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SPACES OF MEASURABLE FUNCTIONS

PIOTR NIEMIEC

Abstract. For a metrizable space X and a finite measure space
(Ω,M, µ) let Mµ(X) and Mf

µ (X) be the spaces of all equivalence
classes (under the relation of equality almost everywhere mod µ) of
M-measurable functions from Ω to X whose images are separable
and finite, respectively, equipped with the topology of convergence
in measure. The main aim of the paper is to prove the following
result: if µ is (nonzero and) nonatomic and X has more than one
point, then the space Mµ(X) is a noncompact absolute retract and
Mf

µ (A) is homotopy dense in Mµ(X) for each dense subset A of
X . In particular, if X is completely metrizable, then Mµ(X) is
homeomorphic to an infinite-dimensional Hilbert space.
2000 MSC: 54C35, 54C55, 54H05, 57N20, 58D15.
Key words: measurable functions, absolute retracts, infinite-dimen-
sional manifolds, reflective isotopy property, Z-sets.

In [8] Bessaga and Pe lczyński have proved that whenever X is a sep-
arable completely metrizable topological space having more than one
point, then the space MX of Borel functions from [0, 1] to X with the
topology of convergence in measure is homeomorphic to l2. Later it
turned out that the topology of l2 can be well characterized. This was
done by Toruńczyk[20, 21]. After publication of the latter papers the
number of results on spaces homeomorphic to the separable infinite-
dimensional Hilbert space has highly rised. For example, Dobrowolski
and Toruńczyk[11] have shown that every separable completely metriz-
able non-locally compact topological group which is an AR is home-
omorphic to a Hilbert space. However, the problem whether the as-
sumption of separability in the latter may be omitted is still open (see
[7]). In this paper we shall introduce a class of nonseparable completely
metrizable topological groups which are homeomorphic to Hilbert spa-
ces. Namely, if G is any (nonzero) completely metrizable topological
group and µ is a (nonzero) finite nonatomic measure, then the space
Mµ(G) (defined in Abstract) has a natural structure (induced by the
one of G) of a topological group and is homeomorphic to a Hilbert
space. In fact we shall prove the following, quite more general, result:
if X is a nonempty metrizable space, µ is a finite nonatomic measure
and Y = M r

µ(X) is the subspace of Mµ(X) consisting of all (equiva-
lence classes of) functions whose images are contained in σ-compact
subsets of X , then Y is an absolute retract such that Y ω ∼= Y . Since
infinite-dimensional Hilbert spaces are the only completely metrizable
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noncompact AR’s homeomorphic to their own countable infinite Carte-
sian powers ([20]), the latter mentioned result may be seen as a gen-
eralization of earlier results of Bessaga and Pe lczyński[8] as well as of
Toruńczyk[19].

Other purpose of the paper is to present the idea of extending maps
between metrizable spaces to maps between AR’s via functors. Namely,
whenever µ is a finite (nonzero) nonatomic measure, every map f : X →
Y has a natural extension Mµ(f) : Mµ(X) → Mµ(Y ). What is more,
the correspondence f ↔ Mµ(f) preserves many properties (such as:
being an injection, an embedding, a map with dense image). We shall
show that if m is the Lebesgue measure on [0, 1], the space W = Mm(X)
is always an AR satisfying the following conditions: X is a Z-set in W
(provided X has more than one point), W ω ∼= W , W has RIP and is
an S-space (in the sense of Schori[16]). As an immediate consequence
of this, we shall obtain that if U is a metrizable manifold modelled on
W , then U is W -stable, i.e. U ×W ∼= U .

Another issue we shall discuss here concerns the question of whether
Mm(Mm(X)) is homeomorphic toMm(X). We shall see that the answer
is affirmative for a huge class of metrizable spaces (namely, for spaces
in which every closed separable subset is absolutely measurable), which
contains locally absolutely Borel spaces and (separable) Souslin ones.
However, in general we leave this question as an open problem.

The article is organized as follows. In the first section we establish
notation and terminology, define general spaces of measurable func-
tions and collect several results on them. Section 2 deals with spaces
M r

µ(X), defined in this introduction. We show there that if µ and ν
are two homogeneous (nonatomic) measures of the same weight, then
the spaces M r

µ(X) and M r
ν (X) are naturally homeomorphic, whatever

X is. The third part is devoted to spaces of measurable functions over
metrizable AM-spaces (i.e. in which every closed separable subset is
absolutely measurable). We prove there that if X is an AM-space, then
Mµ(X) = M r

µ(X) for each finite measure µ. In Section 4 we state and
prove the main result of the paper, which includes the claim that spaces
of measurable functions are absolute retracts. We conclude from this
that such spaces over completely metrizable ones are homeomorphic
to Hilbert spaces. In the last part we generalize our results of [15] to
nonseparable case. Also the idea of extending maps to AR’s via the
functors Mµ is presented.

1. Preliminaries

In this paper R+ and N denote the sets of nonnegative reals and
integers, respectively, I = [0, 1] and m stands for the Lebesgue measure
on I. If g is any function, im g stands for the image of g. If, in
addition, g takes values in a topological space, im g denotes the closure
of im g in the whole space. The weight of a topological space X is
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denoted by w(X) and is understood as an infinite cardinal number
(i.e. w(X) = ℵ0 for finite X). All topological spaces which appear
in the paper are metrizable and all measures are nonnegative, finite
and nonzero. For topological spaces Y and Z we shall write Y ∼= Z
iff Y and Z are homeomorphic. By a map we mean a continuous
function. If X is a metrizable space, Xω stands for the countable
infinite Cartesian power of X , equipped with the Tichonov topology,
and Metr(X) denotes the family of all bounded metrics on X which
induce the given topology of X . B(X) stands for the σ-algebra of all
Borel subsets of X , that is, B(X) is the smallest σ-algebra containing
all open subsets of X . If (Ω1×Ω2,M, µ) is the product space of measure
spaces (Ω1,M1, µ1) and (Ω2,M2, µ2), then we shall write M1⊗M2 and
µ1 ⊗ µ2 for M and µ, respectively.

Whenever (Ω,M) is a measurable space and X is a metrizable space,
a function f : Ω → X is M-measurable, if f−1(U) ∈ M for each open
subset U of X . Sets which are members of M are said to be measurable.
By a µ-partition of B ∈ M we mean any family {Bj}j∈J (with J ⊂ N)
of measurable pairwise disjoint sets such that µ(Bj) > 0 for each j ∈ J
and B =

⋃
j∈J Bj . If the images of M-measurable functions fj : Ω →

Xj, where j ∈ J ⊂ N, are separable, then also the function Ω ∋ ω 7→
(fj(ω))j∈J ∈

∏
j∈J Xj is M-measurable. Therefore, if J = {1, 2} and

X2 = X1 = X , the set {ω ∈ Ω: f1(ω) 6= f2(ω)} is measurable.
We use standard terminology and ideas of measure theory. For de-

tails the Reader is referred e.g. to [12]. For example, every measurable
function f : Ω → X with separable image defined on a measure space
(Ω,M, µ) will be identified with its equivalence class (in the set of
all measurable functions Ω → X with separable images) with respect
to the relation of almost everywhere equality mod µ. The set of all
such (equivalence classes of) functions is denoted by Mµ(X). The sub-
families of Mµ(X) consisting of all those functions whose images are,
respectively, finite, (at most) countable and contained in σ-compact
subsets of X are denoted by Mf

µ (X), M c
µ(X) and M r

µ(X). We clearly

have Mf
µ (X) ⊂ M c

µ(X) ⊂ M r
µ(X) ⊂ Mµ(X). Each of the latter inclu-

sions may be proper (the example for the last one is given in Section 3,
see Example 3.5). If A is a subset of X , we may and shall naturally
identify the members of Mµ(A) with elements of Mµ(X). Thus, if N
stands for Mf , M c, M r or M , then Nµ(A) ⊂ Nµ(X). Analogously, if
N is a σ-subalgebra of M and ν = µ

