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Identifying communities (or clusters), namely groups of nodes with
comparatively strong internal connectivity, is a fundamental task for
deeply understanding the structure and function of a network. Yet,
there is a lack of formal criteria for defining communities and for
testing their significance. We propose a sharp definition which is
based on a significance threshold. By means of a lumped Markov
chain model of a random walker, a quality measure called “persis-
tence probability” is associated to a cluster. Then the cluster is
defined as an “α-community” if such a probability is not smaller
than α. Consistently, a partition composed of α-communities is an
“α-partition”. These definitions turn out to be very effective for
finding and testing communities. If a set of candidate partitions is
available, setting the desired α-level allows one to immediately se-
lect the α-partition with the finest decomposition. Simultaneously,
the persistence probabilities quantify the significance of each sin-
gle community. Given its ability in individually assessing the quality
of each cluster, this approach can also disclose single well-defined
communities even in networks which overall do not possess a definite
clusterized structure.

networks | communities | Markov chains | random walks

Complex networks are currently one of the most exten-
sively studied subjects in the field of applied mathemat-

ics. In the last fifteen years, a huge number of theoretical
results have been put forward, and almost any field of science
and technology has benefit from the application of such results
to specific problems [1, 2, 3, 4].

One of the most promising but challenging tasks in net-
work science is community analysis, which is aimed at reveal-
ing possible partitions of a network into subsets of nodes (com-
munities, or clusters) with dense intra- but sparse inter-group
connections. Finding and analyzing such partitions often pro-
vides invaluable help in deeply understanding the structure
and function of a network, as widely demonstrated by several
case studies in social sciences [5, 6], biology [7], economics [8],
or information science [9], just to name a few.

Despite the abundance of contributions on this subject
(see [10] for a survey), the issue of community analysis cannot
be considered satisfactorily solved. First of all, finding com-
munities is a computationally hard task, because the “best”
partition must be sought for in a set whose cardinality grows
faster than exponentially with the number of nodes. The ex-
haustive enumeration of the partitions is thus impossible, and
heuristic techniques must be employed. Secondly, and perhaps
more important, there is no widespread consensus on formal
criteria for defining communities and for testing their signif-
icance [10]. When a subnetwork can actually be considered
to form a community, namely a group of nodes with com-
paratively strong internal connectivity? Probably the most
important attempt to answer this question was put forward
by Newman and coworkers [11, 5, 12], who defined a qual-
ity index called modularity which quantifies, for a given par-
tition of the network into candidate communities, to what
extent the distribution of the intra-/inter-community edges
is anomalous with respect to a suitably defined random net-
work. Since high modularity values are obtained in presence
of groups of nodes with comparatively large intra-community
edge density, maximizing modularity should put in evidence

the “best” partition. This method has been proven successful
in many circumstances but, on the other hand, it has been
widely demonstrated that, due to intrinsic limitations, it does
not necessarily always yield a significant partition [13, 14, 10].
And even when it does, it quantifies the quality of a partition
but not of each individual community.

This paper introduces a sharp definition of community
which is based on a threshold of significance. More precisely,
once a level 0 < α < 1 is specified, a node cluster is defined to
be an α-community if the probability that a random walker,
which is currently in one of the cluster’s nodes, remains in the
cluster in the next step is not smaller than α. Such a proba-
bility is obtained from an approximate lumped Markov chain
model of the random walker (i.e., a reduced-order Markov
chain in which the communities of the original network be-
come nodes) which is easily derived from the original (high-
order) Markov chain model. Consistently, a partition com-
posed of α-communities is defined to be an α-partition.

If equipped with an effective method for generating a set
of “good” candidate partitions, the notions of α-community
and α-partition provide a framework for simultaneously find-
ing communities and testing their significance. For that, the
desired significance level α is first fixed. Then, a family of par-
titions is derived and each partition is immediately checked to
assess whether it is formed by α-communities. This allows one
to identify the α-partitions, and to select one of them. Typ-
ically, one searches for communities which are at the same
time small (to effectively decompose the network) and signif-
icant (with much more internal than external connectivity).
For that, a guideline is that of selecting, among the available
α-partitions, the one with the largest number of communities.

