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We conduct a careful analysis of the data provided by Krogstad & Davidson (2011) and
show that their data do not support their conclusions. According to their published
data, their decaying approximately homogeneous isotropic turbulent flows are, invari-
ably, clearly different from Saffman turbulence; and very clearly marked differences exist
between the far downstream turbulence behaviors generated by their conventional grid
and by their multiscale cross grids.

1. Introduction

A few years ago, Lavoie, Djenidi & Antonia (2007) investigated potential effects of
initial conditions on the decay of approximately homogeneous isotropic turbulence. Initial
conditions refer to the way the turbulence is generated. In the wind tunnel experiments
of these authors, the turbulence was passively generated by square-mesh biplane grids
placed at the test section entry. A particular aspect of the potential dependence on initial
conditions is whether the power-law decay of the far-downstream turbulence depends on
them. Quantitatively, the question is whether the decay exponent n in

u2
∼ (x − x0)

−n (1.1)

(where u2 stands for two thirds of the turbulent kinetic energy and x is the streamwise
distance along the tunnel, x0 being a virtual origin) differs for different initial conditions
as claimed by George (1992).
Lavoie et al. (2007) tried four different conventional passive grids (with square or with

round bars with/without a small helical wire) and two different test sections (one with
and one without a secondary contraction to improve isotropy). They did not find any sig-
nificant effect of initial conditions on the decay exponent n other than that of anisotropy
which does, itself, depend on initial conditions and persists far downstream.
Krogstad & Davidson (2011) carried out a similar wind tunnel study but with two mul-

tiscale grids and one conventional grid. Their grids were all monoplanar and their two
multiscale grids were chosen from one of the three families of multiscale grids introduced
by Hurst & Vassilicos (2007), specifically the family of fractal cross grids. These grids are
very different from the low-blockage space-filling fractal square grids which have been the
multiscale grids of choice in the vast majority of subsequent works on multiscale/fractal-
generated turbulence (Seoud & Vassilicos 2007; Nagata, Suzuki, Sakai, Hayase & Kubo
2008a,b; Stresing, Peinke, Seoud & Vassilicos 2010; Mazellier & Vassilicos 2010; Suzuki, Nagata, Sakai & Ryota
2010; Laizet & Vassilicos 2011; Valente & Vassilicos 2011). The reason why multiscale/fractal
cross grids have mostly been neglected (except in studies where they were used to
enhance the Reynolds number, see Kinzel, Wolf, Holzner, Lüthi, Tropea & Kinzelbach
(2010); Geipel, Henry Goh & Lindstedt (2010)) is that Hurst & Vassilicos (2007) did not
make any strong or unexpected claim about the dependence of u2 on x− x0 in decaying
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turbulence generated by them. Their conclusion on these grids was just a double nega-
tive: “the turbulence decay observed is not in disagreement with power-law fits and the
principle of large eddies”.

Sketches of the multiscale cross grids used by Krogstad & Davidson (2011) can be seen
in their figure 1 and are described in their section 2 where they are labeled msg1 and
msg2. We do not need to repeat the description here except to say that each multiscale
cross grid has three different mesh sizes, the smallest one being M3 = 15mm for msg1

and M3 = 21mm for msg2. Krogstad & Davidson (2011) were careful to design their
two multiscale cross grids and one conventional grid in such a way that the longitudinal
integral length-scale of the turbulence at a 2m distance from the grid location is the
same ℓ0 ≈ 23.65mm± 0.25mm for all three grids. The ratio between ℓ0 and the distance
between the tunnel walls is smaller than 1/75.

