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LIPSCHITZ GAMES

YARON AZRIELI AND ERAN SHMAYA

Abstract. The Lipschitz constant of a finite normal–form game is the maximal change

in some player’s payoff when a single opponent changes his strategy. We prove that games

with small Lipschitz constant admit pure ǫ-equilibria, and pinpoint the maximal Lipschitz

constant that is sufficient to imply existence of pure ǫ-equilibrium as a function of the

number of players in the game and the number of strategies of each player. Our proofs use

the probabilistic method.

1. introduction

The use of mixed strategies in game theory is often criticized, since one is reluctant to

view rational decisions as based on coin tossing (see, e.g., Rubinstein’s discussion [18, Section

3]). Thus the long tradition in the literature of identifying classes of games that admit pure

equilibrium [14, 15, 17]. Pure Nash equilibria do not suffer from the conceptual difficulty of

mixed strategies, which make this solution concept more appealing.

This paper identifies a new class of games that admit pure ǫ-equilibrium. We call these

games Lipschitz games, since their characterizing property is that the payoff of a player

does not change much when a single opponent changes his strategy; thus, each player’s

payoff function is Lipschitz in her opponents’ strategy profile. More precisely, we define

the Lipschitz constant of a game to be the maximal change in some player’s payoff when a

single opponent changes his strategy. If the Lipschitz constant is o(1/n) when the number of

players n grows, then any game with sufficiently many players admits a pure ǫ-equilibrium,

since in this case a player’s payoff is essentially independent on her opponents’ strategy

profile (Proposition 2.3). We show in this paper that, when the number of strategies for
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every player is fixed, a Lipschitz constant of o(1/
√
n log n) is already sufficient to guarantee

pure ǫ-equilibrium (Theorem 2.5) and give an example for games with Lipschitz constant of

order O(1/
√
n) with no such equilibrium (Theorem 2.8).

Our results give new perspective on the literature on large (with many players) games.

Large games are used as a modeling apparatus that captures two intuitive aspects of in-

teractions of many economic agents: Continuity and anonymity. Continuity means that an

agent’s behavior has only small impact on the utility of other agents. Anonymity means

that each agent’s utility depends only on the aggregate behavior of the other agents. A

typical example is a congestion game with many players, such as drivers that choose among

several roads: A driver’s utility depends on the other drivers’ choices only through the con-

gestion they form on each road (anonymity), and each driver has a negligible impact on this

congestion (continuity).

One of the earliest models of strategic interaction with many players, due to Schmei-

dler [19], is games with a continuum of players: The set of players is given by a non–atomic

measure space; continuity is reflected by the fact that opponent’s strategy profiles which are

equal almost everywhere yield the same payoff, and therefore a change in one opponent’s

strategy does not affect a player’s payoff; and anonymity is reflected by the fact that oppo-

nents’ strategy profile affect a player’s payoff only through its integral. Schmeidler shows

that pure Nash equilibrium exists under these assumptions. Kalai [12] considers large fi-

nite games under continuity and anonymity assumptions: Roughly speaking, for the special

case of complete information games with deterministic types, a player’s payoff is a continuous

function of her own strategy and of the empirical distribution of opponent’s types and strate-

gies. Kalai’s result implies existence of pure ǫ-equilibrium in such games with sufficiently

many players. Several subsequent papers [4, 6, 9, 10] relax some of Kalai’s assumptions and

obtain similar results.

Note that the formulation of the continuity assumption in Kalai’s paper already assumes

anonymity. In this paper continuity is captured by the Lipschitz constant of the game, and is

therefore not tied to anonymity. Kalai’s argument is based on self-purification: the realized
2



profile of a mixed Nash equilibrium is, with high probability, a pure ǫ-equilibrium, and it has

been a folk knowledge that the argument is based on continuity alone. This paper pinpoints

the limit behavior of the Lipschitz constant required for the self-purification argument to

hold and for pure equilibrium to exist.