But the notion of α-community can also be useful in a
partially different way. It may happen that, for a given sig-
nificance level α, no α-partitions are found. Yet, one or a few
α-communities could exist. They correspond to strongly con-
nected groups of nodes, even in a network which, overall, does
not possess a definite clusterized structure. Or, finally, one
can assess the significance of the results of a single-partition
method, such as modularity optimization [5], and obtain an
immediate assessment of the α-significance of each single com-
munity and, consequently, of the entire partition.

In the paper, we first introduce the lumped Markov chain
model of the random walker and define the notions of α-
community and α-partition. Testing the α-significance of a
given community or partition turns out to be extremely par-
simonious in computational terms. Then we analyze a few
examples of application and, for that, we propose an effective
algorithm for deriving a meaningful set of partitions. The al-
gorithm, which applies hierarchical cluster analysis, is again
based on the Markov chain model of a random walker and,
consequently, it involves a notion of similarity/distance among
nodes which is consistent with the significance criterion above
introduced. We finally compare this approach, which can be
applied to fully general networks (i.e., directed and weighted),
with other community analysis methods having a similar phi-
losophy.
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Networks, α-Communities, and α-Partitions
Consider a network with nodes N = {1, 2, . . . , N} and L edges.
We consider the most general case of directed and weighted
network, and we denote by W = [wij ] the N ×N weight ma-
trix, where wij ≥ 0 is the weight of the edge i → j. The
connectivity matrix A = [aij ] is the N × N binary matrix
where aij = 1 if wij > 0, and aij = 0 otherwise. If the net-
work is actually undirected we have W = W ′ and A = A′,
and if it is unweighted we let W = A (i.e., all weights equal to
1). We assume that the network is strongly connected (e.g.,
[3]), namely there exists an oriented path from any i to any
j. If the network is directed, for each node i we define the
(total) degree as ki = kin

i + kout
i =

∑

j
aji +

∑

j
aij , whereas

ki =
∑

j
aji =

∑

j
aij for undirected network. The average

degree is given by 〈k〉 =
∑

i ki/N . Similarly, for a directed
network the in-, out-, and total strength of node i are given
by sini =

∑

j wji, souti =
∑

j wij , and si = sini + souti , re-

spectively, and the total network strength by s =
∑

ij wij . If

the network is undirected we have instead si = sini = souti =
∑

j
wji =

∑

j
wij and s =

∑

ij
wij/2.

A N-state Markov chain πt+1 = πtP , with πt =
(π1,tπ2,t . . . πN,t), can be associated to the N-node network
by row-normalizing the weight matrix W , namely by letting
the transition probability from i to j equal to

pij =
wij

∑

j
wij

=
wij

souti

. [1]

The quantity pij is the probability that a random walker which
is in node i jumps to node j, and πi,t is the probability of be-
ing in node i at time t. The transition matrix P = [pij ] is a
row-stochastic (or Markov) matrix (0 ≤ pij ≤ 1 for all i, j, and
∑

j pij = 1 for all i). Furthermore, P is irreducible since the
network is connected. This implies that the equation π = πP
has a unique solution π, which is strictly positive (πi > 0
for all i) [15] and corresponds to the stationary Markov chain
state probability distribution. For undirected networks one
can easily check that π = (s1s2 . . . sN ) /(2s), whereas for di-
rected networks a general closed form does not exist and π
has to be numerically computed.

