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PROBLEM WITH ALMOST

EVERYWHERE EQUALITY

PIOTR NIEMIEC

Abstract. A topological space Y is said to have (AEEP) if the
following condition is fulfilled. Whenever (X,M) is a measurable
space and f, g : X → Y are two measurable functions, then the set
∆(f, g) = {x ∈ X : f(x) = g(x)} is a member of M. It is shown
that a metrizable space Y has (AEEP) iff the cardinality of Y is
no greater than 2ℵ0 .
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1. Introduction

In several aspects of mathematics dealing with measurability (such
as measure theory, descriptive set theory, stochastic processes, ergodic
theory, study of Lp-spaces, etc.) the idea of identifying functions which
are equal almost everywhere is quite natural. The experience gained
from real-valued functions may lead to an oversight that the set on
which two measurable functions (taking values in an arbitrary topolog-
ical space) coincide is always measurable. It is well-known and quite
easy to prove that this happens when functions take values in a space
with countable base or, if they have separable images lying in a metriz-
able space. However, it is not true in general. The reason for this is
that B(Y ) ⊗ B(Y ) differs (in general) from B(Y × Y ) where B(Y )
is the σ-algebra of all Borel subsets of a topological space Y . Let us
say that a topological space Y has almost everywhere equality property
(briefly, (AEEP)) if Y satisfies the condition stated in Abstract. It is
easily seen (see Lemma 2.1 below) that Y has (AEEP) iff the diago-
nal of Y belongs to B(Y ) ⊗ B(Y ). So, it may turn out that Y has
(AEEP) but still B(Y ) ⊗ B(Y ) 6= B(Y × Y ). The aim of this short
note is to prove that a metrizable space has (AEEP) iff card(Y ) 6 2ℵ0 .
Thus, among metrizable spaces only those whose topological weight is
no greater than 2ℵ0 have (AEEP). It may seem surprising that not only
separable spaces appear in this characterization.

Nonseparable metric spaces are widely investigated in functional
analysis and operator theory. In fact, the Banach algebra of all bounded
linear operators acting on a separable Banach space is usually nonsep-
arable. Also infinite-dimensional von Neumann algebras are nonsepa-
rable. A special and a very important in theory of geometry of Banach
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spaces example of them is the Banach space l∞ of all bounded se-
quences. So, our result may find applications in investigations of these
spaces.

Notation and terminology. For every topological space Y , B(Y )
stands for the σ-algebra of all Borel subsets of Y . That is, B(Y ) is
the smallest σ-algebra containing all open sets. Whenever (Ω,M) and
(Λ,N) are two measurable spaces, a function f : (Ω,M) → (Λ,N) is
said to be measurable iff f−1(B) ∈ M for each B ∈ N. M⊗N denotes
the product σ-algebra of M and N, i.e. M ⊗ N is the smallest σ-
algebra on Ω×Λ which contains all sets of the form A×B with A ∈ M

and B ∈ N. If g : (Ω,M) → Y where Y is a topological space, g is
measurable if g−1(U) ∈ M for any open set U ⊂ Y or, equivalently, if
g : (Ω,M) → (Y,B(Y )) is measurable. For two functions u, v : D → E,
∆(f, g) stands for the set {x ∈ D : u(x) = v(x)}. Additionally, for
every set E, ∆E denotes the diagonal of E, i.e. ∆E = {(x, x) : x ∈ E};
and card(E) is the cardinality of E.

2. The result

We begin with a simple

2.1. Lemma. For a topological space Y the following conditions are
equivalent:

(i) Y has (AEEP),
(ii) ∆Y ∈ B(Y )⊗B(Y ).

Proof. If f, g : (Ω,M) → Y are two measurable functions, then the
function h : (Ω,M) ∋ ω 7→ (f(ω), g(ω)) ∈ (Y × Y,B(Y ) ⊗ B(Y )) is
measurable as well and thus ∆(f, g) = h−1(∆Y ) is a member of M.
This shows that (i) follows from (ii). To see the converse, notice that
the natural projections pj : (Y × Y,B(Y )⊗B(Y )) ∋ (y1, y2) 7→ yj ∈ Y
(j = 1, 2) are measurable and that ∆(p1, p2) = ∆Y which finishes the
proof. �

2.2. Lemma. For an arbitrary topological space Y , every member F of
B(Y )⊗B(Y ) may be written in the form

(2-1) F =
⋃

t∈[0,1]

(At × Bt)

where At, Bt ∈ B(Y ) (t ∈ [0, 1]).

