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Magnetoelastic nonlinear metamaterials
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We introduce the concept of magnetoelastic metamaterials with electromagnetic properties de-
pending on elastic deformation. We predict a strong nonlinear and bistable response of such meta-
materials caused by their structural reshaping in response to the applied electromagnetic field. In
addition, we demonstrate experimentally the feasibility of the predicted effect.

The study of metamaterials became a prominent area
of research, bringing together theoretical and applied
electrodynamics, as well as electrical engineering and ma-
terial science. Being initially intended to achieve negative
refraction [1, 2], metamaterials quickly covered a much
wider range of applications from microwaves to optics.
Nonlinear metamaterials [3, 4] established a new research
direction [5–12] giving rise to fruitful ideas for tunable
and active artificial materials [13].

The initial way to provide strong nonlinearity to meta-
materials was found in either employing a nonlinear host
medium [3] or by engineering the elements of a metamate-
rial with a nonlinear component [4]. In those approaches
the nonlinear response is obtained on the level of indi-
vidual elements. On the other hand, by varying the mu-
tual interaction between elements one can efficiently con-
trol bulk metamaterial properties [14, 15]. It is therefore
quite promising to explore the possibilities of nonlinear
mutual interaction in metamaterials.

In this Letter, we propose a novel concept of magneto-

elastic metamaterials, where nonlinearity arises from a
collective response. This is achieved by providing a me-
chanical degree of freedom so that the electromagnetic
interaction in the metamaterial lattice is supplemented
by elastic interaction. This enables the electromagneti-
cally induced forces to change the metamaterial shape,
thus changing its effective properties. Consequently, such
a metamaterial exhibits efficient self-action, which leads
to strong nonlinear effects and non-trivial bistability.

To illustrate this concept, we consider a magnetic
metamaterial composed of a lattice of resonant elements,
such as split-ring resonators (SRRs) or capacitively-
loaded rings (CLRs). We select an anisotropic arrange-
ment (Fig. 1) with all the resonators having the same ori-
entation, so that the inter-layer distance b can be made
sufficiently small to ensure a stronger interaction. For
simplicity, we choose a circular shape of resonators, how-
ever this does not limit the generality of the predicted
phenomena. For the convenience of analytical expres-
sions, we use the dimensionless lattice parameters a and
b, normalized to the resonator radius r0.

In response to electromagnetic waves with magnetic
field H0 along the axial direction, such a metamaterial
shows resonant magnetic behavior [16]. The currents in-
duced in the resonators not only affect each other through

FIG. 1: (Color online) Schematic of anisotropic magnetic
metamaterial (two layers are shown) assembled with an elas-
tic medium. Left: metamaterial before the electromagnetic
field is applied. Right: metamaterial is compressed by the
electromagnetic forces acting between the elements.

mutual inductance, but also result in an attractive force
between the resonators (it is attractive provided that the
neighboring currents are in phase). So if the resonators
are allowed to move along the axial direction, they will
displace from their original positions, thus changing their
mutual impedance, which in turn affects the current am-
plitudes, interaction forces, and so on. The balance is
kept with a restoring force, which originates from the
elastic properties of the host medium.

We consider a quasi-stationary regime, where the char-
acteristic response times for mechanical movements are
much larger than the period of electromagnetic oscilla-
tions. We also assume that the electromagnetic reso-
nance frequency is such that the wavelength is much
larger than element size and lattice constants (this can be
easily achieved e.g. by using CLRs with an appropriate
capacitance, or broadside-coupled SRRs [17] with suffi-
ciently small gaps). In this case, the currents induced in
neighboring elements are all in phase and also uniform
along the resonator circumference, so that the attraction
force can be evaluated in the same way as the static force
for DC currents, weighted with a time-averaged current
amplitude, I/

√
2. At the same time, electric interaction

is irrelevant in a quasi-static situation, or otherwise can
be minimized by choosing an appropriate mutual orien-
tation of the rings [15].

For identical rings sharing a common axis and carrying
currents with amplitude I, the force acting between them
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has only the axial component, calculated as [18]

Fi =
µ0I

2

2
√
4 + b2

(

E 2 + b2

b2
−K

)

, (1)

where E , K are the complete elliptic integrals of first and
second kind with the parameter κ2 = 4/(4 + b2).
In the limit of remote rings (b ≫ 1), the expression

(1) can be expanded with respect to 1/b as a small pa-
rameter, with elliptic integrals evaluated explicitly. This
yields a long distance limit

lim
b→∞

Fi =
µ0I

2

2

3π

2

(

1

b

)4

. (2)

Naturally, this result agrees, up to different O
(

1/b6
)

terms, with the dipole approximation valid for large dis-
tances. This allows us to take into account far-neighbor
interactions consistently: the summation over remote
rings quickly converges thanks to the fourth power de-
cay, so within a relevant volume we can still assume that
the currents are not affected by retardation.
We assume that the lateral lattice constant a is rea-

sonably large so that additional forces between the rings
in the neighboring columns can be neglected. Then the
total compression force acting between any two rings in
the bulk, can be shown to have the following form:

FI(b) ≈
N
∑

n=1

n · Fi(nb) + SN , (3)

where N is number of rings for which the approximate
solution (2) is not yet sufficiently precise, while for the
remaining rings the quickly converging summation over
(2) yields a minor addition SN which can be neglected in
practice. The value of N depends on the lattice density,
being for example of the order of 100 for b = 0.1 and
of 20 for b = 1. For practical purposes, it is convenient
to introduce a specific multiplication factor β to obtain
FI = βFi directly from (1). Empirically, it turns out that
β is closely proportional to 1/b so the exact summation
(3) can be replaced with quick approximate calculation

FI ≈
π

2

1

b
Fi. (4)

We now assume that the elastic force which balances
the magnetic attraction, obeys a Hooke’s law, FS(b) =
kr0(b− b0), with a generic stiffness coefficient k, and the
initial lattice constant b0. Thus the distance b where
equilibrium is achieved will be determined by a balance
between the total compression force in the bulk FI, and
the elastic force FS [Fig. 2(a)]:

β(b) · Fi(b, I) + kr0(b − b0) = 0. (5)

We must impose an artificial limit bmin on how small b can
be, to reflect the unavoidable technological restrictions as
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FIG. 2: (Color online) (a) Schematic of the forces acting on
a ring within a metamaterial, where the total compressing
force resulting from current attraction, FI, is countered by the
elastic force FS, both being dependent on the lattice distance
b which varies with the current amplitude; (b) An example
of force magnitudes depending on the lattice distance, where
attraction forces FI for several current amplitudes are shown
with colored peaks and the counter-acting spring force FS

with a black straight line. Stable equilibrium points are shown
with circles while unstable ones with crosses.

well as to ensure a reasonable limit on the linear elasticity
law, which simplifies the analysis.
Self-action, resulting in nonlinear behavior, occurs

through the mutual inductance between the rings, which
also depends on b. In metamaterials, the effect of mu-
tual interaction between all the rings, is accounted for by
the so-called lattice sum Σ, which depends on the lattice
type and parameters. It can be numerically calculated as
explained in Ref. [16]. The complete impedance equation

[Z + iωµ0r0Σ(a, b)] · I = −iωπr20µ0H0 (6)

together with the equilibrium equation (5), forms a sys-
tem of coupled equations, which can be numerically
solved to yield b and I for a given incident amplitude H0

and frequency ω. Then the magnetization of the meta-
material is obtained as M = Iνπr20 = (π/r0a

2)(I/b),
where the effect is further enhanced through the depen-
dence of the volumetric density of rings, ν = 1/(r0a

2b),
on b. Thus, we can characterize our metamaterial with a
nonlinear and resonant M(H0, ω) dependence.
To outline the expected phenomena, we depict some

examples of the interplay of the involved forces in Fig. 2.
The solutions to the balance (5) are graphically seen as
the crossing points, and the stable equilibrium positions
are such that FI < FS for an attempted decrease in b.
Note that the resonant nature of the currents, induced in
the rings depending on b [see Eq. (6)], defines the reso-
nant character of the force FI. Thus, when three mathe-
matical solutions are available, only two are actually sta-
ble; or otherwise there is a single stable state. The phe-
nomenology is qualitatively clear: when the current am-
plitude exceeds certain threshold [where indicated with
cross “2” in Fig. 2(b)], the initial “right-side” equilib-
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FIG. 3: (Color online) Magnetization M(H0, ω) in metamate-
rial vs. incident amplitude H0, observed at relative frequen-
cies of 0.55 (a) or 0.6 (b), for increasing (blue circles) and
decreasing (red bullets) amplitudes.

rium (such as at circle “1”) cannot be achieved, so the
lattice distance b attempts to collapse. However this also
changes the mutual interaction dramatically, leading to
a significant shift of the resonance frequency, so the cur-
rent magnitude drops, permitting the other (“left-side”)
equilibrium state (Fig. 2, circle “4”), corresponding to
the same force curve. On the other hand, with a decreas-
ing amplitude, the “left-side” balance remains stable as
long as the peak attraction force is sufficient to counter
the elastic force (down to an unstable point, cross “3”),
from where the system jumps back to the corresponding
“right-side” solution (circle “1”).

We illustrate typical patterns of the arising nonlinear-
ity (Fig. 3) with elements of radius r0 = 5mm, resonat-
ing individually at 1GHz (the frequency values below
are normalized with respect to the corresponding angu-
lar frequency ω0), with a quality factor of 100. These
are arranged in a metamaterial with a = 4, b0 = 0.3,
bmin = 0.1, with a stiffness coefficient k = 0.44mN/m.
As we show below, although the required coefficient is
rather small with respect to bulk conventional materials,
it can be realized in practice with the help of appropri-
ately bend thin filaments or small plastic springs with re-
alistic geometrical parameters, which fit to the suggested
geometry.