We denote by Pq a partition of N in q subsets (or subnet-
works), namely Pq = {C1,C2, . . . ,Cq} with

⋃

c Cc = N and
Cc ∩ Cd = ⊘ for all c, d. In rough terms, the sub-network
Cc is called a community (or cluster) if it has a high internal
density of weight, i.e., if the total weight of the edges inter-
nal to Cc is much larger than that of the edges connecting
Cc to the rest of the network. The community analysis of a
given network consists therefore in finding the “best” parti-
tion P, according to some criterion. Despite a huge amount
of contributions, there is however no widespread consensus on
formal criteria for defining communities and for testing their
significance [10]. As a consequence, in many situations a more
fruitful approach is that of searching for a few, “good” par-
titions P

′,P′′, . . ., among which selecting with common sense
and experience.

Defining a partition Pq induces a q-state meta-network,
where communities become meta-nodes. The rigorous descrip-
tion of the dynamics of the random walker at this scale by a
lumped Markov chain, however, is not possible if not in special
cases [16] - actually, the Markovian property is not even pre-
served in general. Despite this limitation, a q-state Markov
chain can be defined, which correctly describes the random
walker at the aggregate level provided the stochastic process is
started at the stationary distribution π [17, 18]. This lumped
Markov chain is defined by the q × q row-stochastic matrix

U = [diag (πH)]−1 H ′diag(π)PH, [2]

where H (collecting matrix) is a N × q binary matrix cod-
ing the partition Pq, i.e., its entry hic is 1 if and only if node
i ∈ Cc. The lumped Markov chain Πt+1 = ΠtU shares the sta-
tionary distribution with the original one (suitably collected),
namely Π = πH satisfies Π = ΠU . On the contrary, start-
ing from an arbitrary π0, the lumped Markov chain Π = ΠU
started at Π0 = π0H provides, in general, only an approxi-
mate description of the evolution of πH . The difference be-
tween the real and approximate Π, however, tends exponen-
tially to zero if the two chains are regular [15], since they
converge, by definition, to the same stationary state.

The ability of the lumped Markov chain to describe the
random walk dynamics only at stationarity is not a limitation
for our purposes, as it will be demonstrated by the examples
of application. Note that the entry ucd of U is the probabil-
ity that the random walker is at time (t + 1) in any of the
nodes of community d, provided it is at time t in any of the
nodes of community c. The diagonal term ucc is defined per-
sistence probability of community c. Large values of ucc are
expected for significant communities. In fact, the expected
escape time from Cc is τc = (1 − ucc)

−1: the walker will
spend long time within the same community if the weights
of the internal edges are comparatively large with respect to
those pointing outside. Given a value 0 < α < 1, Cc is de-
fined α-community if ucc ≥ α. Thus α acts as a selection
parameter, as sharply qualifies communities with respect to a
given threshold of significance. Consistently, Pq is defined α-
partition if it is composed of α-communities, namely ucc ≥ α
for all c = 1, 2, . . . , q.

Consider the simple 12-node network of Fig. 1 [19], which
is purposely composed of three clusters. Four partitions are
considered, corresponding to finer and finer divisions, and the
ucc-s are computed for each candidate community. As long as
the latter coincide with the “natural” communities, or with
the union of two of them, all the ucc-s are rather large. But
as soon as a natural community is broken, some very low per-
sistence probabilities are found. This result can be used in a
twofold manner, as extensively shown in the next section. On
one hand, if a set of finer and finer partitions is analyzed, the
sudden drop of a ucc is the signal that a significant community
has been broken: the network decomposition must be stopped
before this event. On the other hand, if a single partition is
given and its significance has to be assessed, the ucc-s imme-
diately quantify the quality of the partition but also of each
individual community.

Applications and Examples
The proposed method is now applied to assess the significance
of sets of partitions related to a variety of networks. An algo-
rithm for deriving partitions is first introduced, implementing
hierarchical cluster analysis after a random-walk-based node
distance is defined. Then the results related to three networks
are discussed: a synthetical benchmark network with built-in
cluster structure; a real-world network with a rather strong
community structure; and another real-world network with
weak clustering but with a few well-defined communities.