A description of the wind tunnel used by Krogstad & Davidson (2011) can be found
in Krogstad & Davidson (2010, 2011). It is much larger and longer than the tunnel used
by Hurst & Vassilicos (2007) and the grids were placed in the tunnel contraction, specif-
ically 1.2m upstream from the start of their test section. As a result, the multiscale grid-
generated turbulence of Krogstad & Davidson (2011) is more isotropic and much further
downstream of the grid than in Hurst & Vassilicos (2007). Their turbulence measure-
ments were taken using single and two component hot-wire anemometry from x ≈ 60l0
till x = 400ℓ0 which means 93M3 6 x 6 629M3 for msg1 and 67M3 6 x 6 446M3 for
msg2. This is clearly much further downstream than Hurst & Vassilicos (2007) who could
not take measurements beyond a distance equal to 80 times the smallest mesh size of
their own multiscale cross grids. In the case of Krogstad & Davidson (2011) conventional
grid (refered to as cg), 60ℓ0 6 x 6 400ℓ0 corresponds to 40M 6 x 6 240M where M is
the mesh size of the grid.

The first main conclusion of Krogstad & Davidson (2011) was that their “results are at
odds” and that their “findings contradict” those of Hurst & Vassilicos (2007). This claim
is factually incorrect not only because the multiscale cross grids in these two studies have
significant differences (different blockages, but also differences in some other grid-defining
parameters, see figure 1 in Krogstad & Davidson (2011) and figure 3 in Hurst & Vassilicos
(2007) and related parameters), but also because the regions of the flow were different,
in fact not even overlapping (if just barely in one case), in terms of multiples of the
smallest mesh size of the multiscale cross grids. The fact that Hurst & Vassilicos (2007)
measured higher turbulence levels and local Reynolds numbers Reλ = uλ/ν (where λ is
the Taylor microscale and ν the kinematic viscosity) than Krogstad & Davidson (2011)
is quite simply consistent with the fact that Hurst & Vassilicos (2007) measured much
closer to the grid. Hurst & Vassilicos (2007) also extracted decay exponents n from their
data and showed how they vary continuously as the choice of virtual origin x0 varies (see
their figure 10). Choosing x0 close to 0, they found exponents n close to 1.2 for their
multiscale cross grids and close to 1.4 for their conventional grid with large mesh size.
However, they also proposed a λ-based method for choosing x0 which returned n ≈ 1.75
for their multiscale cross grids, n ≈ 2.3 for their conventional grid with high mesh size
and n ≈ 1.39 for their conventional grid with usual mesh size. These particular λ-based
exponents are indeed higher than those claimed by Krogstad & Davidson (2011) which
lie between 1.12 and 1.25 but they were obtained in completely different regions of the
flow and, most importantly, with different fitting methods which yielded very different
values of x0. In fact Hurst & Vassilicos (2007) did not include these exponents in their
conclusions because “more extensive checks of large-scale and small-scale isotropy as well
as homogeneity will be required to fully conclude on the nature of the turbulence decay
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behind fractal cross grids, in particular in order to assess the viability of our λ-based
method for estimating x0 in the cross grid-generated flows”.
The second main conclusion of Krogstad & Davidson (2011) is that, in the far-region

where they measure, their multiscale cross grids and their conventional grid produce
“virtually identical” turbulence behavior. Furthermore, quoting from their conclusion,
“Saffman’s decay law is reasonably robust, since the energy decay exponents for all three
grids are close to Saffman’s classical prediction of n = 6/5”. In the next two sections
we use the data published by Krogstad & Davidson (2011) and show that an attentive
analysis of their data based on Krogstad & Davidson (2010) leads to very different con-
clusions.

2. Decaying homogeneous isotropic turbulence with three different

initial conditions

Krogstad & Davidson (2011) established that their turbulent flows were reasonably
homogeneous at x beyond 2m in terms of longitudinal profiles of variances, skewnesses
and flatnesses of the streamwise fluctuating velocity component. Their centreline mean
streamwise flow U remains constant to within less than ±0.1% for all three grids from
x = 2m till about x = 8m, though it deviates a very little bit for msg2 beyond x =
6.5m. As a result, they chose to design their three grids in such a way that they all
generate turbulence with nearly same longitudinal integral length-scale ℓ0 at x = 2m.
The positions x = 80ℓ0 fall around 1.9m for all the grids. (Krogstad & Davidson (2011)
in fact recorded, and in a few instances used for their analysis, a few measurements at
closer distances to the grid, i.e. x as small as about 41ℓ0.) The longitudinal length-scale
ℓ grows as the turbulence moves downstream, but the ratio between ℓ and the distance
between the tunnel walls remains very small, for example less than about 1/40 at about
8m from the grid location.
They also calculated ratios < u2