∣∣
N

, then for N = M,Mf ,M c,M r

the function Nν(X) ∋ f 7→ f ∈ Nµ(X) is well defined (and is iso-
metric with respect to the metrics Mν(d) and Mµ(d), defined in the
sequel, for every d ∈ Metr(X)). The Boolean σ-algebra (equipped
with the metric induced by the measure) associated with a measure
space (Ω,M, µ) will be denoted by A(µ). The weight of A(µ) is called
by us the weight of µ and is denoted by w(µ). We call the measure µ
simple if µ(B) ∈ {0, µ(Ω)} for each B ∈ M and µ is nonatomic if for
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every B ∈ M of positive µ-measure there is a subset A ∈ M of B with
0 < µ(A) < µ(B). Finally, µ is homogeneous if it is nonatomic and for
each B ∈ M of positive µ-measure, w(µ) = w(µ

∣∣
B

), where µ
∣∣
B

= µ
∣∣
MB

is a measure on B and MB = {A ∈ M : A ⊂ B}.
From now on, we assume that (Ω,M, µ) is a measure space with

(nonzero) finite measure µ and that X is a (nonempty) metrizable
space. The space Mµ(X) and all its subsets will always be equipped
with the topology of convergence in measure. In other words, a se-
quence (fn)n of elements of Mµ(X) converges to f ∈ Mµ(X) iff ev-
ery its subsequence contains a subsequence (fνn)n such that fνn(ω) →
f(ω) (n → ∞) for µ-almost all ω ∈ Ω. It is well known that if
̺ ∈ Metr(X), then Mµ(̺) ∈ Metr(Mµ(X)), where Mµ(̺)(f, g) =∫
Ω
̺(f(ω), g(ω)) dµ(ω).
It is clear that if (X, ·) is a metrizable group, then Mµ(X) has a

natural topological group structure (that is, with the pointwise multi-
plication) induced by the one of X .

For each x ∈ X denote by δµ,x ∈ Mµ(X) the constant function
with the only value equal to x and let ∆µ(X) = {δµ,x : x ∈ X} and
δµ,X : X ∋ x 7→ δµ,x ∈ ∆µ(X) ⊂Mµ(X).

The following are a kind of folklore. Most of them can easily be
proved.

(M1) ∆µ(X) is closed in Mµ(X) and δµ,X : (X, d) → (∆µ(X),Mµ(d))
is an isometry for each d ∈ Metr(X). In particular, ∆µ(X) ∼= X .
If X is a group, δµ,X is a homomorphism.

(M2) If N ⊂ M is an algebra of subsets of X which is dense in A(µ) and
D is a dense subset of X , then the set Mf (N, D) consisting of
such functions f ∈ Mf

µ (D) that f−1({x}) ∈ N for each x ∈ D is
dense in Mµ(X). In particular, w(Mµ(X)) = max(w(µ), w(X)).

(M3) If d ∈ Metr(X), then Mµ(d) is complete (in the whole space
Mµ(X)) iff d is complete. The space Mµ(X) is completely metriz-
able iff X is so. Moreover, if cardX > 1, then Mµ(X) is non-
compact.

(M4) For each A ⊂ X , Mµ(A) = Mµ(Ā) (the first closure is in Mµ(X)).
(M5) The measure µ is nonatomic iff there is a family {At}t∈I of mea-

surable sets such that As ⊂ At for s 6 t and µ(At) = tµ(Ω).
(M6) If µ is nonatomic and {At}t∈I is a family as in (M5), then the

map λ : Mµ(X)×Mµ(X)×I ∋ (f, g, t) 7→ f
∣∣
Ω\At

∪g
∣∣
At

∈Mµ(X)

is continuous. Moreover, λ(f, g, 0) = f , λ(f, g, 1) = g and
λ(Nµ(X) × Nµ(X) × I) = Nµ(X) for N = Mf ,M c,M r. In
particular, each of the spaces Nµ(X) with N = M,Mf ,M c,M r

is contractible, provided X is nonempty (in fact they are equicon-
nected).



SPACES OF MEASURABLE FUNCTIONS 5

(M7) If {Aj}j∈J (J ⊂ N) is a µ-partition of Ω; λ = µ
µ(Ω)

and λj =

µ

∣∣
Aj

µ(Aj )
, then the map Φ: (Mλ(X),Mλ(d)) ∋ f 7→ (f

∣∣
Aj

)j∈J ∈
(∏

j∈J Mλj
(X), d̃

)
is an isometry, where d̃((fj)j∈J , (gj)j∈J) =∑

j∈J µ(Aj)Mλj
(d)(fj, gj) for d ∈ Metr(X). Moreovoer,

Φ(Nλ(X)) =
∏

j∈J
Nλj

(X)

for N = M c,M r. In particular, Nλ(X) is homeomorphic to∏
j∈J Nλj

(X) for N = M,M c,M r.

(M8) Let {(Xj, dj)}j∈J (J ⊂ N) be a collection of metric spaces with
metrics upper bounded by 1 and let {aj}j∈J be a family of posi-
tive numbers such that

∑
j∈J aj < +∞. Let X =

∏
j∈J Xj be a

metric space with metric d((xj)j∈J , (yj)j∈J) =
∑

j∈J ajdj(xj , yj).

Analogously, let D be the metric on
∏

j∈J Mµ(Xj) given by

D((fj)j∈J , (gj)j∈J) =
∑

j∈J
ajMµ(dj)(fj, gj).

Then the map

Ψ: (Mµ(X),Mµ(d)) ∋ F 7→ (pj ◦ F )j∈J ∈ (
∏

j∈J
Mµ(Xj), D),

where pj : X → Xj is the natural projection, is an isometry. In
particular, Mµ(

∏
j∈J Xj) is homeomorphic to

∏
j∈J Mµ(Xj). If J

is finite, then

(1-1) Ψ(M r
µ(X)) =

∏

j∈J
M r

µ(Xj)

and Ψ(M c
µ(X)) =

∏
j∈J M

c
µ(Xj).

(M9) There is a finite or countable collection {Aj}j∈J ∪{Bk}k∈K (each
of J and K may be empty) of measurable sets of positive µ-
measure such that µ

∣∣
Aj

is simple for each j ∈ J , while the mea-

sures µ
∣∣
Bk

with k ∈ K are homogeneous and of different weights.

(M10) If µ is an atom, then Mµ(X) = Mf
µ (X) = ∆µ(X) and thus

Mµ(X) ∼= X .
(M11) (Maharam[14]) If (Ωj ,Mj, µj) (j = 1, 2) are probabilistic spaces

such that both µ1 and µ2 are homogeneous and w(µ1) = w(µ2),
then the Boolean σ-algebras A(µ1) and A(µ2) are isometrically
isomorphic.

The property (M1) says that X may naturally be identified (via the
map δµ,X) with ∆µ(X). The points (M7) and (M9)–(M11) imply that if
N = M,M c orM r, then Nµ(X) ∼= Xp×

∏
j∈J Nµj

(X), where p = n ∈ N

if µ has exactly n atoms and p = ω if µ has infinitely many atoms (if p =
0, we omit the factor Xp); and J ⊂ N (if J is empty, we omit the factor
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∏
j∈J Nµj

(X)) and the measures µj are probabilistic homogeneous and

of different weights. We shall prove in Section 2 that M r
λ(X) is naturally

homeomorphic to M r
ν (X) if λ and ν are homogeneous and of the same

weight. We shall also show that the connection (1-1) is fulfilled without
assumption of finiteness of J .

Our next aim is to prove that if (Ωj ,Nj, νj) for j = 1, 2 are two
measure spaces, then there is a measure space (Ω,N, ν) such that
Mν1(Mν2(X)) is naturally homeomorphic to Mν(X) for each metriz-
able space X . To do this, let Ω = Ω1 × Ω2 and π : Ω → Ω2 be
the natural projection. Let N be the σ-algebra of all subset A of
Ω such that π(A ∩ ({ω1} × Ω2)) ∈ N2 for each ω1 ∈ Ω1 and the
function Ω1 ∋ ω1 7→ π(A ∩ ({ω1} × Ω2)) ∈ A(ν2) is N1-measurable
and its image is separable. Finally, let ν : N → R+ be given by
ν(A) =

∫
Ω1
ν2(π(A ∩ ({ω1} × Ω2))) dν1(ω1). It is easy to see that N is

indeed a σ-algebra and that ν is a finite measure on Ω. Note also that
N1 ⊗ N2 ⊂ N and ν extends ν1 ⊗ ν2. We call ν the directed product
of ν1 and ν2. It would be quite more reasonable to define (Ω,N, ν) as
the product space of (Ω1,N1, ν1) and (Ω2,N2, ν2). However, as we will
see in Section 3 (Example 3.5), the product space (as (Ω,N, ν) below)
does not satisfy the following claim:

(M12) For every bounded metric space (X, d) the map

Λ: (Mν(X),Mν(d)) → (Mν1(Mν2(X)),Mν1(Mν2(d)))

given by the formula (Λf(ω1))(ω2) = f(ω1, ω2) is a well defined
(bijective) isometry.