Deriving Partitions.Cluster analysis can be used to group
“similar nodes” into candidate communities. This needs
defining a meaningful similarity/distance among each pair of
nodes. Such a definition is by no means obvious: among the
many proposals [10], a few exploit random walks to induce
a suitable similarity measure (e.g., [20, 21, 22, 23, 24]). We
follow this line by proposing an approach in which, however,
we do not explicitly perform random walks in a Monte Carlo
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fashion, but derive analytically the global behavior of a large
number M of walkers (a “fleet”) started from each node i.

Consider a large number M of repetitions of a random
walk started from i. For each repetition, the probability that
the walker is in j after t steps is [P t]ij . Thus, if M random
walks of length T are performed from i, the expected number
of visits to j in any time instant in 1 ≤ t ≤ T is M

∑T

t=1
[P t]ij .

By averaging with respect to M , we propose a (symmetric)
similarity σij defined by

σij = σji =

T
∑

t=1

(

[

P t
]

ij
+

[

P t
]

ji

)

. [3]

Note that this is conceptually equivalent to an explicit ran-
dom walk approach, but with an arbitrarily large numberM of
repetitions from each starting node instead of one only. Most
notably, the results do not depend on the actual stochastic re-
alization of the random walks. We finally define the distance
dij = dji between nodes (i, j) by complementing the similarity
and normalizing the results between 0 and 1:

dij = dji = 1−
σij −min σij

max σij −min σij

. [4]

The rationale underlying the definition of s and d is to assign
nodes (i, j) a large similarity if a numerous fleet of random
walkers started in i (resp. j) makes a large number of visits
to j (resp. i) within a sufficiently small time horizon T . The
notion of community induced by this metric, therefore, is that
of a subnetwork where a random walker has a large probability
of circulating for quite a long time, before eventually leaving
to reach another group. This is conceptually consistent with
the definition of α-community above introduced. The choice
of the time horizon T is potentially critical: if too large, the
probability of visiting a given state j becomes independent of
the starting state since it tends to πj , whereas if T is too small
the information gathered is insufficient. We will return later
to this point.

LFR benchmark.Lancichinetti, Fortunato, and Radicchi
(LFR) [25] proposed a family of synthetically generated
graphs, explicitly designed to serve as benchmarks for testing
community detection algorithms. They explicitly take into
account two properties found in real networks, namely the
heterogeneity in the distributions of node degrees and com-
munity sizes. Both of the latter are taken as power laws,
with prescribed exponents γ and β, respectively. In addition,
the network is defined by prescribing the number N of nodes,
the average degree 〈k〉, and a mixing parameter µ such that
each node shares a fraction 1− µ of its edges with the other
nodes of its own community, and a fraction µ with the rest
of the network. The benchmark generating method was later
extended to oriented and weighted networks [26] - here we con-
sider an example of an undirected, unweighted network with
N = 1000, 〈k〉 = 20, µ = 0.25, γ = 2, and β = 1. The network
we obtained turns out to be formed by 38 communities, with
dimensions ranging from 10 to 49 nodes each.

Cluster analysis yields a different dendrogram for each
time horizon T , whose choice is thus nontrivial. At the two
extremes, setting T = 1 restricts the pairs of nodes which
are candidate to nonzero similarity to neighboring pairs only,
whereas larger and larger values of T tend to make any node
equally similar to any other. We found that an effective se-
lection of T can be empirically obtained by maximizing the
cophenetic correlation coefficient C, which is defined as the
linear correlation between the distances dij and the cophenetic
distances cij [27]. The latter are a product of the hierarchi-

cal cluster analysis: for any node pair (i, j), the cophenetic
distance cij is the height of the link joining (directly or indi-
rectly) nodes (i, j) in the dendrogram. The value of C is gen-
erally used to assess whether the adopted distance dij induces
an effective clusterization (notice that C qualifies the entire
dendrogram, and not a network partition), although limita-
tions have been observed in specific applications [28]. Figure
2 shows the dependence of C on T : we take T = 12, which
attains the maximum C = 0.905. The related dendrogram is
in the same figure.