x > / < u2
y >, < u2

x > / < u2
z > and u2/ < u2

x > and
found small levels of anisotropy “comparable, if not better, than in most other experi-
ments”. In particular, u2/ < u2

x > hovers between 0.95 and 1.02 throughout the regions
where they recorded their measurements. Hence any anisotropy-related dependence on
initial conditions as in Lavoie et al. (2007) can, most probably, be ruled out.
In figure 1a we plot < u2

x > /U2 versus (x− x0)/ℓ0 for all three grids as well as fits of
the data by < u2

x > /U2
∼ (x−x0

ℓ0
)−n. The decay exponents n and virtual origins x0 in

these fits are estimated simultaneously by direct application of a non-linear least-squares
regression algorithm (‘NLINFIT’ routine in MATLABTM ). This fitting method is closely
related to the one used by Lavoie et al. (2007) and we apply it to nearly the same range
where Krogstad & Davidson (2011) applied their own fitting methods. Specifically, we
apply our fit to the range 80ℓ0 < x < 330ℓ0 which is a range of x from about 1.9m to 8m.
This means that, for each grid, we exclude data points obtained by Krogstad & Davidson
(2011) at values of x smaller than 80ℓ0 where according to these authors the turbulence
is not sufficiently homogeneous, and we also exclude, exactly like Krogstad & Davidson
(2011) do, the data points furthest downstream where noise starts to be significant.
(Including data points from x ≈ 1.5m (i.e. 60ℓ0) as in Krogstad & Davidson (2011)
makes little difference as the values of n remain the same to within ±0.01.)
We give the values of n and x0 thus obtained in table 1 (method I). These values agree

fairly well with the various values of n and x0 obtained by Krogstad & Davidson (2011)
by their three different fitting methods for all three grids except for their value of x0 for
msg1 and their value of n for msg1 when they use one of their three fitting methods, the
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regression method (see their table 1). The values of n which they obtain for msg1 with
their other two fitting methods are close to our value of n for msg1.
At this point it may be helpful to recall some basic theoretical considerations. Homo-

geneous turbulence in the wind tunnel decays according to U d
dx

3
2u

2 = −ǫ where ǫ is the
turbulent kinetic energy dissipation per unit mass. To obtain (1.1) and the numerical
value of n, one needs some more information about u2 and ǫ. This information usually
consists of the following three ingredients when the homogeneous turbulence can also
be considered fairly isotropic (see Batchelor & Townsend 1948; Batchelor 1953; Rotta
1972): (i) a finite invariant of the von Kárman-Howarth equation, (ii) the assumption
that the decay of large eddies is self-similar and (iii) the empirical assumption that

A ≡ ǫℓ/u3 (2.1)

remains constant during decay (ℓ = ℓ(x) is the longitudinal integral length-scale). This
constancy can be thought of as resulting from the assumed independence of A on turbu-
lence intensity and Reλ.
Vassilicos (2011) proved that there are four different cases of finite invariants of the

von Kárman-Howarth equation depending on conditions at infinity. A case where no
known finite invariant exists; a case where the Loitsyansky invariant is the only known
finite invariant and where self-similar decay of large eddies implies u2ℓ5 = const during
decay; a case where only one known finite invariant exists and where self-similar decay
of large eddies implies u2ℓm+1 = const with 2 6 m < 4 (2 6 m ensures that the
spectral tensor does not diverge at zero wavenumber as stated in Rotta (1972), in the
Appendix of Krogstad & Davidson (2011) and in Vassilicos (2011)); and a case where
two finite invariants exist and where, as a consequence, self-similar decay of large-eddies
is impossible.
Using the constancies of A and u2ℓm+1, the second and third of these four cases imply

n = 2(m+ 1)/(m+ 3) (2.2)

where 2 6 m 6 4 and therefore 6/5 6 n 6 10/7. There is no known way to rule out the
first and fourth cases and therefore no known theoretical reason for measured values of
n to necessarily lie inside the range 6/5 6 n 6 10/7.
Two out of the three present grids have returned values of n which are below 6/5 = 1.2