To show that im Λ ⊂ Mν1(Mν2(X)), use the fact that if f : Ω →
X is N-measurable and im f is separable, then there is a sequence
of N-measurable functions fn : Ω → X with finite images such that
limn→∞ fn(ω) = f(ω) for each ω ∈ Ω. Further, direct calculation shows
that Λ is isometric. To see the surjectivity, fix an N1-measurable func-
tion g : Ω1 → Mν2(X) with separable image. Let X̄ be the completion
of X with respect to d. Since Mf

ν2(X) is dense in Mν2(X), there is
a sequence of N1-measurable functions gn : Ω1 → Mf

ν2
(X) with finite

images such that limn→∞ gn(ω1) = g(ω1) for every ω1 ∈ Ω1. It is easy
to check that for each n there is an N-measurable function fn : Ω → X
whose image is finite and such that fn(ω1, ·) and gn(ω1) concide in
Mν2(X) for every ω1 ∈ Ω1 (in fact, each fn is N1 ⊗ N2-measurable).
Thus (since Λ is isometric), (fn)n is a fundamental sequence in Mν(X̄).
This means that there is an N-measurable function f : Ω → X̄ with
separable image which is the limit of (fn)n in Mν(X̄). We conclude
from this that Λ̄f = g, where Λ̄ is the suitable map ‘Λ’ for X̄ . So, the
set A1 = {ω1 ∈ Ω1 : f(ω1, ·) 6= g(ω1) in Mν2(X)} belongs to N1 and
ν1(A

1) = 0. Now fix ω1 ∈ Ω1\A
1. Let h : Ω2 → X be an N2-measurable

function with separable image which coincides with g(ω1) in Mν2(Ω2).
Then the set Aω1 = {ω2 ∈ Ω2 : f(ω1, ω2) 6= h(ω2)} belongs to N2 and
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ν2(Aω1) = 0. Finally, put A = (A1 ×Ω2)∪
⋃

ω1∈Ω1\A1({ω1}×Aω1) ⊂ Ω

and let f∗ : Ω → X be such that f∗
∣∣
A

= f
∣∣
A

and f∗
∣∣
Ω\A ≡ b, where b

is a fixed element of X . By the construction, A ∈ N, f∗ ∈Mν(X) and
Λ(f∗) = g.

The above defined σ-algebra N and measure ν will be denoted by us

by N1

→
⊗ N2 and ν1

→
⊗ ν2, respectively. Since A(ν1

→
⊗ ν2) is naturally

isometric to M
ν1

→

⊗ν2
({0, 1}), the presented proof of (M12) (especially

N1 ⊗N2-measurability of the functions fn) yields that

(M13) For each A ∈ N1

→
⊗ N2 there is A0 ∈ N1 ⊗ N2 such that (ν1

→
⊗

ν2)(A \A0) = (ν1
→
⊗ ν2)(A0 \A) = 0. In particular, A(ν1

→
⊗ ν2) =

A(ν1 ⊗ ν2) and if ν1 and ν2 are homogeneous, so is ν1
→
⊗ ν2.

Now we shall give a sufficient condition (on a measure µ) under which
the space Y = Mµ(X) is homeomorphic to Y ω (for each X). To formu-
late it, we need an additional notion. We say that two measure spaces
(Ω1,M1, µ1) and (Ω2,M2, µ2) are pointwisely isomorphic if there is a
bijection ψ : Ω1 → Ω2 such that for any A ⊂ Ω1, ψ(A) ∈ M2 iff A ∈ M1

and µ2(ψ(A)) = µ1(A) for every A ∈ M1. In such a situation ψ is called
an isomorphism. These spaces are said to be almost pointwisely iso-
morphic if there are sets A1 ∈ M1 and A2 ∈ M2 such that µj(Ωj\Aj) =
0 (j = 1, 2) and the spaces (A1,M1

∣∣
A1
, µ1

∣∣
A1

) and (A2,M2

∣∣
A2
, µ2

∣∣
A2

)

are pointwisely isomorphic. Basicly, every isomorphism ϕ : Ω1 → Ω2 in-
duces isometries (Mµ1(X),Mµ1(d)) ∋ f 7→ f ◦ϕ−1 ∈ (Mµ2(X),Mµ2(d))
for any X and d ∈ Metr(X) (the same for Mf ,M c and M r-spaces). We
also have:

(M14) If there is a measurable set A such that 0 < µ(A) < µ(Ω) and

the spaces (Ω,M, µ
µ(Ω)

) and (A,M
∣∣
A
, µ|A
µ(A)

) are almost pointwisely

isomorphic, then Mµ(X) ∼= Mµ(X)ω for each metrizable space X .

To see this, first of all observe that there are measurable sets Ω0 and
A0 such that A0 ⊂ A ∩ Ω0, µ(Ω \ Ω0) = µ(A \ A0) = 0 and the
spaces (Ω0,M

∣∣
Ω0
, µ

∣∣
Ω0

) and (A0,M
∣∣
A0
, µ

∣∣
A0

) are pointwisely isomor-

phic. (Indeed, if τ : Ω1 → A1 is an isomorphism, where Ω1 ⊂ Ω and
A1 ⊂ A are measurable and µ(Ω \ Ω1) = µ(A \ A1) = 0, then for
n > 2 put An = An−1 ∩ Ωn−1 and Ωn = τ−1(An) and finally A0 =⋂∞

n=1An and Ω0 =
⋂∞

n=1 Ωn.) Since the maps (Mµ(X),Mµ(d)) ∋ f 7→
f
∣∣
Ω0

∈ (Mµ|Ω0
(X),Mµ|Ω0

(d)) and (Mµ|A(X),Mµ|A(d)) ∋ f 7→ f
∣∣
A0

∈

(Mµ|A0
(X),Mµ|A0

(d)) are (bijective) isometries for every bounded met-

ric space (X, d), we may assume that Ω0 = Ω and A0 = A. Let
ϕ : Ω → A be an isomorphism. For a moment we will think of ϕ as of a
function from Ω to Ω. Let B0 = Ω\A and Bn = ϕn(B0) (n > 1), where
ϕn denotes the n-th iterate of ϕ. Note that {Bn}

∞
n=0 is a µ-partition of

B =
⋃∞

n=0Bn. What is more, ϕ(Ω\B) = Ω\B. But µ(Ω\B)
µ(Ω)

= µ(ϕ(Ω\B))
µ(A)

and thus µ(Ω \ B) = 0. Therefore, as before, we may assume that
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B = Ω. Since ϕ(Bn) = Bn+1, all the spaces (Bn,M
∣∣
Bn
, µ

∣∣
Bn

) are

pointwisely isomorphic. Take a bijection κ : N × N → N and for each
n, l ∈ N let ψl,n : Bn → Bκ(l,n) be an isomorphism. Finally, for a metriz-

able space X put h : Mµ(X) ∋ f 7→ (
⋃∞

n=0[f
∣∣
Bκ(l,n)

◦ψl,n])∞l=0 ∈ Mµ(X)ω.

We leave this as a simple exercise that h is a homeomorphism.
The point (M14) will be applied in Section 2. We shall end the

section with the two more properties of spaces of measurable functions.
Recall that a metrizable space X has the reflective isotopy property (in
short: RIP) if there is an ambient invertible isotopy H : X ×X × I →
X × X such that H(x, y, 0) = (x, y) and H(x, y, 1) = (y, x) (that
is, H needs to be such a homotopy that for each t ∈ I, the map
ht(x, y) = H(x, y, t) is a homeomorphism of X × X and the function
(x, y, t) 7→ h−1

t (x, y) is continuous) (compare [9, Definition IX.2.1]).
There are other definitions of RIP (see [23],[22]), all ‘invertible’ versions
of it are however equivalent for spaces X such that X ∼= Xω. (M6)
implies that:

(M15) If µ is nonatomic, then the space Nµ(X) has RIP for each metriz-
able X and N = M,Mf ,M c,M r.