Horizontal top-down cross-sections of the dendrogram
identify a sequence P2,P3, . . . of partitions with increasing
number of candidate communities. For each Pq we compute
U according to (2), and plot its diagonal terms in the persis-
tence probabilities’ diagram of Fig. 3. The diagram reveals a
sharp discontinuity. For q ≤ 38, all the ucc-s are rather large
(ucc ≥ 0.735 for all c). This means that significant communi-
ties are identified: in rigorous terms, all the proposed parti-
tions Pq with 2 ≤ q ≤ 38 are α-partitions with α = 0.735. For
q ≥ 39 significant communities are broken, as revealed by the
sudden drop of a larger and larger number of ucc-s. Remind
that 38 is exactly the number of communities planted in the
synthetically generated network. It is worth mentioning that,
if we search for the max-modularity partition (we used the so-
called “Louvain algorithm” [29], proved to be one of the most
reliable [30]), we obtain a partition with q = 34 communities,
with modularity Q = 0.714. The number of communities of
the planted partition is thus not perfectly recovered (small
communities tend to be aggregated). Nonetheless, for the ob-
tained P34 partition the persistence probabilities are in the
range 0.737 ≤ ucc ≤ 0.772, which is qualitatively consistent
with the results of Fig. 3.

We have finally compared the built-in partition planted in
the LFR benchmark network with the partition P38 obtained
with our method, as well as with the “max-modularity” par-
tition. The comparison is in terms of the normalized mutual
information I , a reliable and often used measure of partition
similarity, introduced by [31] to the network research com-
munity. Here we only point out that I = 1 when the two
partitions are identical, whereas I has zero expected value for
independent partitions. We obtained I = 0.992 for the parti-
tion resulting from our method (actually, we checked that as
few as 0.08% of the pairs i, j are misclassified), and a slightly
smaller I = 0.987 for the “max-modularity” partition.

Netscience network.The Netscience network is a weighted,
undirected, social network describing the collaborations (up to
year 2006) among researchers in network science, the weight
of the edge connecting two researchers being proportional to
the number of papers they have co-authored [12]. Its giant
component has N = 379 nodes, and it is generally considered
an example of a real network with a rather strong community
structure. Many methods for network analysis, included com-
munity detection algorithms, have been tested and discussed
on this example (e.g., [32, 33, 34]).

At T = 6 we get the dendrogram with largest C, and
the resulting persistence probabilities’ diagram is in Fig. 4.
The plot has a less clear structure than that of the LFR net-
work (Fig. 3): the proper q must be selected with a trade-off
between a finer decomposition (large q) and a higher signif-
icance of the communities (small q). For example, all the
partitions with q up to 10 are α-partitions with α > 0.9. But,
if less stringent significance levels are required, partition with
q ≤ 27, or even q ≤ 35, seem to be perfectly meaningful.

It is instructive to compare these results with those ob-
tained, on the same case study, by the graph stability ap-
proach proposed by Delvenne et al. [32] (a detailed compari-
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son of the two methods is in the next section). By means of
the KVV algorithm [35] (a hierarchical, divisive, non-binary,
graph clustering method), they obtain a sequence of six par-
titions, with q = 2, 3, 5, 15, 17, 21. Analyzing and comparing
the stability curve (i.e., the autocovariance function of a sig-
nal emitted by a random walker) of each of them, the authors
suggest their partition with q = 5 as the more reliable, as
it has the largest stability over a longer time span with re-
spect to any other. We created the persistence probabilities’
diagram of the six partitions of [32], and compared it with
our diagram in Fig. 5. The partition q = 5 of [32] confirms
to be definitely more significant than those with finer decom-
position (i.e., q = 15, 17, 21) according to our criterion too.
Actually, our and their P5 partitions share the same mini-
mal ucc = 0.952, due to a common 22-node community. The
two partitions are, however, partially different (the normalized
mutual information is I = 0.886, with about 6% of differently
classified node pairs).