(see table 1 under method I). However, this does not imply that the present turbulence
measurements do not fall under the second or third cases identified by Vassilicos (2011).
Indeed, as Krogstad & Davidson (2010, 2011) have observed, A varies slowly with x and
is therefore not strictly constant. If this is so, then (2.2) needs to change.
In figure 2 we plot the values of A obtained by Krogstad & Davidson (2011) for

their three grids as functions of (x − x0)/ℓ0 where x0 is taken from table 1 (method
I). (Krogstad & Davidson (2011) assumed small-scale isotropy and calculated A from
measurements of < (∂ux

∂x )2 > using ǫ = 15ν < (∂ux

∂x )2 > and integrations of measured
longitudinal correlation functions to educe ℓ.) To bring out more clearly the differences
between grids we in fact plot A/A1 where A1 is the value of A obtained at the smallest
distance x from each grid. We then follow Krogstad & Davidson (2010) and fit the power
law A ∼ (x−x0

ℓ0
)−p in the range 60ℓ0 < x < 330ℓ0 of this data. These fits are shown in

figure 2 and the values of p are reported in table 1.
If A = const is replaced by A ∼ (x − x0)

−p then the implication of u2ℓm+1 = const
changes from (2.2) to

n = (1− p)2(m+ 1)/(m+ 3) (2.3)

where 2 6 m 6 4. With our estimates of n and p we can now use (2.3) to derive values of
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m for each grid. They are given in table 1 (under method I) and, having now taken into
account the slight variations of A, they are all between 2 and 4. Similarly, the values of
ncorr ≡ n/(1− p) lie all between 6/5 and 10/7 (see table 1 under method I).
These values of m raise the possibility that the three decaying nearly homogeneous and

nearly isotropic turbulent flows of Krogstad & Davidson (2011) may be three different
instances of the third case identified by Vassilicos (2011) where only one known finite
invariant exists and where self-similar decay of large eddies implies u2ℓm+1 = const
with 2 6 m < 4. The Saffman invariant corresponds to m = 2 but none of the grids
used by Krogstad & Davidson (2011) returns such a value of m. In figure 3a we plot
< u2

x > ℓm+1/(U2ℓm+1
0 ) versus (x − x0)/ℓ0 with the values of m given under method

I in table 1 for each one of the three different turbulent flows. This figure should be
compared with figure 3c which is a reproduction of figure 10 in Krogstad & Davidson
(2011) where they plotted < u2

x > ℓ3/(U2ℓ30) versus (x − x0)/ℓ0, except that we have
offset the data vertically so as to see more clearly the differences in behavior between each
grid. Assuming the turbulence is sufficiently homogeneous and isotropic and equally so
for all three flows (as claimed by Krogstad & Davidson 2011), it is clear that the Saffman
prediction is not satisfied in these flows. Instead,

u2ℓm+1 = const (2.4)

with m > 2.5 for all grids in the range 100ℓ0 6 x − x0 6 400ℓ0. Furthermore, different
grids give rise to different values of m reaching up to m ≈ 3 with method I (see table 1).
In fact there is another way to extract values for n and m from the data (method II),

and this way gives even better defined invariants and even greater differences between
the far downstream turbulence decays originating from the conventional grid and the
multiscale cross grids. Method II is based on figure 1b. This figure is a log-log plot of
Reλ/Reλ1 versus (x − x0)/l0 where Reλ1 is the value of Reλ at the smallest distance
from each grid on this plot and x0 is the virtual origin obtained from our nonlinear fit of
figure 1a. The first inescapable observation is that the streamwise distributions of Reλ
are clearly different for the conventional grid and for the multiscale grids.
The power law form (1.1) implies λ2

∼ (x − x0) in decaying homogeneous isotropic
turbulence (Batchelor (1953)). It follows that Reλ ∼ (x − x0)