Indeed, if {At}t∈I is as in (M5), then the map

H(f, g, t) = (f
∣∣
Ω\At

∪ g
∣∣
At
, g
∣∣
Ω\At

∪ f
∣∣
At

)

is an isotopy we searched for.
Following Toruńczyk[17], we say that a closed subset K of a metriz-

able space X is a Z-set if the set C(Q,X \K), where Q is the Hilbert
cube, is dense in C(Q,X) in the topology of uniform convergence. (This
definition differs from the original one by Anderson[1], but both these
definitions are equivalent in ANR’s.) Countable unions of Z-sets are
called σ-Z-sets. The last property established in this section, which
shall be used in Section 5, is

(M16) Let µ be nonatomic. If X has more than one point, then ∆µ(X)
is a Z-set in Mµ(X). If X is infinite, the set Mf

µ (X) is a σ-Z-set
in Mµ(X).

We shall prove only the second claim (the first one has similar proof).
Let {At}t∈I be as in (M5). It is easy to see that for each n the set
of all measurable functions whose images have at most n elements is
closed in Mµ(X) and thus Mf

µ (X) is of type Fσ. What is more, there

is u ∈ Mµ(X) such that u
∣∣
At

/∈ Mf
µ|At

(X) for each t ∈ I. Now if

F : Q → Mµ(X) is continuous, then the maps Fn : Q ∋ x 7→ u
∣∣
A1/n

∪

F (x)
∣∣
Ω\A1/n

∈Mµ(X) converge uniformly to F and have images disjoint

from Mf
µ (X).
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2. M r-spaces

At the beginning we shall study certain spaces of measurable func-
tions.

Fix an infinite cardinal number α. Each of the sets IJ , where J is
countable (infinite), will be equipped with the Tichonov topology. Let
T be a set of cardinality α. Let Ωα = IT (= Iα) and Mα be the σ-
algebra of all subsets B of Ωα for which there are a countable infinite
set J ⊂ T and B0 ∈ B(IJ) such that B = {(xt)t∈T : (xj)j∈J ∈ B0}. In
other words, Mα is the product of α copies of B(I). (Note also that,
when consider Ωα with the Tichonov topology, not every open subset
of Ωα is a member of Mα. Open sets which are measurable are exactly
those which are Fσ.) Finally, let mα : Mα → I be the product measure
of α copies of the Lebesgue measure m on I. The following is well
known:

(M17) The measure mα is homogeneous and w(mα) = α. The measure
spaces (I,B(I), m) and (Ωℵ0 ,Mℵ0, mℵ0) are pointwisely isomor-
phic.

We need to know a little bit more about the space (Ωα,Mα, mα). But
first a few necessary definitions.

A Polish space is a separable completely metrizable one. A subset
B of a Polish space Y is said to be absolutely measurable in Y if for
every probabilistic Borel measure µ on Y there are two Borel subsets
A and C of Y such that A ⊂ B ⊂ C and µ(C \ A) = 0. A separable
metrizable space X is absolutely measurable, if for every embedding ϕ
of X into the Hilbert cube Q, ϕ(X) is absolutely measurable in Q.
Equivalently, X is absolutely metrizable if there is d ∈ Metr(X) such
that X is absolutely measurable in the completion of (X, d).

A (separable) Souslin space is the empty space or a continuous image
of the space of all irrational numbers; or, equivalently, it is a contin-
uous image of some Polish space. The following are important for us
properties of Souslin spaces:

(So1) the image of a Borel function defined on a Borel subset of a
Polish space is a Souslin space,

(So2) every Souslin space is absolutely measurable (compare with [13,
Theorem XIII.4.1]).

It is a kind of folklore that every finite Borel measure on a Polish space
is regular, i.e. it is supported on a σ-compact subset of the whole space.
This implies that every finite Borel measure on a (separable) absolutely
measurable space is also supported on a σ-compact set.

All the above facts yield the following result.

2.1. Lemma. Let (Ω,M, µ) be a finite measure space and let X be a
metrizable space.
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(A) If the image of an M-measurable function f : Ω → X is contained
in a separable absolutely measurable subset of X, then f ∈M r

µ(X).

(B) If N is a σ-subalgebra of M, ν = µ
∣∣
N
and a function f ∈ M r

µ(X)
belongs to the closure of Mν(X), then f ∈M r

ν (X), i.e. there is an
N-measurable function g : Ω → X whose image is separable and
which is µ-almost everywhere equal to f . In particular, M r

ν (X) is
closed in M r

µ(X) and M r
ν (X) = M r

ν̄ (X), where ν̄ = µ
∣∣
N̄

and N̄

consists of those A ∈ M for which there is B ∈ N with µ(A\B) =
µ(B \ A) = 0.

Proof. (A): Let A ⊂ X be a separable absolutely measurable superset
of im f . Let λ : B(A) ∋ B 7→ µ(f−1(B)) ∈ R+. Since λ is a finite
measure, there is a σ-compact subset K of A such that λ(K) = λ(A).

So, µ(U) = µ(Ω) for U = f−1(K). Then f coincides with f̂ ∈ M r
µ(X)

in Mµ(X), where f̂
∣∣
U

= f
∣∣
U

and f̂
∣∣
Ω\U ≡ b with b taken from K.

(B): We only need to prove the first claim. We may assume that the
image of f is contained in a σ-compact subset of X , say K0. By the
assumption, there is a sequence of N-measurable functions fn : Ω → X
with finite images which is pointwisely convergent µ-almost everywhere
to f . Let K = K0 ∪

⋃
n im fn. Fix d ∈ Metr(K) and let K̄ be the

completion of (K, d). Note that K is σ-compact and therefore it is a
Borel subset of K̄. Let B be the set of all those ω ∈ Ω such that the
sequence (fn(ω))n is convergent in K̄. Since fn’s are N-measurable,
B ∈ N. What is more, µ(Ω \ B) = 0. Thus, after changing each fn
so that fn

∣∣
Ω\B ≡ b, where b ∈ K, there is an N-measurable function

ḡ : Ω → K̄ such that limn→∞ fn(ω) = ḡ(ω) for each ω and ḡ is equal to
f in Mµ(K̄). This yields that the set C = ḡ−1(K) belongs to N and
µ(Ω \ C) = 0. Therefore, to end the proof, it suffices to put g = ḡ

∣∣
C

and g
∣∣
Ω\C ≡ b. �

As we shall see in the next section (Example 3.5), all claims of the
point (B) of the above lemma fail when we replace each M r by M .

For a metrizable space X let M(X) = Mm(X) and for an infinite
cardinal α, let Mα(X) = Mmα(X) (analogous notation for metrics).
The second claim of (M17) yields that Mℵ0(X) ∼= M(X).

2.2. Theorem. For every infinite cardinal number α and each metriz-
able space X, Mα(X) = M r

mα
(X).

Proof. We assume that Ωα = IT . Let u : Ωα → X be Mα-measurable
with separable image. Since u is the pointwise limit of a sequence
of Mα-measurable functions with finite images, we conclude from this
that there is a countable infinite set J ⊂ T such that u(x) = u(y)
whenever x and y are elements of Ωα such that pJ(x) = pJ(y), where
pJ : IT → IJ is the natural projection. This means that there is a Borel
function v : IJ → X such that u = v ◦ pJ . Let S = im v = im u. By
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(So1) and (So2), S is absolutely measurable and thus Lemma 2.1–(A)
finishes the proof. �

The argument used in the proof of the above theorem shows also
that M(X) = M r

m(X).
Following Schori[16], we say that a space Y is an S-space if there are

an element θ ∈ Y and a map f : Y × I → Y such that:

(S1) f(x, 0) = θ, f(x, 1) = x, f(θ, t) = θ for each x ∈ Y and t ∈ I,
(S2) for every neighbourhood U of θ in Y there is t ∈ (0, 1] such that

f(Y × [0, t]) ⊂ U ,
(S3) the map Y × (0, 1] ∋ (x, t) 7→ (f(x, t), t) ∈ Y × (0, 1] is an embed-

ding,
(S4) f(f(x, t), s) = f(x, ts) for each t, s ∈ I and x ∈ Y .