The inspection of Fig. 5 also reveals that, for each given
q, the partitions obtained with our method are superior than
those proposed in [32], provided the criterion put forward in
this paper is adopted. In fact, they are α-partitions with an
α value which is larger (or at least not smaller) in all six
cases. Actually, while the criterion of [32] ranks partitions
by “averaging” among the communities, our approach is a
“worst-case” one: by selecting an α-partition one guarantees
that the “worst” community has a persistence probability not
less than α. Finally, note that in the gap from q = 6 to 15,
where no partition is obtained by the KVV divisive algorithm,
our partition generating algorithm provide a set of finer and
finer partitions, whose quality only slowly deteriorates as q
increases. The analyst of the network can fruitfully select in
this interval a proper trade-off between fine granularity and
significance of the partition.

Neural network.The third example concerns a directed,
weighted network, representing the neural connections of the
worm Caenorhabditis elegans. Starting from Watts and Stro-
gatz’s seminal work [36], different versions of this graph have
become a standard benchmark for network analysis. We con-
sider the directed, weighted version (whose largest connected
component has N = 239 nodes), which does not display a def-
inite community structure. In fact, the maximum modularity
(estimated as in [29]) is rather small, namely Q = 0.486, if
compared to other examples of comparable dimension (e.g.,
Q = 0.831 for the Netscience network). The less clusterized
structure emerges even visually from the dendrogram of Fig.
6, where only few groups of nodes appear well separated from
the rest (compare, e.g., with Fig. 2).

We show that our method is able to detect such groups,
namely to isolate well-defined communities even in a network
which overall does not possess a definite clusterized struc-
ture. Consider the persistence probabilities’ diagram of Fig.
7. With the exception of the trivial cases q = 2 and 3, no
α-partition exists with α reasonably large. Nonetheless, a few
α-communities with α ≥ 0.8 appear and are stably detected
in a rather wide range of q. More precisely, the same set of
five communities with ucc ≥ 0.826 are revealed in the range
14 ≤ q ≤ 20. They are clusters, of dimension ranging from 18
to 29 nodes, with comparatively rather strong internal con-
nectivity. Any other candidate cluster, instead, turns out to
have a much smaller ucc value and, therefore, it cannot be
considered to be a significant community.

Discussion and Conclusions
In this paper, we have shown that associating a lumped
Markov chain to a given network partition (i.e., a set of com-
munities) provides an effective tool for testing the significance
of each single community and, consequently, of the entire par-
tition. As a matter of fact, the diagonal terms (called per-
sistence probabilities) of the lumped Markov matrix can be
used as quality measures for each individual community. If a
threshold level 0 < α < 1 is fixed, a sharp criterion for defin-
ing a community as “significant” is therefore that of requiring
that its persistence probability is not less than α.

If an effective method for generating a set of “good” par-
titions is available, the above criterion can be used to rapidly
select one of them among those complying with the prescribed
α-significance, typically the one with the finest network de-
composition (i.e., the largest number of communities). We
have used a generator of partitions based on hierarchical clus-
ter analysis, where the node distance is again defined on the
basis of a Markov chain random walk model. Overall, the
method has fair computational requirements, and can be ap-
plied to fully general networks (i.e., directed and weighted).
Its effectiveness has been demonstrated on several medium-
scale examples.

