
ar
X

iv
:1

10
7.

15
08

v1
  [

m
at

h.
G

N
] 

 7
 J

ul
 2

01
1

A NOTE ON ANR’S

PIOTR NIEMIEC

Abstract. It is shown that if for a complete metric space (X, d)
there is a constant ε > 0 such that the intersection

⋂n

j=1
Bd(xj , rj)

of open balls is nonempty for every finite system x1, . . . , xn ∈ X

of centers and a corresponding system of radii r1, . . . , rn > 0 such
that d(xj , xk) 6 ε and d(xj , xk) < rj + rk (j, k = 1, . . . , n), then
X is an ANR; and if in the above one may put ε = ∞, the space
X is an AR. A certain criterion for an incomplete metric space to
be an A(N)R is presented.
2010 MSC: Primary 55M15, 54C55; Secondary 54E40, 54E50.
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1. Introduction

A metrizable space X is an absolute (neighbourhood) retract (briefly,
an A(N)R) if every map of a closed subset A of an arbitrary metric
space Y into X is extendable to a map of a neighbourhood of A (of the
whole space Y ) into X . It is not difficult, using Hausdorff’s theorem
on extending metrics [6] (for other proof see [13] or [2, Theorem 3.2]),
to ensure that a metric space (X, d) is an A(N)R iff every nonexpan-
sive map of a closed subset A of a metric space (Y, ̺) into (X, d) is
extendable to a map of a neighbourhood (of the whole space Y ) into
X (cf. the proof of [1, §3, Corollary 4]; see also Proposition 2.1 below).
On the other hand, there is a well-known example due to van Mill [9]
of a separable metrizable space X which is not an ANR, but every
map of a compact subset of an arbitrary separable metric space Y into
X is extendable to a map of Y into X . Thus, it is natural to expect
that the property of extending nonexpansive maps of closed subsets of
compact metric spaces to nonexpansive maps with full domains is also
insufficient for a given metric space to be an A(N)R. Surprisingly, such
a supposition is false! We shall prove in the sequel that if for a metric
space (X, d) (not necessarily complete) there is a constant ε > 0 such
that

(⋆)

every nonexpansive map g : L → X of a closed subset L of a
finite dimensional compact metric space (K, ̺) of diameter no
greater than ε is extendable to a Lipschitz map G : K → X
with Lipschitz constant arbitrarily close to 1,
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then X is an ANR; and if (⋆) is fullfiled with ε equal to the diameter of
(X, d), then X is an AR. As a corollary of this theorem we shall prove
the result stated in Abstract.

There is an important class of metric spaces for which (⋆) is fulfilled
with ε = ∞, namely the class of the so-called hyperconvex metric
spaces, introduced by Aronszajn and Panitchpakdi [1]. These spaces
satisfy (⋆) with K an arbitrary metric space (possibly noncompact), L
not necessarily closed, and the final function G nonexpansive. However,
it is already known [1] that every hyperconvex space is an AR (see the
proof of Proposition 2.1 below). More on hyperconvexity the reader
may find in [5].

Probably the most famous metric space which is not hyperconvex but
satisfies (⋆) (with ε = ∞) is the Urysohn universal space U ([15, 16],
[7], [8], [17]) uniquely determined (up to isometry) by the following
three conditions: U is separable and complete; every separable metric
space admits an isometric embedding into U (universality); and every
isometry between two finite subsets of U is extendable to an isometry
of U onto itself (ω-homogeneity). It was proved by Uspenskij [17] that
U is homeomorphic to the Hilbert space (and thus it is an AR). Here
we will present another proof of this fact, based on the Dobrowolski-
Toruńczyk theorem on separable complete ANR’s admitting topological
group structures [4]. Our proof that U is an AR is, more or less, based
on an idea similar to Uspenskij’s original proof. This fact, however, is
an immediate consequence of the theorem stated in Abstract.

Notation and terminology. In this paper all topological spaces
are metrizable. By a map we mean a continuous function. The least
Lipschitz constant of a Lipschitz map f between metric spaces is de-
noted by Lip(f). The map f is nonexpansive iff Lip(f) 6 1.