2.3. Theorem. For every infinite cardinal number α and each non-
empty metrizable space X, Mα(X) is an S-space.

Proof. As usual, we assume that Ωα = IT . Fix ξ ∈ T and a ∈ X and
put Ω = IT\{ξ}, θ = δmα,a and Y = Mmα(X). We shall identify Ωα with
Ω × I. For every t ∈ (0, 1] let κt : Ω × [0, t] ∋ (x, s) 7→ (x, s/t) ∈ Ω × I.
Finally, let f : Y × I ∋ (u, t) 7→ (u ◦ κt) ∪ θ

∣∣
Ω×(t,1]

∈ Y . It is not too

difficult to show that f is continuous. What is more, f satisfies the
axioms (S1)–(S4), which finishes the proof. �

It is easily seen that µ = mα satisfies the assumption of (M14) (for
example, look at κ1/2 defined in the foregoing proof). So, Theorem 2.2,
Theorem 2.3, (M14), (M15) and the results of Schori[16] imply

2.4. Corollary. Let Y = Mα(X). Then Y ∼= Y ω and for every metriz-
able manifold U modelled on Y , U × Y is homeomorphic to U .

Before we prove the main result of this section, let us show the
following

2.5. Proposition. Let µ be any measure (defined on a σ-algebra of
subsets of Ω) and X0, X1, X2, . . . be an infinite sequence of metrizable
spaces. Let J = N and X and Ψ be as in (M8). Then Ψ(M r

µ(X)) =∏
j∈J M

r
µ(Xj). In other words, for any sequence (fn)∞n=0 such that fn ∈

M r
µ(Xn) there is g ∈ M r

µ(
∏

n∈NXn) such that (fn(ω))∞n=0 = g(ω) for
µ-almost all ω ∈ Ω.

Proof. Let f : Ω ∋ ω 7→ (fn(ω))∞n=0 ∈
∏

n∈NXn. Let X̄n be the com-
pletion of (Xn, dn), where dn is a fixed metric on Xn. Let Kn be a
σ-compact subset of Xn such that im fn ⊂ Kn. Then Kn ∈ B(X̄n) and
thus K =

∏∞
n=0Kn ∈ B(

∏∞
n=0 X̄n). So, K is absolutely measurable

and im f ⊂ K. Now it remains to apply Lemma 2.1–(A). �

And now the main result of the section.
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2.6. Theorem. Let (Ω1,M1, µ1) and (Ω2,M2, µ2) be two nonatomic
measure spaces such that A(µ1) and A(µ2) are isometrically isomor-
phic. Let Φ: A(µ1) → A(µ2) be an isometric isomorphism of Boolean
algebras. Then for every metrizable X there is a unique homeomor-
phism H : M r

µ1
(X) →M r

µ2
(X) such that for each function f ∈M c

µ1
(X)

there is a function g ∈ M c
µ2

(X) such that g = H(f), im g = im f and

g−1({x}) = Φ(f−1({x})) in A(µ2) for every x ∈ X. What is more,
H(δµ1,x) = H(δµ2,x) for each x ∈ X; and for any d ∈ Metr(X), H is
an isometry with respect to the metrics Mµ1(d) and Mµ2(d).

Proof. It is clear that the connections between f ∈ M c
µ1

(X) and g ∈
M c

µ2
(X) described in the statement of the theorem well (and uniquely)

define H on M c
µ1

(X). Moreover, in this step H is a bijection between
M c-spaces. It is also clear that H is isometric with respect to the
suitable metrics (described in the statement). Fix d ∈ Metr(X) and let
(X̄, d̄ ) be the completion of (X, d). Since the spaces (Mµj

(X̄),Mµj
(d̄ ))

(j = 1, 2) are complete, there is a unique continuous extension

H̄ : Mµ1(X̄) →Mµ2(X̄),

which is simultaneously a (bijective) isometry. It is enough to check
that H̄(M r

µ1
(X)) ⊂M r

µ2
(X) (because then we infer analogous inclusion

for H̄−1). Take an M1-measurable function f : Ω1 → X whose image
is contained in a σ-compact subset of X . This implies that there is a
µ1-partition {An}

∞
n=1 of Ω1 such that Kn = f(An) (the closure taken

in X) is compact for each n > 1. There is a µ2-partition {Bn}
∞
n=1

of Ω2 such that Bn = Φ(An) in A(µ2) for any n. For each l > 1

take a sequence (f
(l)
n : Al → Kl)

∞
n=1 of M1-measurable functions with

finite images which converges pointwisely to f
∣∣
Al

. For every n and l let

im f
(l)
n = {x

(l,n)
1 , . . . , x

(l,n)
pl,n } and let B

(l,n)
1 , . . . , B

(l,n)
pl,n be a µ2-partition of

Bl such that Φ((f
(l)
n )−1({x

(l,n)
j })) = B

(l,n)
j in A(µ2). Define g

(l)
n : Bl →

Kl in the following way: g
(l)
n

∣∣
B

(l,n)
j

≡ x
(l,n)
j . Of course H(

⋃∞
l=1 f

(l)
n ) =

⋃∞
l=1 g

(l)
n (n > 1). So — since fn =

⋃∞
l=1 f

(l)
n tends to f in Mµ1(X̄) and

H̄ is isometric — gn =
⋃∞

l=1 g
(l)
n is a fundamental sequence in Mµ2(X̄)

and thus also the sequence (g
(l)
n )n is fundamental in Mµ2|Bl

(X̄). But g
(l)
n

is a member of Mµ2|Bl
(Kl), which is closed in Mµ2|Bl

(X̄). This implies

that there is g(l) ∈ Mµ2|Bl
(Kl) which is the limit of (g

(l)
n )n. Then the

function g =
⋃∞

l=1 g
(l) is the limit of (gn)n in Mµ2(X̄). Finally we

conclude that g ∈M r
µ2

(X) and H(f) = g. �

We shall denote the unique homeomorphism H corresponding to an
isometric isomorphism Φ between Boolean measure algebras, described
in Theorem 2.6, by Φ̂.

The above result and (M11) give
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2.7. Corollary. If µ is homogeneous and of weight α, then M r
µ(X) ∼=

Mα(X).

The note following (M11) combined with the results of this section
leads us to

2.8. Theorem. Let µ be nonatomic and let Y = M r
µ(X). Then there

is a finite or countable collection {αj}j∈J of different infinite cardinals
such that Y ∼=

∏
j∈J Mα(X). In particular, Y ω ∼= Y , Y has RIP and is

an S-space and therefore every metrizable manifold U modelled on Y
is Y -stable.

3. AM-class

3.1. Definition. A metrizable space is said to be an AM-space [a So-
space] if every its closed separable subset is absolutely measurable [a
Souslin space].

Every So-space is an AM-space and all locally absolutely Borel spaces
(in particular, completely metrizable spaces) are So-spaces. It is also
well known that finite or countable Cartesian products of AM-spaces
[So-spaces] are AM-spaces [So-spaces] as well.

AM-spaces may be characterized as follows:

3.2. Proposition. For a metrizable space X the following conditions
are equivalent:

(i) X is an AM-space,
(ii) M r

µ(X) = Mµ(X) for every finite measure space (Ω,M, µ),
(iii) M r

ν (X) = Mν(X) for any separable metric space Y and each prob-
abilistic nonatomic measure ν defined on B(Y ).

Proof. Thanks to Lemma 2.1–(A), we only need to prove the impli-
cation (iii) =⇒ (i). Let X satisfies the claim of (iii) and let A be a

separable closed subset of X . Fix d ∈ Metr(A) and denote by Â the

completion of (A, d). Let µ be a finite Borel measure on Â. We may
assume that µ is nonatomic. Put ν : B(A) ∋ B 7→ inf{µ(C) : C ∈

B(Â), B ⊂ C} ∈ R+. It is well known that ν is a measure. By (iii),
there is a Borel function f : A → X whose image is contained in a
σ-compact subset of X and such that f(a) = a for ν-almost all a ∈ A.
Since A is closed in X , we may assume that im f is contained in a
σ-compact subset of A, say K. Then K ∈ B(Â) and ν(A \ K) = 0.