The proposed approach has important connections with
two recently published community analysis methods. Del-
venne et al. [32] show that the autocorrelation function
of a signal emitted by a random walker, with value c as
long as the walker is in a node i ∈ Cc, can be ex-
pressed in terms of the clustered autocovariance matrix Rt =
H ′

[

diag (π)P t − π′π
]

H , and they define the stability of the

partition H as rHt = mins=0,1,...,t trace (Rs). Given a set
of candidate partitions, the graph stability function rt =
maxH rHt puts in evidence, for each time instant t, which is
the “optimal” partition. It is suggested in [32] that the most
relevant partitions are those which are optimal over long time
windows. It is straightforward to check that our matrix U
is related to the step-1 autocovariance R1 by R1 + Π′Π =
diag(Π)U . The two methods are thus based on the same
ground, but our approach has two advantages: first, for each
partition H we do not compute a long time-dependent se-
quence R1, R2, . . . , Rtmax

(with tmax of the same order as N)
of q × q matrices, but the sole matrix U , with an important
reduction in the computational burden. Second, the full list
of the persistence probabilities ucc allows one to test the sig-
nificance of each single community, whereas the stability of
the clustering rHt averages among all the communities.

Another work with important connections is that of
Weinan et al. [37], who suggest to explicitly find the “best” (in
a suitable sense) q-state approximated lumped Markov chain.
This boils out to the formulation of a minimization problem,
after a metric on the space of stochastic matrices is intro-
duced. A drawback of this method is however that q must be
a priori specified, whereas often identifying the correct num-
ber of communities is the main goal of the analysis. For the
same reason, it can hardly support the discussion of the sig-
nificance and convenience of choosing one partition instead of
another. We argue that this method could be used, jointly
with the one proposed in this paper, to generate a set of par-
titions with increasing values of q = 2, 3, . . ., by repeatedly
solving the above problem. Then, their significance could be
tested with the tool of the persistence probabilities’ diagram.
It is not guaranteed, however, that the proposed partitions
are “good” in terms of the minimal ucc (i.e., that they are
α-partitions with large α). It is therefore a point deserving
further study.

4



1. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276.

2. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DH (2006) Complex networks:

Structure and dynamics. Phys Rep 424:175–308.

3. Barrat A, Barthlemy M, Vespignani A (2008) Dynamical Processes on Complex Net-

works (Cambridge University Press).

4. Newman MEJ (2010) Networks: An Introduction (Oxford University Press).

5. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl

Acad Sci USA 103:8577–8582.

6. Guimera R, Sales-Pardo M, Amaral LAN (2007) Module identification in bipartite and

directed networks. Phys Rev E 76:036102.

7. Jonsson P, Cavanna T, Zicha D, Bates P (2006) Cluster analysis of networks gen-

erated through homology: automatic identification of important protein communities

involved in cancer metastasis. BMC Bioinformatics 7.

8. Piccardi C, Calatroni L, Bertoni F (2010) Communities in italian corporate networks.

Physica A 389:5247–5258.

9. Flake G, Lawrence S, Giles C, Coetzee F (2002) Self-organization and identification

of web communities. Computer 35:66–71.

10. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174.

11. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in net-

works. Phys Rev E 69:026113.

12. Newman MEJ (2006) Finding community structure in networks using the eigenvectors

of matrices. Phys Rev E 74:036104.

13. Reichardt J, Bornholdt S (2006) When are networks truly modular? Physica D 224:20–

26.

14. Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc

Natl Acad Sci USA 104:36–41.

15. Meyer C (2000) Matrix Analysis and Applied Linear Algebra (SIAM).

16. Kemeny JG, Snell JL (1976) Finite Markov Chains (Springer-Verlag).

17. Buchholz P (1994) Exact and ordinary lumpability in finite Markov-chains. J Appl

Probab 31:59–75.

18. Hoffmann KH, Salamon P (2009) Bounding the lumping error in Markov chain dy-

namics. Appl Math Lett 22:1471–1475.

19. Fortunato S, Castellano C (2009) Community structure in graphs. In Meyers, RA,

ed., Encyclopedia of Complexity and System Science (Springer-Verlag Berlin), pp.

1141–1163.

20. Zhou H (2003) Distance, dissimilarity index, and network community structure. Phys

Rev E 67.