A common situation where the continuity assumption holds without the anonimity is

network games [11, Sections 9.2-9.3]. In these games players are identified with nodes of a

graph, and the payoff of each player depends in a Lipschitz continuous way on the empirical

distribution of strategies of her neighbors. These games are not anonymous, but it follows

from our result that if the set of neighbors of each player is sufficiently large relative to the

total number of players, then a pure approximate equilibrium exists.

Section 2 contains the necessary definitions and the main results. The proofs of the

existence result and of its tightness are in Sections 3 and 4. In Section 5 we show that if

the number of strategies of each player is unbounded, then it is not possible to improve the

trivial bound of o(1/n) to guarantee pure ǫ-equilibrium existence. In Section 6 we consider

the special case of anonymous games and show that for such games the required Lipschitz

constant is o(1), that is independent of the number of players in the game, even though

the self-purification argument fails. Appendix A shows that existence of pure approximate

equilibria in Lipschitz games implies Nash’s theorem on existence of mixed equilibrium.

2. Main results

An n–player game in normal form G is given by finite sets {Ai}ni=1 of strategies and by

payoff functions {fi : A → R}ni=1, where A =
∏n

i=1Ai is the set of strategy profiles. A mixed

strategy for player i is a probability distribution over Ai. Nash equilibrium and ǫ–Nash

equilibrium (in pure or mixed strategies) are defined as usual.

For each i, we view the product space A−i =
∏

j 6=iAj as a metric space, with the metric

ρ(a′−i, a
′′
−i) = #{1 ≤ j ≤ n : j 6= i, a′j 6= a′′j}.
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2.1. Definition. The Lipschitz constant of G is given by

δ(G) = max{|fi(ai, a′−i)− fi(ai, a
′′
−i)|},

where the maximum ranges over all players i, all strategies ai ∈ Ai and all pairs a′−i, a
′′
−i of

opponents’ strategy profiles such that ρ(a′−i, a
′′
−i) = 1.

Games with Lipschitz constant δ have the property that a player’s payoff does not change

by more than δ when one opponent changes his strategy. This implies that for each i and

each ai ∈ Ai the function fi(ai, ·) is δ–Lipschitz on A−i. We denote by L(n,m, δ) the set

of games with n players, at most m strategies for every player and Lipschitz constant of at

most δ.

2.2. Remark. A notion of ‘influence of a player’ appears also in [1] for a different purpose

than in this paper. In our setup, the Lipschitz constant is a property of the game G, while

in their setup the influence is a property of the distribution of players’ types and of the

mechanism.

The following Proposition 2.3 establishes a trivial sufficent condition for existence of pure ǫ-

equilibrium when the Lipschitz constant is so small that a player’s payoff essentially depends

only on her own strategy.

2.3. Proposition. Let ǫ > 0 and m,n ∈ N. Then every game in L(n,m, δ) for δ = ǫ/2n

admits a pure ǫ–equilibrium.

Proof. Let a ∈ A be an arbitrary strategy profile and let a∗ be a strategy profile such that

a∗i is a best response to a−i for every player i. Then a∗ is an ǫ–equilibrium. Indeed, for every

player i and every deviation d ∈ Ai one has

fi(d, a
∗
−i) ≤ fi(d, a−i) + (n− 1)ǫ/2n ≤

fi(a
∗
i , a−i) + (n− 1)ǫ/2n ≤ fi(a

∗
i , a

∗
−i) + 2(n− 1)ǫ/2n < fi(a

∗
i , a

∗
−i) + ǫ,
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where the first and third inequalities follow from the Lipschitz property of fi and the second

inequality follows from the definition of a∗. �

2.4. Corollary. Let δ : N → [0, 1] be such that δ(n) = o(1/n). Then for every ǫ > 0, there is

N such that every game with n ≥ N players and Lipschitz constant smaller than δ(n) admits

a pure ǫ-equilibrium.

Since our main interest is in games with many players, we would like to think of the size of

the strategy set as fixed and increase the number of players to infinity. Theorem 2.5 estab-

lishes existence of pure approximate equilibrium in games with sufficiently small Lipschitz

constant, which is asymptotically much larger than the Lipschitz constant in Proposition 2.3.