(1−n)/2, so that a best fit
of the data in figure 1b gives values of n. We apply this power law fit to the very same
range 80l0 < x < 330l0 used in method I for our fit of the turbulence intensity data in
figure 1a. The values of n thus obtained, the resulting values of m using (2.3) and the
resulting ncorr ≡ n/(1 + p) are given in table 1 under method II. In figure 3b we use
these new values of m to plot < u2

x > ℓm+1/(U2ℓm+1
0 ) versus (x − x0)/ℓ0 and find that

they yield even better defined invariants (2.4) than method I (compare with figure 3a).
The difference between values of m for conventional grids and values of m for multiscale
grids is unmistakable and even greater with method II than with method I.
We must conclude that the decay of approximately homogeneous turbulence far from

its initial conditions remains dependent on these initial conditions. The decay exponent
n and the conserved finite invariant u2ℓm+1 both clearly change when the turbulence-
generating grid is changed. These initial conditions may have to do with the geometry
of the grids or/and with the inlet Reynolds numbers as the mean speed in the tunnel
was 13.5m/s when the conventional grid was tested, 14.0m/s when msg1 was tested and
15.5m/s when msg2 was tested.
In trying to identify the flow-relevant geometrical variations from grid to grid, we note

that the mustiscale grids of Krogstad & Davidson (2011) have three different bar widths
t1 = 8mm, t2 = 4mm and t3 = 2mm as well as three different mesh sizes M1 = 2M2 and
M2 ≈ 2M3 with M1 = 64mm in the case of msg1 and M1 = 88mm in the case of msg2



6 P. C. Valente and J.C. Vassilicos

30 50 100 300 500

10
−4

10
−3

(x − x0)/ℓ0

u2 /U
m

ea
n

2

30 50 100 300 500
0.7

0.8

0.9

1

(x − x0)/ℓ0

R
e λ/R

e λ(1
)

Figure 1. Data and best-fit power laws for: (a) < u2
x > /U2

mean versus (x−x0)/ℓ0 (b) Reλ/Reλ1
versus (x− x0)/ℓ0. (u) cg, (a) msg1, (�) msg2. The vertical dashed lines mark the start and
end of the admissible data range used in the least-squares fits.

Table 1. Estimation of quantities via least squares fit
Method I Method II

Grid p n x0(m) m ncorr α n m ncorr α

cg 0.126 1.13 0.23 2.67 1.29 1.90 1.15 2.85 1.32 1.68
msg1 0.101 1.18 0.28 2.79 1.31 1.14 1.24 3.38 1.37 0.86
msg2 0.072 1.23 0.33 2.94 1.33 0.62 1.25 3.14 1.35 0.57

(see their figure 1). Hence the ratio of mesh size to bar width is 11 for msg2 and 8 for
msg1. It is therefore at least double than M/t = 4 for the conventional grid cg.
The mesh size determines the distance between the wakes of the bars and the bar

thickness determines the width of these wakes. Hence the ratio of mesh size to bar
thickness determines the distance from the grid where the wakes meet and this distance
increases when we move from cg to msg1 and msg2.
The Reynolds numbers characterising these wakes (calculated as the mean flow speed

multiplied by the bar thickness and divided by the kinematic viscosity of the air) take
the values 3.6×103 in the case of cg; 3×103, 1.5×103 and 7.5×102 in the case of msg1 ;
and 3.32× 103, 1.66× 103 and 8.3× 102 in the case of msg2. Unlike conventional grids,
multiscale grids impose more than one Reynolds number on the flows they generate and
a number of different distances from the grid where wakes of different sizes meet. Of
course the largest wakes are affected by the wakes generated by the smaller ones. But it
is clear that the turbulence undergoes different generation mechanisms extending over
different streamwise distances with different grids. It is indeed remarkable that memory
of these mechanisms remains in the values of n and m as far downstream as where
Krogstad & Davidson (2011) took their measurements.