Proof. Let A be the family of all subsets of Y × Y which are finite
unions of sets of the form A × B with A,B ∈ B(Y ). It is easily seen
that A is an algebra of subsets of Y ×Y . Hence, by the Monotone Class
Theorem (cf. e.g. Theorem 1.3 of [3]), B(Y ) ⊗ B(Y ) is the smallest
family F such that A ⊂ F and

(2-2) F1, F2, . . . ∈ F =⇒
∞⋂

n=1

Fn,
∞⋃

n=1

Fn ∈ F.
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Now let F consists of all sets F which may be written in the form (2-1)
(with At, Bt ∈ B(Y )). Since ∅ ∈ F, A ⊂ F. So, it remains to check

that F satisfies (2-2). Let Fj =
⋃

t∈[0,1] A
(j)
t × B

(j)
t for j = 1, 2, . . . It is

clear that
⋃

∞

j=1 Fj ∈ F. To this end, put Λ = [0, 1]N (here 0 /∈ N) and
observe that

∞⋂

j=1

Fj =
⋃

ξ∈Λ

( ∞⋂

j=1

A
(j)
ξ(j)

)
×

( ∞⋂

j=1

B
(j)
ξ(j)

)

which finishes the proof since there is a bijection between Λ and [0, 1].
�

As an immediate consequence of the above results, we obtain

2.3. Corollary. If a topological space Y has (AEEP), then

card(Y ) 6 2ℵ0 .

Now we want to prove the converse of Corollary 2.3 for metrizable
Y . For need of this, we recall some classical notion in topology. The
topological cone C(Y ) over a topological space Y is the set (Y ×(0, 1])∪
{ωY } equipped with the topology such that Y × (0, 1] is open in C(Y ),
the topology on Y ×(0, 1] inherited from the one of C(Y ) coincides with
the product topology, and the sets (Y × (0, t)) ∪ {ωY } with t ∈ (0, 1)
form a basis of open neighbourhoods of ωY in C(Y ). The next result
is elementary and we omit its proof.

2.4. Lemma. If u : X → Y is a continuous function between topolog-
ical spaces X and Y , then the function û : C(X) → C(Y ) given by
û((x, t)) = (u(x), t) and û(ωX) = ωY is continuous as well.

An important example of a topological cone is the so-called hedgehog
space ([1, Example 4.1.5]). The hedgehog J(m) of spininess m > ℵ0

is the topological cone over a discrete space of cardinality m. Its im-
portance is justified by the following result of Kowalsky [2] (see also
[1, Theorem 4.4.9]; it is already known that [J(m)]ℵ0 with infinite m is
homeomorphic to the Hilbert space of Hilbert space dimension m, see
[4, 5] or Remark in Exercise 4.4.K of [1]).

2.5. Theorem. Every metrizable space of topological weight no greater
than m (where m > ℵ0) is homeomorphic to a subset of [J(m)]ℵ0.

As a colorrary of Theorem 2.5, we obtain the following result, which
may be interesting in itself.

2.6. Proposition. Every metrizable space Y such that card(Y ) 6 2ℵ0

admits a continuous one-to-one function of Y into a separable metriz-
able space.

Proof. Let D = [0, 1] and T = [0, 1] be equipped with, respectively, the
discrete and the natural topology. By Lemma 2.4, the function C(D) ∋
z 7→ z ∈ C(T ) is continuous. This means that there is a one-to-one
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continuous function u : J(2ℵ0) → W where W is a separable metrizable
space. But then the function [J(2ℵ0)]ℵ0 ∋ (xn)

∞
n=1 7→ (u(xn))

∞
n=1 ∈

W ℵ0 is continuous and one-to-one as well. Now it suffices to apply
Theorem 2.5. �

We are now able to prove the main result of the paper.

2.7. Theorem. For a metrizable space Y the following conditions are
equivalent:

(i) Y has (AEEP),
(ii) the topological weight of Y is no greater than 2ℵ0,
(iii) card(Y ) 6 2ℵ0.

Proof. The equivalence of (ii) and (iii) follows since (2ℵ0)ℵ0 = 2ℵ0 . So,
thanks to Lemma 2.1 and Corollary 2.3, we only have to show that
∆Y ∈ B(Y )⊗B(Y ) provided card(Y ) 6 2ℵ0.

Assume (iii) is fulfilled. We infer from Proposition 2.6 that there is
a separable metrizable space X and a continuous one-to-one function
u : Y → X . Then v = u×u : (Y ×Y,B(Y )⊗B(Y )) → (X×X,B(X)⊗
B(X)) is measurable (v(x, y) = (u(x), u(y)) for x, y ∈ Y ). Since X is
separable, B(X)⊗B(X) = B(X×X) and therefore ∆Y = v−1(∆X) ∈
B(Y )⊗B(Y ) and we are done. �
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