Theorem 2.8 shows the almost tightness of Theorem 2.5.

2.5.Theorem. Let ǫ > 0 andm,n ∈ N. Then every game in L(n,m, δ) for δ = ǫ/
√

8n log(2mn)

admits a pure ǫ–equilibrium.

2.6. Corollary. Fix m and let δ : N → [0, 1] be such that δ(n) = o(1/
√
n logn). Then for

every ǫ > 0, there is N such that every game with n ≥ N players, m strategies for each

player and Lipschitz constant smaller than δ(n) admits a pure ǫ-equilibrium.

2.7. Remark. Deb and Kalai’s [9] result implies that any game with Lipschitz constant of

order O(1/n) admits a pure ǫ-equilibrium.

2.8. Theorem. For every even n large enough there is a game in L(n, 2, 60/
√
n) with no

pure 1/3–equilibrium. Moreover, the payoffs can be chosen to be bounded in [−1, 1].

3. Proof of Theorem 2.5

The proof follows Kalai’s [12] proof for anonymous games. The gist of the proof is the

observation that a random realized strategy profile of a mixed Nash equilibrium is, with

high probability, an ǫ-equilibrium. Kalai dubs this phenomena self–purification. In Kalai’s

anonymous setup, the argument relies on the law of large numbers. Here we use the related
5



fact that the value of a Lipschitz function under a random input is concentrated around

its expectation. A similar argument appears in Deb and Kalai [9] and Carmona and Pod-

czeck [6].

3.1. Proposition. [13, Corollary 1.17] Let A1, . . . , An be finite sets and let µ = µ1×· · ·×µn

be a product probability measure over A =
∏

iAi. Let F : A → R be a real valued function

such that |F (a)− F (a′)| ≤ 1 for every a, a′ ∈ A such that ρ(a, a′) = 1. Then for every r > 0

µ

({

a : F (a) ≥
∫

Fdµ+ r

})

≤ e−r2/2n.

3.2. Remark. (1) If the Lipschitz constant for F is δ (instead of 1 as in the above formu-

lation) then by considering the function F/δ the bound on the probability becomes

e−r2/2nδ2 .

(2) By applying the same bound to −F one gets

µ

({

a :

∣

∣

∣

∣

F (a)−
∫

Fdµ

∣

∣

∣

∣

≥ r

})

≤ 2e−r2/2n.

Consider a game in L(n,m, δ) with δ = ǫ/
√

8n log(2mn). Let (µ1, . . . , µn) be a mixed

strategy Nash equilibrium of the game. Thus, each µi is a probability distribution over Ai

and

(1) support(µi) ⊆ argmax
ai∈Ai

∫

fi(ai, τ)µ−i(dτ),

where µ−i =
∏

j 6=i µj.

For every player i and every strategy h ∈ Ai let Ei,h ⊆ A be the set of all strategy profiles

a such that, if player i plays h against a−i her payoff is roughly the same as her expected

payoff when she plays h and the opponents play their Nash equilibrium strategy:

Ei,h = Ai ×
{

a−i ∈ A−i :

∣

∣

∣

∣

fi(h, a−i)−
∫

fi(h, τ)µ−i(dτ)

∣

∣

∣

∣

≤ ǫ/2

}

.
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From Proposition 3.1, the Lipschitz property of fi(h, ·) and the choice of δ it follows that

µ(Ec
i,h) ≤ 2 exp(−ǫ2/8(n− 1)δ2) < 1/nm

for every player i and every h ∈ Ai. Since there are at most mn such events Ei,h, it follows

that µ(∩Ei,h) > 0. Let a∗ be a strategy profile such that a∗ ∈ support(µ) and a∗ ∈ ∩Ei,h.