The open ball in the metric space (X, d) with center at x ∈ X and
of radius r > 0 is denoted by Bd(x, r). The diameter of a subset A of
(X, d) (with respect to d) is denoted by diamd(A); and ∂(A) stands for
the closure and the boundary of A (in X).

A topological space X is homotopically trivial if for every n > 1,
each map f : ∂([0, 1]n) → X is extendable to a map F : [0, 1]n → X .
The empty space is homotopically trivial.

2. Main results

Let us begin with a simple and well-known

2.1. Proposition. For a metric space (X, d) the following conditions
are equivalent:

(i) X is an ANR (AR),
(ii) every nonexpansive map f : A → X of a closed subset of an arbi-

trary metric space (Y, ̺) is extendable to a map F : U → X with
U ⊃ A open in Y (with U = Y ).
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Proof. Of course, we only need to check that (i) is implied by (ii).
To see this, let (Y, λ) be a metric space, A its closed subset and
f : A → X a map. Let ̺0 : A × A → [0,∞) be given by ̺0(a, b) =
max(λ(a, b), d(f(a), f(b)). Then ̺0 is a metric on A equivalent to λ

∣∣
A×A

and f is nonexpansive as a map of (A, ̺0) into (X, d). By Hausdorff’s
theorem [6], there is a metric ̺ on Y which extends ̺0 and is equivalent
to λ. Now it suffices to apply (ii) to get the assertion. �

Let M be a class of metric spaces and let M ∈ [0,∞]. A metric space
(X, d) is said to be an almost contractive extensor for the pair (M,M)
(briefly, (X, d) ∈ ACE(M,M)) iff every nonexpansive map f : A →
X defined on a closed subset of (Y, ̺) ∈ M with diam̺(Y ) 6 M is
extendable to a Lipschitz map F : Y → X with Lip(F ) arbitrarily close
to 1. If (X, d) ∈ ACE(M,∞), we shall write (X, d) ∈ ACE(M). For
simplicity, we shall write (X, d) ∈ ACE(M) ((X, d) ∈ ACE) provided
(X, d) ∈ ACE(M,M) ((X, d) ∈ ACE(M)) with M being the class of
all finite dimensional compact metric spaces, and (X, d) ∈ ACEloc if
(X, d) ∈ ACE(ε) for some ε > 0. Further, we denote by F the class of
all finite metric spaces.

The main tool of this paper is the following theorem due to Toruńczyk
[14] (compare with [10, Corollary 4.2.18]).

2.2.Theorem. A metrizable space is an ANR provided it has an (open)
base β such that for every finite nonempty subfamily β0 of β the set

⋂
β0

is homotopically trivial.

It is also well known (see e.g. [10, Theorem 4.2.20]) that a homo-
topically trivial nonempty ANR is an AR.

Now we are ready to prove

2.3. Theorem. Let (X, d) be a metric space and M = diamd(X). If
(X, d) ∈ ACEloc (respectively (X, d) ∈ ACE(M)), then X is an ANR
(an AR).

Proof. We assume M > 0. If (X, d) ∈ ACE(M), put ε = ∞; oth-
erwise take ε ∈ (0,M) such that (X, d) ∈ ACE(ε). Notice that
(X, d) ∈ ACE(min(M, ε)). Let β = {Bd(x, r) : 0 < r < ε/2}. Thanks
to Theorem 2.2, it suffices to show that for every finite nonempty sub-
family β0 of β the set

⋂
β0 is homotopically trivial (indeed, if ε = ∞,

then every open ball will be homotopically trivial and thus so will be
X). Let u1, . . . , un ∈ X and R1, . . . , Rn ∈ (0, ε/2), and assume that
C :=

⋂n

j=1Bd(uj, Rj) is nonempty. Fix u0 ∈ C. We shall show that C

is homotopically trivial. For this, let m > 1 and let f : ∂([−1, 1]m) → C
be any map. Since the set K := f(∂([−1, 1]m)) ∪ {u0} is a compact
subset of C, there are real numbers rj ∈ (0, Rj) (j = 1, . . . , n) such
that K ⊂ B :=

⋂n

j=1Bd(uj, rj). Notice that

(2-1) diamd(B ∪ {u1, . . . , un}) 6 min(M, ε).
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Let a0 = 0 ∈ [−1, 1]m. Take distinct points a1, . . . , an ∈ (0, 1)m and put
A = ∂([−1, 1]m) ∪ {a0, a1, . . . , an} and f(aj) = uj for j = 0, 1, . . . , n.
Observe that f : A → X is continuous. Let ̺0 be any metric (compat-
ible with the topology) on [−1, 1]m such that for every x, y ∈ [−1, 1]m,

(2-2) ̺0(x, y) 6 min(r1, . . . , rn,M, ε).