21. Pons P, Latapy M (2005) Computing communities in large networks using random

walks. In Yolum, P and Gungor, T and Gurgen, F and Ozturan, C, ed., Computer and

Information Sciences - ISCIS 2005, Proceedings (Springer-Verlag Berlin), vol. 3733 of

Lecture Notes In Computer Science, pp. 284–293.

22. Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of sim-

ilarities between nodes of a graph with application to collaborative recommendation.

IEEE Trans Knowl Data Eng 19:355–369.

23. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal

community structure. Proc Natl Acad Sci USA 105:1118–1123.

24. Steinhaeuser K, Chawla NV (2010) Identifying and evaluating community structure in

complex networks. Pattern Recognit Lett 31:413–421.

25. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing com-

munity detection algorithms. Phys Rev E 78.

26. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection al-

gorithms on directed and weighted graphs with overlapping communities. Phys Rev E

80.

27. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster Analysis, 5th ed. (John Wiley

& Sons).

28. Holgersson M (1978) The limited value of cophenetic correlation as a clustering cri-

terion. Pattern Recognit 10:287–295.

29. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of commu-

nities in large networks. J Stat Mech-Theory Exp :P10008.

30. Lancichinetti A, Fortunato S (2009) Community detection algorithms: A comparative

analysis. Phys Rev E 80:056117.

31. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure

identification. J Stat Mech-Theory Exp :P09008.

32. Delvenne JC, Yaliraki SN, Barahona M (2010) Stability of graph communities across

time scales. Proc Natl Acad Sci USA 107:12755–12760.

33. Narayanam R, Narahari Y (2011) A Shapley Value-Based Approach to Discover Influ-

ential Nodes in Social Networks. IEEE Trans Autom Sci Eng 8:130–147.

34. Cafieri S, Hansen P, Liberti L (2011) A locally optimal heuristic for modularity maxi-

mization of networks. Phys Rev E :, in press.

35. Kannan R, Vempala S, Vetta A (2004) On clusterings: Good, bad and spectral. J

ACM 51:497–515.

36. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature

393:440–442.

37. Weinan E, Li T, Vanden-Eijnden E (2008) Optimal partition and effective dynamics

of complex networks. Proc Natl Acad Sci USA 105:7907–7912.

5



u
1
1 =
0
.9
0

u
2
2 =
0
.8
9(a) (b)

u
2
2 =
0
.7
5

u
1
1 =
0
.8
3

u
3
3 =
0
.8
9

(c)

u
1
1 =
0
.8
3

u
2
2 =
0
.7
5

u
3
3 =
0
.5
5

u
4
4 =
0
.2
9

(d)

u
11
=0.33

u
3
3 =
0
.7
5

u
4
4 =
0
.5
5

u
5
5 =
0
.2
9

u
22
=0.33

Fig. 1. Four different partitions (with increasing number q of communities) of the same network. The persistence probabilities ucc remain rather large as long as the network

is partitioned into “natural” communities. Passing from (b) to (c), and from (c) to (d), significant communities are broken,with a sudden drop of the relevant persistence

probabilities.
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Fig. 2. LFR benchmark network. Above: The cophenetic correlation coefficient C as a

function of T . The maximum is attained at T = 12. Below: The dendrogram obtained with

T = 12 (only half of the plot is presented for readability).
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Fig. 3. The persistence probabilities’ diagram of the LFR benchmark network. For a partition

with q clusters, crosses denote the values of the q diagonal terms ucc of the matrix U . Vertical

straight lines are only for visual aid.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

pe
rs

is
te

nc
e 

pr
ob

s.
 u

cc

number of communities q

Fig. 4. The persistence probabilities’ diagram of the Netscience network.
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(the two plots are in the same scale). Above: blow-up of the diagram of Fig. 4 (our results).

Below: the diagram related to the six partitions proposed in [32].
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Fig. 6. Neural network. The dendrogram obtained with T = 3.
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Fig. 7. The persistence probabilities’ diagram of the neural network.
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