We claim that a∗ is an ǫ–equilibrium. Indeed, for every player i and every deviation d ∈ Ai

one has

fi(d, a
∗
−i) ≤

∫

fi(d, τ)µ−i(dτ) + ǫ/2 ≤
∫

fi(a
∗
i , τ)µ−i(dτ) + ǫ/2 ≤ fi(a

∗
i , a

∗
−i) + ǫ

where the first inequality follows from the fact that a∗ ∈ Ei,d, the second from (1) and the

third from the fact that a∗ ∈ Ei,a∗
i
.

4. Proof of Theorem 2.8

Let the number of players be n = 2k and let the set of strategies for each player be

{+1,−1}. We divide the players into two groups of k players, females and males, and denote

their strategy profiles by x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk) respectively, viewed as row

vectors. Fix some constant δ > 0. We consider games that can be described by a k × k

matrix M = {mij} with entries ±1. The payoff for female i is K(ui) where K(t) = t for

|t| ≤ 1 and K(t) = t/|t| for |t| > 1, and ui, the untruncated payoff of female i, is given by

ui(x̄, ȳ) = δxi

∑

j

mijyj = δxi · (MȳT )i.

The payoff for male j is given by K(vj) where the untruncated payoff of male j is given by

vj(x̄, ȳ) = −δyj
∑

i

mijxi = −δyj · (x̄M)j .

Thus, up to truncation (which ensures that payoffs are bounded in [−1, 1]), every player

plays matching pennies against each player of the opposite gender. Each player uses the

same coin in all their matching pennies games, and the parameter mij dictates which player
7



wants to match in the game between female i and male j. Notice that the Lipschitz constant

in every such game is at most 2δ. Also, from the definitions of the untruncated payoff it

follows that

(2)
∑

i

ui(x̄, ȳ) = −
∑

j

vj(x̄, ȳ)

for every profile (x̄, ȳ).

It is helpful to think about the game as played on a k × k array of lights, each can be

either on or off, with switches for each row and each column, such that if a switch of a row

or column is pulled then all the lights in that row or column are switched (from on to off or

from off to on). Every female player controls a row switch and every male player controls

a column switch. The purpose of a female players is to have as many lights ‘on’ in her

row, and the purpose of a male player is to have as many lights ‘off’ in his column. In a

similar framework, Gale and Berlekamp introduced a two-player zero-sum game with perfect

information, where Player 1 chooses the initial configuration of the lights, and then Player

2 chooses which switches to pull. The goal of player 2 is to minimize the number of lights.

The following lemma says that there exists some initial configuration of the lights such

that whatever switches are performed on the rows, many columns will be unbalanced (i.e.

will have much more lights on than off or vice versa).

4.1. Lemma. For sufficiently large k there exists k × k matrix M with entries in {+1,−1}

such that

(3) #

{

1 ≤ j ≤ k : |(x̄M)j | >
√
k

20

}

> k/3

for every row vector x̄ of length k with entries in {+1,−1}.

Proof of Theorem 2.8. By Lemma 4.1 for every sufficiently large k and δ = 20/
√
k < 30/

√
n

there exits a k × k matrix M with the property

(4) #

{

1 ≤ j ≤ k : |(x̄M)j | >
1

δ

}

> k/3

8



for every strategy profile x̄ of the females.

We claim that if M satisfies (4) then the game admits no 1/3-equilibrium. Indeed, fix a

strategy profile x̄ for the females and let ȳ be a profile such that all the males play 1/3–best

response to x̄. Since by changing his strategy a player inverts the sign of his untrancated

payoff, it follows that vj ≥ −1/6 for every male j. In particular, vj ≥ 1 whenever |vj| ≥ 1.

Therefore, by (4) it follows that

∑

j

vj(x̄, ȳ) > k/3 ∗ 1 + (2k/3) ∗ (−1/6) > k/6.

By (2), it follows that ui(x̄, ȳ) < −1/6 for some female i. Since every player inverts the

sign of her payoff by changing strategy it follows that female i does not 1/3 best-respond to

ȳ. �

The proof of Lemma 4.1 uses the probabilistic method. Alon and Spencer [2, Section

2.5] use the probabilistic method to prove that for every initial configuration it is possible

to switch lights to unbalance the matrix. We turn the probabilistic method ‘on its head’

to prove that there exists some initial configuration for which any switching will result in

an unbalanced matrix. The argument follows the proof of lower bound in the classical

discrepancy problem [2, Section 13.4].