Define a new metric ̺ on A by ̺(x, y) = max(̺0(x, y), d(f(x), f(y))).
Observe that

(2-3) f : (A, ̺) → (X, d) is nonexpansive

and diam̺(A) 6 min(ε,M) (thanks to (2-1) and (2-2)). Now let L[A]
consists of all functions v : [0, 1) → A for which there is t ∈ [0, 1] and
x ∈ A such that

(2-4) v
∣∣
[0,t)

≡ x and v
∣∣
[t,1)

≡ a0

(with convention that [s, s) = ∅). Let λ be a metric on L[A] induced by

̺, that is, λ(v, w) =
∫ 1

0
̺(v(t), w(t)) dt. For every x ∈ X let x̂ ∈ L[A]

be the function constantly equal to x. For t ∈ [0, 1] and x ∈ A let ‘t∗x’
denote the function v ∈ L[A] satisfying (2-4). We leave these as simple
exercises that

(L0) t ∗ â0 = â0, 0 ∗ x̂ = â0 and 1 ∗ x̂ = x̂ for every t ∈ [0, 1] and x ∈ A,
(L1) the function [0, 1] × A ∋ (t, x) 7→ t ∗ x̂ ∈ L[A] is a continuous

surjection,
(L2) the map (0, 1] × (A \ {a0}) ∋ (t, x) 7→ t ∗ x̂ ∈ L[A] \ {â0} is a

homeomorphism,
(L3) the map (A, ̺) ∈ x 7→ x̂ ∈ (L[A], λ) is isometric.

Now it follows from (L1) that L[A] is compact and from (L2) that L[A]
is finite dimensional (in fact, L[A] is the topological cone over A \ {a0}
with vertex at â0). Moreover, diamλ(L[A]) = diam̺(A) 6 min(ε,M).

Let δ = min(R1/r1, . . . , Rn/rn) − 1 > 0. Thanks to (2-3) and
(L3) (and since (X, d) ∈ ACE(min(M, ε))), there is a Lipschitz map

f̂ : L[A] → X such that Lip(f̂ ) 6 1 + δ and for every x ∈ A,

(2-5) f̂(x̂) = f(x).

Define F : [−1, 1]m → X by F (a0) = u0 = f(a0) and F (x) = f̂(|x| ∗ x̂′)
for x 6= a0(= 0) where | · |∞ is the maximum norm on R

m and x′ =
x/|x| ∈ A. By (2-5), F (x) = f(x) for x ∈ ∂([−1, 1]m). It is also clear
that F is continuous, thanks to (L0) and (L1). It remains to show that
F ([−1, 1]m) ⊂ B. Fix j ∈ {1, . . . , n}, t ∈ (0, 1] and x ∈ ∂([−1, 1]m). It

is enough to check that d(f̂(t ∗ x̂), uj) < Rj . By the definition of λ and
by (2-5):

d(f̂(t ∗ x̂), uj) = d(f̂(t ∗ x̂), f̂(âj)) 6 (1 + δ)λ(t ∗ x̂, âj)

= (1 + δ)[t̺(x, aj) + (1− t)̺(a0, aj)].
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So, taking into account the formula for δ, is suffices to show that
̺(x, aj) < rj and ̺(a0, aj) < rj . By (2-2) (and the definition of ̺), we
only need to check that d(f(x), f(aj)) < rj and d(f(a0), f(aj)) < rj .
But these are fulfilled since f(aj) = uj and both f(x) and f(a0) belong
to B. �

Uspenskij in [17] used a very similar technique to show that the
Urysohn space U is an AR.

It is worth while to notice that in the above proof we only needed to
extend a nonexpansive map defined on a space homeomorphic to the
disjoint union of a sphere and a finite set. So, the condition (X, d) ∈
ACEloc may be weaken.

