd(E) = TorOrd(H).

The above machinery is used to prove the following theorem, which will
become the cornerstone of the main results contained herein.

Theorem 2.5. There is a uniform procedure than, on input of a countably
generated recursive presentation P = 〈X|R〉, constructs a finite presentation

T (P ) such that TorOrd(T (P )) = TorOrd(P ).

Proof. Given a countably generated recursive presentation P , we use lemma
2.3 to uniformly construct a 2-generator recursive presentation H with P →֒
H and TorOrd(H) = TorOrd(P ), and theorem 2.4 to uniformly construct a

finite presentation T (P ) with H →֒ T (P ) and TorOrd(P ) = TorOrd(H) =

TorOrd(T (P )). And as all stages in this construction have been uniform, we
conclude that such a presentation T (P ) can be uniformly constructed from
P . �

We note that Collins ([6]), extending the work of Clapham ([4], [5]), has
shown that such an embedding can be made to simultaneously preserve the
Turing Degree of the word problem, order problem, and power problem (see
[12] for an introduction to Turing Degrees). However, this does not immedi-
ately imply that TorOrd is preserved under the embedding, or even many-one
equivalent.

Theorem 2.5 was used in [3] to show the following:

Theorem 2.6 (Chiodo). There is a uniform procedure than, on input of any
n ∈ N, constructs a finite presentation Qn such that TorOrd(Qn) is one-
one equivalent to N \ Wn. Taking n′ with Wn′ non-recursive thus gives that
TorOrd(Qn′) is not recursively enumerable; thus the finitely presented subgroups
of Qn′ are not recursively enumerable.

3. Complexity Results

Our initial motivation was to investigate if the finitely presented subgroups
of a finitely presented group always form a recursively enumerable set. This
was done in [3], and follows from theorem 2.6.

Theorem 3.1 (Chiodo). There exists a finitely presented group G such that
the set of all finite presentations that define groups which embed into G is not
recursively enumerable.

Using the machinery described in section 2, we can encode the following
recursion theory facts (found in [12]) into groups.
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Lemma 3.2. The set {n ∈ N| Wn = N} is Π0
2-complete;

the set {n ∈ N| |Wn| < ∞} is Σ0
2-complete.

Our existing observations immediately lead to the following result, first proved
in [8] by Lempp.

Theorem 3.3 (Lempp). The set of finite presentations of torsion-free groups
is Π0

2-complete.

Proof. Given n ∈ N, we use theorem 2.6 to construct a finite presentation Qn

such that TorOrd(Qn) is one-one equivalent to N \Wn. Thus Qn is torsion-free
if and only if Wn = N. From lemma 3.2, {n ∈ N| Wn = N} is Π0

2-complete, so
the set of torsion-free finite presentations is at least Π0

2-hard. But this set has
the following Π0

2 description (taken from [8]):

G is torsion-free if and only if ∀w∀n > 0(wn 6=G e or w =G e)

and hence is Π0
2-complete. �

A similar construction gives us the following, which we can prove after making
a preliminary observation in recursion theory.

Theorem 3.4. For any fixed prime p, the set of finite presentations into which
Cp embeds is Σ0

2-complete.

We start by showing that given an index n with Wn finite, we can recursively
compress it to {1, . . . , |Wn|}.

Lemma 3.5. There is a recursive function h : N → N satisfying the following:
1. If |Wn| = ∅ then Wh(n) = ∅.
2. If 1 ≤ |Wn| < ∞ then Wh(n) = {1, . . . , |Wn|}.
3. If |Wn| = ∞ then Wh(n) = N.

Proof. Given n, we begin an enumeration of Wn. For each element enumer-
ated into Wn we increase the size of Wh(n) by 1, by adding the next smallest
number not already in Wh(n). If |Wn| = ∅ then Wh(n) = ∅. If 1 ≤ |Wn| < ∞,
then Wh(n) = {1, . . . , |Wn|}. If |Wn| = ∞ then we will continue to enumerate
elements of N into Wh(n), so Wh(n) = N. As this is an effective description of
Wh(n), we have that h is recursive. �

Proof of theorem 3.4. With h as in lemma 3.5, given n we form the infinitely
generated recursive presentation Pn as follows:
Pn := 〈x0, x1, . . . | x

p
i = e ∀ i, xj = e ∀ j ∈ Wh(n)〉.