Proof of Lemma 4.1. Fix k and let Mk×k = {mij} where mij are independent random signs.

For a fixed x̄, the entries of z = x̄ ·M are i.i.d, and each zj is distributed like the sum of k

independent random signs. Thus, by the central limit theorem

P

(

|zj | ≤
√
k

20

)

k→∞−−−→ 1√
2π

∫ 1/20

−1/20

e−τ2/2dτ < 1/25

Fix a row vector x̄ of length k with entries in {+1,−1} and let Ex̄ be the event that (3) is

not satisfied. Then Ex̄ is the event that there are more than 2k/3 successes in k independent

trials with probability of success smaller than 1/25. From Chernoff inequality [2, Theorem
9



A.1.4] we get

P(Ex̄) ≤ exp
(

−2k (2/3− 1/25)2
)

< 1/2k.

Since there are only 2k possible x̄-s, it follows that P (∪x̄Ex̄) < 1. Therefore, for some choice

of M none of the Ex̄ obtains, as desired. �

5. Large strategy sets

Proposition 2.3 establishes a trivial existence result where the bound on the Lipschitz

constant is independent of the number of strategies in the game. Proposition 5.1 below

shows that for games with unbounded strategy sets this bound is the best possible (up to a

constant).

5.1. Proposition. For every even n there is a game in L(n, 2n/2, 1/n) with no pure 1/8–

equilibrium.

To prove the proposition we construct another ‘mass version’ of matching pennies. Again

we divide the players into groups of females and males, but this time every player has a coin

for each of her/his opponents. The strategy of every player encodes all their coins.

Proof. Let the number of players be even n = 2k, and let the strategy set of each player

be {+1,−1}k. We divide the players into two groups, females and males, and denote their

strategy profiles by x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk) respectively. The strategy of female

i is given by the vector (xi[j])
k
j=1, and similarly the strategy of male j is given by the vector

(yj[i])
k
i=1.

The payoff to female i is

ui(x̄, ȳ) =
1

4k

∑

j

xi[j] · yj[i],

and the payoff to male j is

vj(x̄, ȳ) = − 1

4k

∑

i

xi[j] · yj[i].

10



The game has Lipschitz constant 2/4k = 1/n but no pure 1/8–equilibrium: For every strategy

profile of the opponents, every player can guarantee 1/4. Therefore, in every 1/8–equilibrium

every player should get at least 1/8. But this is impossible since the sum of all the players’

payoffs is 0 in every profile. �

6. Anonymous games

A game G is anonymous if all the players have the same strategy set and the payoff to each

player i is not changed when two other players j and k exchange the strategies they play.

In this section we show that for the class of anonymous games a much stronger result than

Theorem 2.5 holds (assuming a fixed number of strategies). Namely, the Lipschitz constant

required to guarantee existence of pure ǫ-equilibrium is independent of the number of players

in the game:

6.1. Theorem. Let ǫ > 0 and m,n ∈ N. Then every anonymous game in L(n,m, δ) for

δ = ǫ/2m admits a pure ǫ–equilibrium.

6.2. Corollary. Fix m and let δ : N → [0, 1] be such that δ(n) = o(1). Then for every

ǫ > 0, there is N such that every game with n ≥ N players, m strategies for each player and

Lipschitz constant smaller than δ(n) admits a pure ǫ-equilibrium.

Before the proof we note that similar results to that of Theorem 6.1 appeared in previous

papers: Rashid [16] was the first to prove an asymptotic (in the number of players) purifica-

tion result for anonymous games; our proof follows the footsteps of his, the main difference

being that we start with finite sets of strategies as a primitive while in Rashid’s formulation

the strategy set of each player is the unit simplex. See also [3], [5, Lemma 5] and [7] for

related results.