Clearly, there is B ∈ B(Â) such that A ⊂ B and ν(A) = µ(B). Then
K ⊂ A ⊂ B and µ(B \K) = 0, which finishes the proof. �

As an application of the above characterization, thanks to (M12),
(M13) and the results of Section 2, we obtain

3.3. Theorem. Let X be an AM-space and d ∈ Metr(X).
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(A) For any finite measure spaces (Ω1,M1, µ1) and (Ω2,M2, µ2) the
map

Λ: (Mµ1⊗µ2(X),Mµ1⊗µ2(d)) → (Mµ1(Mµ2(X)),Mµ1(Mµ2(d)))

given by (Λf(ω1))(ω2) = f(ω1, ω2) is a (bijective) isometry.
(B) For every two infinite cardinal numbers α and β, Mα(Mβ(X)) ∼=

Mγ(X), where γ = max(α, β). In particular, M(M(X)) ∼= M(X).
(C) If (Ω,M, µ) is a finite measure space, N is a σ-subalgebra of M

and ν = µ
∣∣
N
, then Mν(X) is closed in Mµ(X).

(D) If µ is a finite nonatomic measure and Y = Mµ(X), then Y ∼= Y ω,
Y has RIP and is an S-space.

It turns out that the classes of AM-spaces and of So-spaces are in-
variant under the operators Mµ, as it is shown in the following

3.4. Theorem. If X is an AM-space [a So-space], then Mµ(X) is an
AM-space [a So-space] as well for every finite measure space (Ω,M, µ).

Proof. Take a separable and closed subset Y of Mµ(X). Let {fn}
∞
n=1

be a dense subset of Y . Put A =
⋃∞

n=1 im fn (the closure taken in
X) and let N be the smallest σ-subalgebra of M such that each of
the functions fn is N-measurable. Then A is separable and N is a
countably generated σ-algebra. This means that A(ν) is separable,
where ν = µ

∣∣
N

. Therefore Mν(A) is separable as well. What is more,
by Theorem 3.3–(C), the space Mν(A) is closed in Mµ(X) and thus
Y ⊂ Mν(X). Since the classes of AM-spaces and So-spaces are closed
hereditary, it suffices to show that Mν(X) is an AM-space [a So-space]
if so is X . Further, thanks to the note following (M11), we may assume
that ν is nonatomic. But then (see Proposition 3.2 and Corollary 2.7)
Mν(X) ∼= M(X). So, we have reduced the proof to showing that M(X)
is an AM-space [a So-space], provided X is so and X is separable. First
we shall show this for the So-class.

Suppose X is a separable nonempty Souslin space. Then there is a
continuous surjection g : R \ Q → X . Put M(g) : M(R \ Q) ∋ f 7→
g ◦ f ∈ M(X) (see the last section). By [15, Theorem 3.3], M(g)
is a continuous surjection. So, by the complete metrizability and the
separability of M(R \Q), M(X) is indeed a Souslin space.

Now assume that X is a separable absolutely measurable space. Let
S be a separable metrizable space and let λ be a probabilistic Borel
nonatomic measure on S. It is enough to prove that Mλ(M(X)) =
M r

λ(M(X)). Let u ∈Mλ(M(X)). By Theorem 3.3–(A), there is a Borel
function v : S × I → X such that u(s) and v(s, ·) coincide in M(X)
for λ-almost all s ∈ S. Since X is absolutely measurable, there is a
Borel function w : S×I → X whose image is contained in a σ-compact
subset of X (say K) and such that v and w coincide in Mλ⊗m(X). Put
ũ : S ∋ s 7→ w(s, ·) ∈ M(K) ⊂ M(X). Then ũ and u represent the
same element ofMλ(M(X)). What is more, ũ ∈Mλ(M(K)) and M(K)
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is a Souslin space, which yields that ũ ∈ M r
λ(M(K)) ⊂ M r

λ(M(X)).
This finishes the proof. �

We end the section with the following

3.5. Example. It is well known that there exists a subset X of the
square I2 which is not Lebesgue measurable, but for each t ∈ I the
set Xt = {s ∈ I : (t, s) ∈ X} is a Borel subset of I and m(Xt) =

1. This implies that X ∈ B(I)
→
⊗ B(I). So, the map f : I2 → X

which is the identity on X and constant on its complement is B(I)
→
⊗

B(I)-measurable. However, since X is nonmeasurable, there is no g ∈
Mm⊗m(X) which coincides with f in M

m
→

⊗m
(X); and f /∈ M r

m
→

⊗m
(X).

Thus we have obtained that M r

m
→

⊗m
(X)  M

m
→

⊗m
(X) and Mm⊗m(X)  

M
m

→

⊗m
(X) as well. The example shows that (M12) is in general not true

if we put there ν = ν1⊗ν2. It also shows that if ν is the restriction of µ
to a dense (in A(µ)) σ-subalgebra, then Mν(X), in spite of its density
in Mµ(X), may differ from Mµ(X).

We do not know whether M(M(X)) ∼= M(X) if X is as in Exam-
ple 3.5.

4. Main results

In this section we shall show that all considered by us spaces of
measurable functions with respect to nonatomic measures are absolute
retracts. In our proof we shall use the following three results:

4.1. Lemma ([8, Theorem 3.1]). Every metrizable space admits an em-
bedding into the unit sphere of a Hilbert space whose image is linearly
independent.

4.2. Lemma ([8, the proof of Lemma 4.3]). Let T be a finite linearly
independent subset of the unit sphere of a Hilbert space (H, 〈·,−〉). Let
K be the convex hull of T (in H) and let D = M(K) be equipped with
the topology τw induced by the weak one of L2[linT ] (= L2(m, linT )),
i.e. a sequence (fn)n of members of D converges to f ∈ D iff

∫ 1

0

〈fn(t), g(t)〉 dt→

∫ 1

0

〈f(t), g(t)〉 dt (n→ ∞)

for each g ∈ D. Then:

(BP1) (D, τw) is metrizable compact and convex,
(BP2) the inclusion map of M(T ) into D is an embedding, whenM(T )

is equipped with the topology of convergence in measure,
(BP3) there is a sequence of maps from D into D whose images are

contained inM(T ) which is uniformly convergent to the identity
map on D.
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4.3. Theorem ([18, Theorem 1.1]). If a metrizable space X has a basis
(consisting of open sets) such that all finite intersections of its members
are homotopically trivial, then X is an ANR.

Recall that a topological space X is homotopically trivial iff for every
n > 1 each map of ∂In into X is extendable to a map of In into X .
Note also that the empty space is homotopically trivial.

Following [6],[4], a subset A of a space X is said to be homotopy
dense (in X) if there is a homotopy H : X × [0, 1] → X such that
H(x, 0) = x for each x ∈ X and H(X × (0, 1]) ⊂ A. If X is an ANR,
then A is homotopy dense in X iff X \A is locally homotopy negligible
in X ([18]). The main result of the paper has the following form:

4.4. Theorem. Let (Ω,M, µ) be a finite nonatomic measure space, X
a nonempty metrizable space and A its dense subset. Then the space
Mµ(X) is an AR and Mf

µ (A) is homotopy dense in Mµ(X).

The proof of the above theorem is divided into a few lemmas. Let us
fix a finite nonatomic measure space (Ω,M, µ), a nonempty metrizable
space X and its dense subset A. By Lemma 4.1, we may assume that
X is a linearly independent subset of the unit sphere S of a Hilbert
space (H, 〈·,−〉). For each bounded subset E of H, the topology of con-
vergence in measure in Mµ(E) coincides with the topology induced by
the metric ̺E(u, v) = (

∫
Ω
‖u(ω)−v(ω)‖2 dµ(ω))1/2 (u, v ∈Mµ(E)). For

each Y ⊂ X , we shall denote by B̺Y (u, r) the open ball in (Mµ(Y ), ̺Y )
with center at u ∈ Mµ(Y ) and of radius r > 0. Our purpose is to prove
that if u1, . . . , up ∈Mµ(X) and r1, . . . , rp > 0, then

⋂p
j=1B̺X (uj, rj) is

homotopically trivial. First we shall show a special case of this.