If |Wn| < ∞ then Wh(n) < ∞ and hence Pn
∼= Cp ∗ Cp ∗ Cp ∗ . . . On the other

hand, if |Wn| = ∞ then Wh(n) = N and hence Pn
∼= {1}. So

TorOrd(Pn) =

{

{p} if |Wn| < ∞
∅ if |Wn| = ∞

That is, Cp →֒ Pn if and only if |Wn| < ∞. Now use theorem 2.5 to con-

struct a finite presentation T (Pn) such that Pn →֒ T (Pn) with TorOrd(P n) =

TorOrd(T (Pn)). Hence Cp →֒ T (Pn) if and only if |Wn| < ∞, so by lemma 3.2
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the set of finite presentations in to which Cp embeds is Σ0
2-hard. But this set

has the following straightforward Σ0
2 description:

Cp →֒ G if and only if ∃w(w 6=G e and wp =G e)

and hence is Σ0
2-complete. �

We will later see in theorem 4.4 that there is a group whose finitely presented
subgroups form a Π0

2-complete set; combining this with the above theorem gives
the following:

Theorem 3.6. Take an enumeration P1, P2, . . . of all finite presentations of
groups; Pi = 〈Xi|Ri〉. Then the set K = {〈i, j〉 ∈ N |P i →֒ P j} is Σ0

2-hard,
Π0

2-hard, and has a Σ0
3 description.

Proof. Theorem 4.4 shows that K is Π0
2-hard, theorem 3.4 gives that K is Σ0

2-
hard, and the following is a Σ0

3 description for K:

K = {〈i, j〉 ∈ N|(∃φ : Xi → X∗

j )(∀w ∈ X∗

i )(φ(w) =P j
e if and only if w =P i

e)}

�

Based on the above, we conjecture the following:

Conjecture 1. The set K defined above is Σ0
3-complete. That is, the problem

of deciding for finite presentations Pi, Pj if P i →֒ P j is Σ0
3-complete.

Further work. The positions of the following properties in the arithmetic
hierarchy have not been fully determined (see [10] which refers to the first
three, and [7] lemmata 2.2.1 and 2.2.2 for the final two). However, it may be
possible that some are neither Π0

n-complete nor Σ0
2-complete for any n:

Soluble: Known to have a Σ0
3 description.

Residually finite: Known to have a Π0
2 description.

Simple: Known to have a Π0
2 description.

Orderable: Known to have a Π0
3 description (the Ohnishi condition).

Right orderable: Known to have a Π0
3 description (the Ohnishi condition).

4. Applications: Universality

Definition 4.1. For ρ an algebraic property of groups, we say a finitely pre-
sented group G is a universal ρ group if both of the following occur:
1. G has property ρ.
2. Every finitely presented group H with property ρ embeds in G.

The motivation for such a definition comes from the following famous result
by Higman:

Theorem 4.2 (Higman). There is a universal finitely presented group. That
is, a finitely presented group into which every finitely presented group embeds.

Proof. Take an enumeration P1, P2, . . . of all finite presentations of groups, and
form the infinitely generated recursive presentation P := P1 ∗ P2 ∗ . . . Now use
theorem 2.5 to embed P into a finitely presented group T (P ). By construction,

T (P ) has an embedded copy of every finitely presented group, since P did. �
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It seems reasonable to ask for which (if any) algebraic properties of groups
ρ there exists a universal ρ group. An easy example is free groups.

Lemma 4.3. There is a universal free group (namely, F2).

Proof. Take the standard presentation P := 〈a, b|−〉 of F2. Then, for any n ∈ N,
the set {b−iabi|1 ≤ i ≤ n} freely generates Fn in P . �

A much deeper result, which comes as a consequence of theorem 2.5, is the
following:

Theorem 4.4. There is a universal torsion-free group G (finitely presentable).
That is, for any finite presentation P , we have that P →֒ G if and only if P
is torsion-free. Hence the set of finite presentations defining subgroups of G is
Π0

2-complete.

To show this, we need the following lemma:

Lemma 4.5. There is a uniform procedure that, on input of a countably gen-
erated recursive presentation P = 〈X|R〉 of a group, outputs a countably gen-
erated recursive presentation TK(P ) = 〈X|R′〉 (on the same generating set X,
and with R ⊆ R′) such that:

1. TK(P ) is torsion-free.

2. If P is torsion-free, then TK(P ) ∼= P by extending the identity map φ on X.
3. Any homomorphism f : P → G to a torsion-free group G factors through φ.
We call the process of forming TK(P ) the Torsion-Killing of P .