Daskalakis and Papadimitriou [8, Theorem 2.1] proved that every anonymous game in

L(n,m, δ) for δ = ǫ/O(m2) admits pure ǫ–equilibrium, and conjectured that the O(m2) can

be improved to O(m); Theorem 6.1 confirms their conjecture. The difference between our

proof and theirs can be roughly described as follows: Our approach is to build an auxiliary
11



game in which the strategy set of each player is extended to the entire unit simplex, use Nash’s

Theorem to obtain an equilibrium of the auxiliary game, and then use the Shapley-Folkman

theorem to “purify” the equilibrium without changing the utilities too much. Daskalakis

and Papadimitriou, on the other hand, extend the best-response function to a continuous

function on the simplex, use Brower’s theorem to obtain a fixed point of this function, and

then use Hall’s marriage lemma for the “purification” procedure.

Proof of Theorem 6.1. We denote by S the common set of strategies, so that |S| = m and

A = Sn. We consider the vector space R
S equipped with the standard basis {1s|s ∈ S} and

the L1 norm ‖ · ‖1. Let ∆n(S) be the set of all elements {x[s]}s∈S ∈ R
S such that x[s] ≥ 0

for every s ∈ S and
∑

s x[s] = n. Thus, ∆n(S) is an m−1 dimensional simplex in R
S, whose

vertices are n1s. Elements of ∆n(S) with integral entries are called distributions. The set

of all distributions in ∆n(S) is denoted Dn(S). One can think about Dn(S) as the set of

possible ways to distribute n identical balls in m cells.

Fix a strategy profile a = (s1, . . . , sn) ∈ A and a player i. Let d(a−i) =
∑

j 6=i 1
sj ∈ Dn−1(S)

be the distribution induced by a−i. Since the game is anonymous, if d(a−i) = d(a′−i) then

player i gets the same payoff against a−i and a′−i. Thus, we can describe the game by payoff

functions {Fi : S×Dn−1(S) → R}ni=1, where Fi(s, d) is the payoff for player i under a strategy

profile in which player i plays s and the distribution of her opponent’s strategies is d.

If the Lipschitz constant of an anonymous game is δ then the payoff functions satisfy the

following Lipschitz property:

(5) |Fi(s, d)− Fi(s, d
′)| ≤ δ‖d− d′‖1

2

for every s ∈ S and d, d′ ∈ Dn−1(S). We extend the domain of each Fi(s, ·) from Dn−1(S)

to ∆n−1(S), so that the Lipschitz property is preserved, for example by defining

Fi(s, x) = max
d∈Dn−1(S)

{Fi(s, d)− δ‖d− x‖1/2}

for every x ∈ ∆n−1(S).
12



Consider now the auxiliary n-player game in normal form where the strategy set of each

player is ∆1(S) and the payoff for player i under strategy profile p = (p1, . . . , pn) is given by

Ri(p) =
∑

s∈S

pi[s]Fi

(

s,
∑

j 6=i

pj

)

.

The strategy set of every player is compact and convex, the payoff functions are jointly

continuous, and each function is linear in a player’s own strategy. Therefore the game

admits a Nash equilibrium p̄ = (p̄1, . . . , p̄n). Because of the linearity in own strategy, the

equilibrium property implies that

(6) support(p̄i) ⊆ argmax
s∈S

Fi

(

s,
∑

j 6=i

p̄j

)

for every player i.

By the Shapley-Folkman Theorem (e.g., [20]), we can write
∑

i p̄i =
∑

i∈E qi +
∑

i∈Ec 1
s̄i,

where E is a set of m − 1 players, qi ∈ ∆1(S) for each i ∈ E and s̄i ∈ support(p̄i) for each

i ∈ Ec. By replacing each qi, i ∈ E, by some s̄i ∈ support(p̄i) we get a pure strategy profile

ā = (s̄1, . . . , s̄n) such that ‖
∑

i 1
s̄i −

∑

i p̄i‖1 ≤ 2(m− 1). In particular, it follows that

(7)

∥

∥

∥

∥

∥

∑

j 6=i

1s̄j −
∑

j 6=i

p̄j

∥

∥

∥

∥

∥

1

≤ 2m

for every player i.