At frequencies lower than the eigenfrequency of the
initial state, we observe a slightly nonlinear M(H0) de-
pendence as the amplitude grows, until the metamaterial
abruptly switches to a stronger compression. However,
when the amplitude is decreased, the metamaterial re-
mains in the compressed state until much lower mag-
nitudes, exhibiting a hysteresis-like behavior [Fig. 3(a)].
But close to the original resonance, the hysteresis disap-
pears while the nonlinearity is quite strong [Fig. 3(b)].

More spectacular phenomena can be observed with the
frequency dependence, which reveals the entire drama of
complex bistable behavior (Fig. 4). With moderate to
high amplitudes, lattice distance b declines slowly with
growing frequency, until at some stage the initial bal-

ance of forces is lost and metamaterial jumps to a more
compressed state, from where it gradually returns back
to the original state with further frequency increase; the
magnetization pattern reflects these changes [see the blue
circles in Figs. 4 (a, b)]. But when the frequency is de-
creased from the high values, the structure remains in the
compressed state across that threshold, and continues to
compress until the mechanical limit at bmin is reached,
where it remains until the currents induced at still de-
creasing frequency become low enough to release the en-
tire jump back to the ground state [Fig. 4(a), red bullets].
This is followed by the magnetization, but note that in
the frequency range of full compression the response of
the metamaterial is linear and hence we can observe a
purely linear resonance [see the red bullets in Fig. 4(b)].

However, at low amplitudes, we can observe highly un-
usual behavior [Figs. 4 (c, d)]. The frequency hysteresis
described above still applies, but in addition there ap-
pears a frequency range where the metamaterial is stable
in a compressed state, but which, however, cannot be
directly accessed in this hysteresis loop [see the green
squares in Figs. 4 (c, d)]. The only ways to reach this
range of compressions are to push the structure once with
an external mechanical force, or to temporarily increase
the intensity. Once there, the metamaterial remains sta-
ble in the corresponding frequency window, jumping to
the ground state when decreasing or increasing the fre-

FIG. 4: (Color online) Increasing (blue circles) and decreas-
ing (red bullets) frequency dependence of (a, c) the lattice
distance b and (b, d) magnetization M(H0, ω) observed at in-
cident amplitudes H0 of (a, b) 20A/m or (c, d) 0.4 A/m. The
quasi-inaccessible stable conformation is shown with green
squares. Note the logarithmic vertical scale in panel (b).
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FIG. 5: (Color online) Experimental observation of the mag-
netoelastic nonlinearity in a system of two resonators. Left:
measured transmission spectra at low (−12.3 dBm) and high
(29 dBm) power. Right: dependence of the resonance fre-
quency on the incident power, showing the experimental (cir-
cles) and theoretical (solid line) results.

quency past the window limits. This spectacular effect
exists because below certain amplitudes, the currents in-
duced in the intermediate range of b are not sufficient to
hold the force balance even at resonance; however they
are still able to do it for smaller b because of the ef-
fectively 1/b2 law in Eq. (4). The range of amplitudes
where this can be observed, is relatively narrow (in our
example, between 0.38 and 0.41 A/m), with the corre-
sponding frequency range becoming increasingly narrow
with decreasing H0, until finally disappearing while the
main hysteresis is still in place up to very low amplitudes.
In order to demonstrate the plausibility of the pre-

dicted effect, we perform a pump-probe experiment for a
pair of closely spaced SRRs, having 4.6mm radius, 1mm
gap and made of 0.18mm-thick copper wire. We sus-
pend the SRRs parallel to the axis of a WR 229 rectan-
gular waveguide, at a distance of 1.4mm (b0 = 0.3r0),
on a dielectric rod with two groves, so that the rings
are able to swing towards each other when an attractive
force is induced. To provide for an elastic force, we use
four U-shaped keratin filaments between the resonators.
The waveguide is excited by combined signal of the vec-
tor network analyzer (Rhode and Schwartz ZVB-20) and
a continuous wave pump generated by a signal gener-
ator (HP 8673B), which is amplified by a signal ampli-
fier (HP 83020A). Frequency scans are performed using a
vector network analyser with a signal power of −30dBm,
while the continuous wave pump is applied at 4.38GHz.
The spectrum of the incident signal is measured using a
broadband directional coupler.
Figure 5 demonstrates a remarkable effect of increasing

electromagnetic wave power, with a resonance frequency
shift of 44.5 MHz. The experimental power dependence
of the resonance matches very well with the theory de-
veloped above (upon the straightforward amendments re-
quired to account for two resonators instead of a bulk ma-
terial), with the corresponding parameters and assuming

a stiffness coefficient of about 1.3mN/m. Note the latter
is very close to the one used for theoretical results and
therefore proves them absolutely feasible.

In summary, we have proposed a novel type of meta-
material introducing mechanical degrees of freedom, and
demonstrated that this provides a clearly measurable ef-
fect with the parameters very close to our assumptions.
The magnetoelastic coupling mechanism leads to many
interesting nonlinear effects which can be useful for fur-
ther theoretical development as well as for future appli-
cations in microwave, THz and optical range.
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