2.4. Example. Let X = [0, 2) and d be a metric on X given by
d(x, y) := min(|x − y|, 2 − |x − y|). It may be easily shown that the
function X ∋ t 7→ eπit ∈ T := {z ∈ C : |z| = 1} is a homeomorphism
and thus X is an ANR, but not an AR. We see that diamd(X) = 1.
One may show that if K ⊂ X is such that diamd(K) < 1, then K is
contained in a set J ⊂ X which is isometric (when equipped with the
metric inherited from X) to [0, 1]. This implies that (X, d) ∈ ACE(ε)
for every ε ∈ [0, 1). However, since X is not an AR, (X, d) /∈ ACE(1).

It turns out that in case of a complete metric space (X, d) the as-
sumption of Theorem 2.3 may be weaken. Namely,

2.5. Theorem. For a complete metric space (X, d) and M ∈ (0,∞]
the following conditions are equivalent:

(i) (X, d) ∈ ACE(t) for every t < M ,
(ii) (X, d) ∈ ACE(F, t) for every t < M ,
(iii) whenever (Y, ̺) is a separable metric space of diameter less than

M , K is its compact subset and f : K → X is a nonexpansive
map, there is a Lipschitz map F : Y → X extending f such that
Lip(F ) is arbitrarily close to 1,

(iv) whenever x1, . . . , xn ∈ X and r1, . . . , rn > 0 are such that

d(xj , xk) < M and d(xj, xk) < rj + rk

for j, k = 1, . . . , n, the set
⋂n

j=1Bd(xj , rj) 6= ∅.

Proof. Clearly, (i) implies (ii) and (i) follows from (iii). The equivalence
of (ii) and (iv) is left as an exercise (cf. the proof of Proposition 3.1
below). We shall prove the most important part, i.e. that (iii) follows
from (ii).

Suppose (X, d) ∈ ACE(F, t) for t < M and (Y, ̺), K and f are as in
(iii). Fix ε ∈ (0, 1) with

(2-6) (1 + ε) diam̺(Y ) < M.
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We assume K 6= Y . Let {yn : n > 1} be a dense subset of Y \K. Let
(εn)

∞

n=1 be a sequence of real numbers such that for all n,

(2-7) 0 < εn < εn+1 < ε.

For every n > 1 define

µn = min(dist̺(y1, K), . . . , distd(yn, K)) > 0

where dist̺(y,K) denotes the distance of a point y fromK. Let (δn)
∞

n=1

be a sequence of real numbers such that

(2-8) 0 < δn <
(εn+1 − εn)µn

3
and limn→∞ δn = 0. Further, for each n let An ⊂ K be a finite δn-
net for K. We assume that An ⊂ An+1. For simplicity, put Bn =
An ∪ {y1, . . . , yn}.

We shall construct a sequence of Lipschitz maps fn : Bn → X (n =
1, 2, 3, . . .) such that

(1n) fn coincides with f on An,
(2n) if n > 1, fn extends fn−1,
(3n) Lip(fn) 6 1 + εn.

The existence of f1 follows from (ii). Suppose fn is constructed. Define
f ′

n : K ∪ {y1, . . . , yn} → X by: f ′

n(a) = f(a) for a ∈ K and f ′

n(yj) =
fn(yj) for j = 1, . . . , n. We claim that

(2-9) Lip(f ′

n) < 1 + εn+1.

Since f is nonexpansive and thanks to (2-7) and (3n), it suffices to show
that d(f ′

n(b), f(yj)) 6 (1+ε′n)̺(b, yj) for b ∈ K and j ∈ {1, . . . , n} with
ε′n < εn+1. Take a ∈ An for which ̺(a, b) 6 δn and observe that (by
(L1)):

d(f ′

n(b), f
′

n(yj)) 6 d(f(b), f(a)) + d(fn(a), fn(yj))

6 ̺(a, b) + (1 + εn)̺(a, yj) 6 δn + (1 + εn)(̺(b, yj) + δn)

6 3δn + (1 + εn)̺(b, yj) 6
3δn
µn

dist̺(yj, K) + (1 + εn)̺(b, yj)

6 (1 +
3δn
µn

+ εn)̺(b, yj) =: (1 + ε′n)̺(b, yj).

Now note that the above ε′n is less than εn+1, thanks to (2-8). This
shows (2-9).