We claim that the strategy profile ā is a 2mδ-equilibrium. Indeed, for every player i and

every strategy s ∈ S,

fi(s, ā−i) = Fi

(

s,
∑

j 6=i

1s̄j

)

≤ Fi

(

s,
∑

j 6=i

p̄j

)

+mδ ≤ Fi

(

s̄i,
∑

j 6=i

p̄j

)

+mδ ≤

Fi

(

s̄i,
∑

j 6=i

1s̄j

)

+ 2mδ = fi(s̄i, ā−i) + 2mδ.

13



The equalities follow from the definition of Fi. The first inequality follows from (5) and (7),

the second from the fact that s̄i ∈ support(p̄i) and (6), and the third again from (5) and (7).

�

As a last remark in this section we note that the self-purification argument in the proof

of Theorem 2.5 fails when the Lipschitz constant of the game is not sufficiently small, even

if the game is anonymous. This is illustrated in the following example.

6.3. Example. Consider a town with 2n+1 individuals (players) and one restaurant. Each

player should decide between going out for dinner in the restaurant (strategy R) or cook

her own dinner at home (H). Players like the restaurant to be populated but not crowded.

Specifically, the payoff to a player that chooses R when k out of her 2n opponents also choose

R is given by

g(k) =















1, if |k − n| ≤ 0.477
√
n

(

1− δ
(

|k − n| − 0.477
√
n
)

)+

, otherwise,

where δ > 0 is a small number. A player that chooses to stay home (H) gets a fixed payoff

of E(g(X)) (independently of the choices of other players), where X is a random variable

with binomial distribution X ∼ Bin(2n, 1/2).

First, notice that this is an anonymous game (actually this game is even symmetric in the

sense that all the players have the same payoff function). Second, the Lipschitz constant of

this game is δ. Third, the strategy profile µ in which all players mix between R and H with

equal probabilities is an equilibrium.

The function g was chosen such that, when n is large, E(g(X)) is approximately 1/2; this

follows from the central limit theorem. Thus, each player can guarantee a payoff close to 1/2

by staying at home. It follows that, for ǫ = 1/4, a strategy profile is an ǫ-equilibrium if and

only if the number of players k that choose R is either zero or in the interval where g(k) is

close to 1/2. But when the equilibrium µ is played the probability of this event diminishes

when n increases. Thus, the random realized profile will typically not be a 1/4-equilibrium.
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Appendix A. From pure ǫ-equilibrium to exact mixed equilibrium

Theorem 2.5 states that if the Lipschitz constant of a game is small enough then pure ǫ-

equilibrium exists. This result is an assertion about relationships between linear inequalities:

It says that if a certain finite number of linear inequalities about the entries of a payoff matrix

(inequalities that assert that the Lipschitz constant is smaller than δ) are satisfied, then there

is a strategy profile for which another finite number of linear inequalities (inequalities that

assert that this profile is an ǫ-equilibrium) is satisfied. More formally, Theorem 2.5 is a first

order sentence in the language of real numbers with addition (without multiplication).

However, the proof of Theorem 2.5 is based on Nash’s theorem of existence of mixed

equilibrium, and therefore on Brouwer’s fixed point theorem. It may seem dubious that an

appeal to such powerful theorems is required (note that the much more trivial Proposition 2.3

clearly does not rely on a fixed point argument). To show the non-triviality of the bound on

the Lipschitz constant in Theorem 2.5, we show below that in fact Theorem 2.5 also implies

Nash’s theorem via an elementary argument. A similar argument appears in Schmeidler [19,

pp. 298-299] for the non-atomic setup.

Claim. Assume Theorem 2.5. Then every finite normal-form game admits a mixed strategy

Nash equilibrium.