3. Different far-field low-Reλ turbulent flows

We obtained figures 3a,b by taking into account the slow streamwise variation of A as
suggested by Krogstad & Davidson (2010). This streamwise variation can result from the
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Figure 2. Data and best-fit power laws for A/A1 versus (x − x0)/ℓ0. (u) cg, (a) msg1, (�)
msg2. The vertical dashed lines mark the start and end of the admissible data range used in the
least-squares fits.
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Figure 3. Checks of invariant forms via plots of u2ℓm+1: (a) m from method I, (b) m from

method II, (c) m = 2 corresponding to Saffman turbulence. (u) cg, (a) msg1, (�) msg2. For
improved readability the cg/msg1/msg2 data were vertically offset by (a) [2.0, 1.0, 0.0]× 10−4,
(b) [1.6, 2.5, 0.0]×10−4 , (c) [2.5, 0.5, −1.5]×10−4 .The left and right vertical dashed lines mark
the start and end of the data range used to obtain the decay exponents n. This is the range not
significantly affected by inhomogeneity (to the left) and noise (to the right).
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Figure 4. Reλ dependence of the normalised energy dissipation rate A (note that A here is 3A/2
in Krogstad & Davidson (2011), for example see their figure 11): (a) cg, (b) msg1, (c) msg2, (d)

logarithmic axes. (u) cg, (a) msg1, (�) msg2. The solid lines are plots of A = const × Reαλ
with α taken from table 1, method II.

well-known dependence that the dimensionless dissipation rate A has on Reλ when Reλ
is below at least 100 (e.g. Burattini, Lavoie & Antonia 2005). Indeed, the values of Reλ
characterising the three far-field turbulent flows of Krogstad & Davidson (2011) range
between about 90 near x ≈ 60ℓ0 and 70 at x ≈ 330ℓ0. Using Reλ ∼ (x− x0)

(1−n)/2 and
A ∼ (x− x0)

−p we obtain

A ∼ Reαλ (3.1)

where

α = 2p/(n− 1). (3.2)

The values of α implied by this formula on the basis of the exponents p and n obtained in
the previous section are very different for different grids, ranging from α ≈ 1.7 to α ≈ 0.6
(using n obtained from method II, see table 1). Figure 4 confirms how dramatically dif-
ferent the dependencies of A on Reλ are for the multiscale grids and for the conventional
grid. Hence, multiscale grids definitely do not “produce almost identical results to the
equivalent classical grids” as claimed by Krogstad & Davidson (2011).
Figure 4 also shows that (3.1)-(3.2) give rise to more or less reasonable fits of the data

thus lending support to the idea that much of the streamwise variation of A comes from
its dependence on Reλ. Increasing values of the dimensionless dissipation rate A with
increasing Reλ have also been reported in previous works with square bar grids at such
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relatively low Reynolds numbers, see for example figure 1 in Burattini et al. (2005), table
4 in Comte-Bellot & Corrsin (1971) and table 3 in Gad-El-Hak & Corrsin (1974).

4. Conclusion

According to the published data in Krogstad & Davidson (2011), multiscale cross grids
and their equivalent (in terms of ℓ0) conventional grid can produce very different far-field
approximately homogeneous isotropic turbulence with wide variations in the dimension-
less dissipation rate’s dependence on Reλ. This would seem to confirm the observation
already made by Burattini et al. (2005) on the basis of different Reλ dependencies of
A for different grids, namely that “the geometry of the grid appears to have a per-
sistent influence in the streamwise direction up to x/M = 80”. In fact the data of
Krogstad & Davidson (2011) extend this observation to much further distances down-
stream and to a wider range of grids.
This data also leads to the conclusion that the decay of the three approximately ho-

mogeneous isotropic turbulent flows of Krogstad & Davidson (2011) is characterised by
an invariant quantity u2ℓm+1 in the region of the flow x > 80ℓ0 which is the most clearly
homogeneous. The exponent m is significantly different from Saffman’s m = 2 and ranges
between 2.7 and 3.4 for the grids used by Krogstad & Davidson (2011). Their multiscale
grids return values of m which are markedly larger than the values of m returned by
their conventional grid. The streamwise distributions of Reλ and A are also very clearly
different.
Finally we repeat the remark in our introduction that the data of Krogstad & Davidson

(2011) do not contradict previous findings on multiscale grids but in fact complement
them.

We thank Professor Per-Åge Krogstad for kindly providing us with the post-processed
data published in Krogstad & Davidson (2011).
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