Proof. Set P0 := P for convenience. Enumerate all words w1, w2, . . . in X∗.
For P0, enumerate all trivial words v1, v2, . . . in P0. Begin checking if any non-
zero finite power of some word wi1 is equal to some trivial word vj in P0; if
so form a new presentation P1 by adding the word wi1 to the relating set of
P0. Now repeat this process for P1, while still running the process for P0 in
parallel. If either process yields another word wi2 , add the word wi2 to the
relating set of P1, and call this P2. Continue in this manner; whenever any
of the parallel processes on the P0, . . . , Pn yield a word win+1

, form a new
presentation Pn+1 := 〈X|R,wi1 , . . . , win+1

〉 and begin the process on Pn+1 as
well. Finally, define TK(P ) := 〈X|R,wi1 , wi2 , . . .〉 (think of this as P∞). It
is clear that TK(P ) is finitely generated, recursively presented, and has the
desired properties. �

It should be noted that the torsion killing of a group is unique, and universal
in the sense that any map from a group G to a torsion-free group factors through
the torsion killing quotient. But what other group properties admit such a (re-
cursive) killing procedure? It is well known that the abelianisation of a count-
ably generated recursive presentation can be recursively constructed (think of
this as the non-abelian killing). Moreover, the residual Gres := G/ ∩i∈I Ni of
a group G (where {Ni}i∈I is the collection of all finite index normal subgroups
of G) is universal in the sense that it is residually finite, and any map from G
to a residually finite group factors through Gres. However, Gres need not be
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recursively presentable, so can not always be effectively constructed from a pre-
sentation for G. At the moment the author is unaware of any other (non-trivial)
properties which admit an effective killing procedure.

Proof of theorem 4.4. Take an enumeration P1, P2, . . . of all finite presenta-
tions of groups, and form the infinitely generated recursive presentation Q :=
TK(P1) ∗ TK(P2) ∗ . . .. Thus by lemma 4.5, Q describes a torsion-free group
(as we have successfully annihilated all the torsion), and contains an embed-
ded copy of every torsion-free group (as we have left the torsion-free factors
untouched). Now use theorem 2.5 to embed Q into a finitely presented group

T (Q). By construction, ∅ = TorOrd(Q) = TorOrd(T (Q)), so T (Q) is torsion-

free. Finally, T (Q) has an embedded copy of every finitely presented torsion-free

finitely presented group, since Q did. Taking G to be T (Q) completes the proof
of the first part. The second part follows immediately from theorem 3.3. �

Remark. By taking P1, P2, . . . to be an enumeration of all countably gener-
ated recursive presentations of groups in the above proof, we can construct a
finitely presented G that has an embedded copy of every countably generated
recursively presented torsion-free group.

But which other properties admit such a group? Clearly, there is no universal
abelian group (the rank of such a group would be bounded, but the rank of its
subgroups would be unbounded). Similarly, there is no universal nilpotent
group or universal soluble group. This is because the nilpotency class (resp.
derived length) of such a group bounds the nilpotency class (resp. derived
length) of all its subgroups. A very interesting question is whether there exists
a universal simple group. Existence of such a group, in conjunction with a result
by Miller ([9]), would imply that the Boone-Higman theorem ([1]) cannot be
strengthened any further than the following form ([14]):

Theorem 4.6 (Thompson). A finitely presented group G has solvable word
problem if and only if G embeds into a finitely generated simple group S which
in turn embeds into a finitely presented group H.

Question 1. Is it true that a finitely presented group G has solvable word
problem if and only if G embeds into some finitely presented simple group S?

It is worthwhile noting that a finitely presented group G is simple if and only
if all of its homomorphic images are either isomorphic to itself or trivial. Miller
([9]), building on a result of Boone and Rogers ([2]), showed the following:

Theorem 4.7 (Boone-Rogers). There is no uniform partial algorithm which
solves the word problem in all finitely presented groups with solvable word prob-
lem.

Theorem 4.8 (Miller). There is no universal solvable word problem group.

This immediately leads to the following observation:

Corollary 4.9. The existence of a universal simple group implies that the an-
swer to question 1 is no.
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Proof. Use theorem 4.8, together with the fact that every finitely presented
simple group has solvable word problem. For suppose we had a universal simple
group S, and assume that every finitely presented group with solvable word
problem embeds into a finitely presented simple. Then every finitely presented
group with solvable word problem would embed into S. But S has solvable
word problem as it is finitely presented and simple, so this contradicts theorem
4.8. �
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