4.5. Lemma. Let T be a finite subset of X. Then for every u1, . . . , up ∈
Mµ(T ) and each r1, . . . , rp > 0, the set G =

⋂p
j=1B̺T (uj, rj) is homo-

topically trivial.

Proof. Fix k > 1 and take a map f : ∂(Ik) → G. Let {At}t∈I be as in
(M5) and let E be an at most countable dense subset of im f . There is
a countably generated σ-subalgebra N of M such that each member of
E is N-measurable and Aq ∈ N for q ∈ Q∩ I. Put ν = µ

∣∣
N

. Then ν is
nonatomic and A(ν) is separable. What is more, since T is clearly an
AM-space, Mν(T ) is closed in Mµ(T ) (Theorem 3.3–(C)). This implies
that im f ⊂Mν(T ). Now by Corollary 2.7, Mν(T ) ∼= M(T ). Note also
that the homeomorphism H (between Mν(T ) and M(T )) appearing
in the statement of Theorem 2.6 is an isometry with respect to the
metrics ̺T

∣∣
Mν(T )×Mν(T )

and dT : M(T ) ×M(T ) ∋ (u, v) 7→ (
∫ 1

0
‖u(t) −

v(t)‖2 dt)1/2 ∈ R+. So, the inverse image of G under H coincides
with the finite intersection of open dT -balls in M(T ). This reduces
the problem to the case when (Ω,M, µ) = (I,B(I), m), which we now
assume. Let V = linT ⊂ H. Following Bessaga and Pe lczyński[8],
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consider the Hilbert space L2[V ] of all (equivalence classes of) Borel

functions w : I → V such that
∫ 1

0
‖w(t)‖2 dt < +∞ with the scalar

product 〈u, v〉V =
∫ 1

0
〈u(t), v(t)〉 dt. Put δj = 1 −

r2j
2

and Uj = {g ∈
L2[V ] : 〈g, uj〉V > δj} (j = 1, . . . , p). It is easily seen that each Uj is
convex and open in the weak topology of L2[V ]. Let K and (D, τw) be
as in the statement of Lemma 4.2. By (BP2), the topology of M(T )
coincides with the one induced by τw and therefore to the end of the
proof we shall deal only with the topology τw. Put U = D ∩

⋂p
j=1Uj .

Note that U is open in (D, τw) and U is convex. What is more, since
T ⊂ S, M(T ) is contained in the unit sphere of L2[V ] and therefore

(4-1) U ∩M(T ) = G.

This implies that f : ∂(Ik) → U . Since U is convex, there exists a

continuous extension f̂ : Ik → U of f . Further, applying Lemma 4.2,
take a sequence of maps ϕn : D → D which is uniformly convergent
to the identity map on D and such that imϕn ⊂ M(T ). Then the

sequence fn = ϕn ◦ f̂ : Ik → D is uniformly convergent to f̂ . This
yields that for infinitely many n we have im fn ⊂ U and thus we may
assume that the latter inclusion is satisfied for each n. But im fn ⊂
imϕn ⊂ M(T ), which combined with (4-1) gives im fn ⊂ G. Again
by (BP2), the sequence (fn

∣∣
∂(Ik)

: ∂(Ik) → G)n tends uniformly to f

(with respect to the topology of M(T )). Finally, since G is open in
M(T ) and thanks to (M6), G is locally equiconnected, which implies
that for some n, fn

∣∣
∂(Ik)

and f are homotopic in G. So, the homotopy

extension property finishes the proof. �

The main result (Theorem 4.4) is an easy consequence of Theorem 4.3
and the following

4.6. Lemma. If u1, . . . , up ∈ Mµ(X) and r1, . . . , rp > 0, then the set
W =

⋂p
j=1B̺X (uj, rj) is homotopically trivial.

Proof. We may assume that µ is probabilistic. For each k > 1 let
∆k = {(t0, . . . , tk) ∈ Ik+1 :

∑k
j=0 tj = 1} be the k-dimensional simplex

and let ∂(∆k) = {x ∈ ∆k : xj = 0 for some j} be its combinatorial
boundary. It is enough to prove that each map of ∂(∆k) into W is
extendable to a map of ∆k into W . Fix a map f : ∂(∆k) → W . Since
W is open, im f is compact and Mf

µ (A) is dense in Mµ(X), there are

functions u∗1, . . . , u
∗
p ∈ Mf

µ (A) and numbers r∗1, . . . , r
∗
p > 0 such that

im f ⊂ W ∗ ⊂ W , where W ∗ =
⋂p

j=1B̺X (u∗j , r
∗
j ). Thus we may and

shall assume that

(4-2) u1, . . . , up ∈Mf
µ (A).

As in the proof of Lemma 4.5, take a family {At}t∈I satisfying the
claim of (M5). One may show that for each n > 1 the function
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λn : Mf
µ (A)n+1 × ∆n →Mf

µ (A) given by

λn(v0, . . . , vn; t0, . . . , tn) =
n⋃

j=0

vj
∣∣
Atj

\Atj−1

(with t−1 = 0) is continuous. Further, take a positive number ε such
that

(4-3)
⋃

x∈∂(∆k)

B̺X (f(x), ε) ⊂W

and put δ = ε
3
√
k
. Fix l > 1. Let K0 be the collection of all faces

of ∆k and for each n > 1 let Kn be the collection of all geomet-
ric simplices obtained by the barycentric divisions of all members of
Kn−1. There is N > 1 such that diam̺X f(σ) 6 δ

l
for every σ ∈ KN .

Now for each vertex x of any member of K = KN take vx ∈ Mf
µ (A)

such that ̺X(f(x), vx) 6 δ/l. Let ‘4’ be a total order on the set
of all vertices of all members of K. Take any σ ∈ K and assume
that x0 ≺ . . . ≺ xk are vertices of σ. We define gσ : σ → Mf

µ (A) by

gσ(
∑k

j=0 tjxj) = λk(vx0, . . . , vxk
; t0, . . . , tk) ((t0, . . . , tk) ∈ ∆k). Since

x0, . . . , xk are linearly independent, gσ is continuous. What is more, if
also σ′ ∈ K, then gσ and gσ′ coincide on σ ∩ σ′. This yields that the
union gl of all gσ’s is a well defined continuous function from ∂(∆k)
into Mf

µ (A). And, what is important, there is a finite subset Tl of A
such that im gl ⊂Mµ(Tl). Moreover, if x ∈ σ, where σ ∈ K has vertices
x0 ≺ . . . ≺ xk, then

(4-4) ̺X(gl(x), f(x))2 6

k∑

j=0

̺X(vxj
, f(x))2

6 2

k∑

j=0

(
̺X(vxj

, f(xj))
2 + ̺X(f(xj), f(x))2

)
6 4k

δ2

l2
<
ε2

l2

and thus, by (4-3), im gl ⊂W .
Now for t ∈ (l, l + 1) put gt : ∂(∆k) ∋ x 7→ λ1(gl(x), gl+1(x); l + 1 −

t, t− l) ∈ Mf
µ (A). It is clear that (gt)t>1 is a homotopy. Furthermore,

one checks, using (4-4), that for each t ∈ [l, l+ 1] with l > 2 and every

x ∈ ∂(∆k), ̺X(gt(x), f(x))2 < 2ε2

l2
6 ε2. So, im gt ⊂ W for t > 2

and the function h : ∂(∆k) × [2,∞] → W given by h(x, t) = gt(x) for
t < +∞ and h(x,∞) = f(x) is a homotopy connecting g2 and f . By the
homotopy extension property, it suffices to show that g2 is extendable
to a map of ∆k into W . To this end, put T = T2 ∪

⋃p
j=1 im uj ⊂ A.

By (4-2), T is finite. What is more, u1, . . . , up ∈ Mµ(T ). Finally,
W ∩Mµ(T ) =

⋂p
j=1B̺T (uj, rj) and g2 : ∂(∆k) → W ∩Mµ(T ). So, by

Lemma 4.5, g2 admits a continuous extension of ∆k into W ∩Mµ(T ),
which finishes the proof. �
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Proof of Theorem 4.4. Let X be embedded as a linearly independent
subset of the unit sphere of a Hilbert space. By Theorem 4.3 and
Lemma 4.6, Mµ(X) is a homotopically trivial ANR. This yields that it
is an AR. Finally, the last paragraph of the proof of Lemma 4.6 shows
that for every open ball B in Mµ(X) (with respect to the metric ̺X)
the inclusion map B ∩Mf

µ (A) → B is a (weak) homotopy equivalence

and hence Mµ(X) \Mf
µ (A) is locally homotopy negligible in Mµ(X)

([18]). �

4.7. Corollary. If µ is a finite nonatomic measure and X is a non-
empty metrizable space, then the spaces Mf

µ (X), M c
µ(X), M r

µ(X) and
Mµ(X) are AR’s.