Now put c = max(1,Lip(f ′

n)) and ̺′ := c̺. We see that f ′

n is non-
expansive with respect to ̺′. What is more, (2-6), (2-7) and (2-9)
imply that diam̺′(Y ) < M . Consequently, according to (ii), there is
fn+1 : Bn+1 → X which coincides with f ′

n on Bn ∪ An+1 and

d(fn+1(a), fn+1(b)) 6 (1 + εn+1)c
−1̺′(a, b)

for a, b ∈ Bn+1. It is clear that conditions (1n+1), (2n+1) and (3n+1) are
fulfilled.
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To this end, let D =
⋃

∞

n=1Bn and F0 =
⋃

∞

n=1 fn : D → X . Then F0

is Lipschitz, Lip(F0) 6 1 + ε and F0 coincides with f on D ∩K which
is dense in K. Since X is complete and D is dense in Y , F0 admits a
(unique) extension to a Lipschitz map F : Y → X with Lip(F ) 6 1+ ε
which necessarily extends f and we are done. �

As a consequence of Theorem 2.3 and Theorem 2.5 we obtain the
main result of the paper

2.6. Theorem. Let (X, d) be a complete metric space. If X satisfies
condition (iv) of Theorem 2.5 with some M > 0 (respectively with
M = ∞), then X is an ANR (an AR).

Let us note that a (possibly incomplete) metric space fulfills condi-
tion (iv) of Theorem 2.5 with some M > 0 iff its (arbitrarily chosen)
dense subset does so. We infer from this that in Theorem 2.6 we cannot
omit the assumption of the completeness of the metric. The space of
irrational numbers (with natural metric) is a simple counterexample
(of a completely metrizable space) for this.

The reader will easily check that condition (iv) of Theorem 2.5 with
M = ∞ is equivalent to hyperconvexity for a compact metric space X .
And since the property of being an ANR is local, Theorem 2.6 in the
version for ANR’s remains true for an arbitrary locally compact metric
space X (with possibly incomplete metric).

3. Urysohn universal space

Let us shortly prove that a Urysohn universal space is homeomorphic
to the Hilbert space. This was first proved by Uspenskij [17]. (For more
information on the topology of U see [12].)

Recall that a Katětov map on a metric space (X, d) is a function
f : X → [0,∞) such that |f(x)− f(y)| 6 d(x, y) 6 f(x) + f(y) for all
x, y ∈ X . Katětov maps corresponds to one-point extensions of metric
spaces. A fundamental result on Urysohn space, due to Urysohn [15, 16]
(see also [7] or [8]), states that a separable complete metric space (X, d)
is Urysohn space iff for every Katětov map f : A → [0,∞) defined on a
finite nonempty subset A of X there is x ∈ X for which f(a) = d(x, a)
for all a ∈ A.

Cameron and Vershik [3] have shown that the Urysohn universal
space admits a topological group structure. (For other result in this
direction see [11]). This is all we need to know in order to prove

3.1. Proposition. The Urysohn universal space is homeomorphic to
the Hilbert space.

Proof. We have just mentioned that U is homeomorphic to a topological
group. Since U is universal for separable metric spaces, it is non-
locally compact. So, thanks to the result of Dobrowolski and Toruńczyk
[4], it suffices to show that U is an AR. We will show this, applying
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Theorem 2.6. Let d denote the metric of U and let x1, . . . , xn ∈ U and
r1, . . . , rn > 0 be such that d(xj , xk) < rj + rk for all j and k. Choose
sj ∈ (0, rj) in such a way that

(3-1) d(xj, xk) 6 sj + sk.

Now put A = {x1, . . . , xn} and define f : A → [0,∞) by f(a) =
min{sj + d(a, xj) : j = 1, . . . , n}. The map f , as a minimum of non-
expansive functions, is nonexpansive as well. We see that f(xj) 6 sj .
What is more, by (3-1), f is a Katětov map. So, there is z ∈ U

such that d(z, xj) = f(xj). But then z ∈
⋂n

j=1Bd(xj , rj) and we are
done. �
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[13] H. Toruńczyk, A short proof of Hausdorff’s theorem on extending metrics,
Fund. Math. 77 (1972), 191–193.
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