Sketch of Proof. Fix a normal form game G with n players and strategy sets A1, . . . , An. Let

m be such that |Ai| ≤ m for every i, and fix ǫ > 0. Let L be a sufficiently large integer

and consider the game G′ with n · L players divided into groups (T1, . . . , Tn) of size L each,

where players in Ti have strategy sets Ai. In the game G′ every n-tuple of players (t1, . . . , tn)

where ti ∈ Ti play the game G, and each player must use the same strategy in all the games

in which he participates. The payoff to a player is the average of all the payoffs he receives.

If δ is the Lipschitz constant of the original game G, then the Lipschitz constant of G′ is

at most δ/L. Thus, the game G′ has nL players and for sufficiently large L its Lipschitz

constant is smaller than ǫ/
√

8nL log(2mnL), and therefore by Theorem 2.5 G′ admits a pure

ǫ-equilibrium. If µi ∈ ∆(Ai) is the distribution of strategies played by players in Ti according
15



to the pure ǫ-equilibrium profile of G′, then (µ1, . . . , µn) is a mixed ǫ-equilibrium in G. Thus,

we proved that G admits a mixed ǫ-equilibrium for every ǫ > 0. An accumulation point of

these ǫ-equilibria is a mixed Nash equilibrium of G. �
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[3] Guilherme Carmona. On the purification of Nash equilibria of large games. Econom. Lett., 85(2):215–

219, 2004.

[4] Guilherme Carmona. Purification of Bayesian-Nash equilibria in large games with compact type and

action spaces. J. Math. Econom., 44(12):1302–1311, 2008.

[5] Guilherme Carmona and Konrad Podczeck. On the existence of pure-strategy equilibria in large games.

Journal of Economic Theory, 144:1300–1319, 2009.

[6] Guilherme Carmona and Konrad Podczeck. Ex–post stability of Bayes–Nash equilibria of large games.

Games and Economic Behavior, forthcoming.

[7] Edward Cartwright and Myrna Wooders. On equilibrium in pure strategies in games with many players.

Internat. J. Game Theory, 38(1):137–153, 2009.

[8] Constantinos Daskalakis and Christos Papadimitriou. Computing equilibria in anonymous games. 48th

Annual IEEE Symposium on Foundations of Computer Science, pages 83–93, 2007.

[9] Joyee Deb and Ehud Kalai. Large games with limited individual impact. Working paper, 2010.

[10] Ronen Gradwohl and Omer Reingold. Partial exposure in large games. Games and Economic Behavior,

68(2):602–613, 2010.

[11] Matthew O. Jackson. Social and economic Networks. Princeton University Press, 2008.

[12] Ehud Kalai. Large robust games. Econometrica, 72(6):1631–1665, 2004.

[13] Michel Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and

Monographs. American Mathematical Society, Providence, RI, 2001.

[14] Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium in games with strategic

complementarities. Econometrica, 58(6):1255–1277, 1990.

[15] Dov Monderer and Lloyd S. Shapley. Potential games. Games Econom. Behav., 14:124–143, 1996.
16



[16] Salim Rashid. Equilibrium points of nonatomic games: Asymptotic results. Econom. Lett., 12(1):7–10,

1983.

[17] Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Internat. J. Game

Theory, 2:65–67, 1973.

[18] Ariel Rubinstein. Comments on the interpretation of game theory. Econometrica, 59(4):909–924, 1991.

[19] David Schmeidler. Equilibrium points of nonatomic games. J. Statist. Phys., 7:295–300, 1973.

[20] Lin Zhou. A simple proof of the shapley-folkman theorem. Econ. Theorey, 3:371–372, 1993.

E-mail address : azrieli.2@osu.edu

Department of Economics, The Ohio State University

E-mail address : e-shmaya@kellogg.northwestern.edu

Kellogg School of Management, Northwestern University

17


	1. introduction
	2. Main results
	3. Proof of Theorem ??
	4. Proof of Theorem ??
	5. Large strategy sets
	6. Anonymous games
	Appendix A. From pure -equilibrium to exact mixed equilibrium
	References