4.8. Remark. If N, A and Mf (N, A) are as in (M2) and additionally N

contains a subfamily {At}t∈I as in (M5), the proof of Lemma 4.6 shows
that Mf (N, A) is homotopy dense in Mµ(X) and thus it is an AR.
This implies that the space Ms(X) ⊂ M(X) of all piecewise constant
functions is an AR.

As a first consequence of Theorem 4.4 we obtain a generalization of
theorems of Bessaga and Pe lczyński[8] and of Toruńczyk[19]:

4.9. Theorem. If µ is a finite nonatomic (nonzero) measure and X
is a completely metrizable space which has more than one point, then
Mµ(X) is homeomorphic to an infinite-dimensional Hilbert space of
dimension α = max(w(µ), w(X)).

Proof. Put Y = Mµ(X). By Theorem 3.3–(D), Y ω ∼= Y . But Y is a
noncompact AR and thus, by [20, Theorem 5.1], Y is homeomorphic to
a Hilbert space of dimension w(Y ). So, the observation that w(Y ) = α
finishes the proof. �

Now repeating the proofs (with MG replaced by Mα(G)) of Theorem
5.1 and Corollary 5.2 of [8] we get

4.10. Corollary. Let H be a Hilbert space of dimension α > ℵ0 and let
G be a completely metrizable topological group of weight no greater than
α. Then G is (algebraically and topologically) isomorphic to a closed
subgroup of a group homeomorphic to H and G admits a free action in
H.

5. Extending maps

We begin this section with

5.1. Definition. Let µ be a finite measure and let f : X → Y be a
map. Let

Mµ(f) : Mµ(X) ∋ u 7→ f ◦ u ∈Mµ(Y ).

Mµ(f) is said to be the µ-extension of f . Additionally, let M(f) =
Mm(f) and Mα(f) = Mmα(f) for every infinite cardinal α.
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Note that Mµ(f) is continuous and that Mµ(f)(Nµ(X)) ⊂ Nµ(Y )
for N = Mf ,M c,M r. The connection

(5-1) Mµ(f)(δµ,X(x)) = δµ,Y (f(x)) (x ∈ X)

says that Mµ(f) extends f , when we identify the elements of Z with
the ones of ∆µ,Z via δµ,Z with Z = X, Y , which justifies the undertaken
terminology. If, in addition, X and Y are topological groups and f is
a group homomorphism, so is Mµ(f).

The Reader will easily check that whenever µ is a fixed finite measure,
the operations X 7→ Mµ(X) and f 7→ Mµ(f) define a functor. This
functor has interesting properties, whose proofs are left as exercises
(below we assume that gn, g : X → Y are maps):

(F1) Mµ(g) is an injection [embedding] iff g is so,
(F2) imMµ(g) = Mµ( im g),
(F3) the sequence (Mµ(gn))n is pointwisely [uniformly on compact sub-

sets of Mµ(X)] convergent to Mµ(g) iff the sequence (gn)n point-
wisely [uniformly on compact subsets of X ] converges to g,

(F4) for each ̺ ∈ Metr(Y ) the map

(C(X, Y ), ̺sup) ∋ h 7→Mµ(h) ∈ (C(Mµ(X),Mµ(Y )), (Mµ(̺))sup)

is isometric (‘C(A,B)’ denotes the collection of all maps from A
to B and ‘dsup’ stands for the supremum metric induced by a
bounded metric d).

It is clear that for each f ∈ C(X, Y ), imMµ(f) ⊂
⋃

AMµ(f(A)) where
A runs over all separable closed subsets of X . We do not know whether
the latter inclusion can always be replaced by the equality. We are only
able to show the following result, the proof of which is similar to the
proof of [15, Theorem 3.3].

5.2. Proposition. Whenever µ is a finite measure and f : X → Y is a
map, imM r

µ(f) =
⋃

K M
r
µ(f(K)) where K runs over all σ-compact sub-

sets of X and M r
µ(f) = Mµ(f)

∣∣
Mr

µ(X)
. What is more, if v ∈M r

µ(f(A)),

where A is a (separable) Souslin subset of X, then v ∈ imM r
µ(f).

Proof. We only need to prove the second claim. Put C = f(A) and let
L be a σ-compact subset of C such that im v ⊂ L. Let ν : B(L) ∋ B 7→
µ(v−1(B)) ∈ R+. Put K = A ∩ f−1(L). Then K ∈ B(A) and thus
K is a Souslin space. Now it suffices to apply [13, Theorem XIV.3.1]
to obtain a function h : L → K such that f ◦ h is the identity map on
L and for every open in K set U ⊂ K, h−1(U) is a member of the σ-
algebra generated by the family of all Souslin subsets of L. This implies
that for every Borel subset B of K, h−1(B) is absolutely measurable
and therefore there is a Borel function w : L→ K and a set B0 ∈ B(L)
such that ν(B0) = 0 and w = h on L \ B0. Now put u = w ◦ v.
By Lemma 2.1–(A), u ∈ M r

µ(X). What is more, f ◦ u is µ-almost
everywhere equal to f ◦ h ◦ v = v, which finishes the proof. �
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Under the notation of Proposition 5.2 we get

5.3. Corollary. (i) If X is a So-space, then

imM r
µ(f) =

⋃

A

M r
µ(f(A))

where A runs over all separable closed subsets of X.
(ii) If for every compact subset L of im f there is a (separable) Souslin

subset K of X such that L ⊂ f(K), then imM r
µ(f) = M r

µ(im f).

The above result leads to the following

5.4. Definition. A map f : X → Y is said to be an s-map if f satisfies
the assumption of the point (ii) of Corollary 5.3.

Basic examples of s-maps are closed maps whose domains are So-
spaces and proper maps.

Now applying the General Scheme and main ideas of Section 3 of [15]
(with the same functor M), thanks to the homeomorphism extension
theorem proved in [10], we easily obtain

5.5. Theorem. Let Ω be a topological space homeomorphic to a non-
separable Hilbert space. Let Z be the family (category) of maps between
Z-sets of Ω consisting of all pairs (ϕ, L), where domϕ, i.e. the domain
of ϕ, and L are Z-sets of Ω and ϕ is an L-valued continuous function.
There is a functor Z ∋ (ϕ, L) 7→ ϕ̂L ∈ C(Ω,Ω) of extension which sat-
isfies all the claims of the points (a), (b), (h), (i) stated on pages 1–2 of
[15] and the claims of the points (d), (f) and (g) (of [15]) concerning
closures of images. The functor preserves the properties of being an
injection, an embedding or a map with dense image; and satisfies all
the claims of the points (c)–(g) of [15] for any s-map ϕ.

5.6. Remark. Analogous functor as in Theorem 5.5 can be built using
the functor P̂ studied by Banakh[2, 3] and Banakh and Radul[5]. (For

a metrizable space X , P̂ (X) is the space of all Borel probabilistic mea-
sures supported on σ-compact subsets of X and for a map f : X → Y

and µ ∈ P̂ (X), P̂ (f)(µ) is the transport of µ under f .) Theorem 2.11 of

[5] says that P̂ (X) is homeomorphic to an infinite-dimensional Hilbert
space, provided X is completely metrizable and noncompact. Thus it
is enough to apply General Scheme of [15] and results of Banakh[2, 3]

on extending maps and bounded metrics via the functor P̂ .

We end the paper with the following two questions.
Question 1. Is M(M(X)) homeomorphic to M(X) for an arbitrary

metrizable space X ?
Question 2. Is Mµ(X) homeomorphic to M r

µ(X) for an arbitrary
metrizable space X and any finite measure space (Ω,M, µ) ?

Note that the affirmative answer for Question 2 implies the affirma-
tive one for Question 1.
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