WKB - Not So Bad After All Chung-Sang Ng Physics Department, Auburn University, Auburn, AL 36849

July 6, 1992

It was found recently that tunneling probabilities over a barrier is roughly twice as large as that given by standard WKB formula. Here we explained how this come from and showed that WKB method does give a good approximation over almost entire energy range provided that we use appropriate connection relations.

PACS numbers: $02.60+\mathrm{y}, 03.65 \mathrm{Sq}, 02.70+\mathrm{d}$.

I. Introduction

WKB method was first invented by Jeffreys ${ }^{1}$ and was applied to solve Schrödinger equation by Wentzel, Kramers and Brillouin ${ }^{2}$. It is a powerful tool and has many applications, e. g., waves in a inhomogeneous plasma ${ }^{3}$. Consider a second order ordinary differential equation:

$$
\begin{equation*}
\psi^{\prime \prime}(x)+k^{2}(x) \psi(x)=0 \tag{1}
\end{equation*}
$$

where prime denotes differentiation with respect to argument. The function k^{2} may be negative for some x. In this case, we define $\kappa^{2}(x) \equiv-k^{2}(x)$. WKB method approximates solutions of (1) by combinations of

$$
\begin{equation*}
\exp \left(\pm i \int^{x} k(y) d y\right) / \sqrt{k(x)} \tag{2}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\left|k^{\prime} / k^{2}\right| \ll 1 \tag{3}
\end{equation*}
$$

is satisfied. If (3) is not satisfied over a range (or at a point), then we need to connect WKB solutions of both sides appropriately by some connection relations. One common situation where (3) breaks down is that $k^{2} \approx 0$ near a turning point.

In a recent paper ${ }^{4}$, a quantum mechanical tunneling example is considered. The Schrödinger equation in this one dimensional problem can be
represented by (1) with

$$
k^{2}(x)= \begin{cases}E-\alpha x^{2} & \text { for } 0 \leq x \leq b \tag{4}\\ E & \text { otherwise }\end{cases}
$$

where $b=\sqrt{E_{b} / \alpha}$ and E, E_{b} and α are constants. E may be assigned the physical meaning of energy. It was shown that, for $E<E_{b}$, the true (numerical) tunneling probabilities T_{n} (see Appendix for numerical method) are roughly twice as large as the well known WKB tunneling factor:

$$
\begin{equation*}
T_{w}=e^{-2 \int_{a}^{b} \kappa(x) d x}=e^{\frac{E}{\sqrt{\alpha}}\left\{\ln \left[\beta+\sqrt{\beta^{2}-1}\right]-\beta \sqrt{\beta^{2}-1}\right\}}, \tag{5}
\end{equation*}
$$

where $a=\sqrt{E / \alpha}$ and $\beta=\sqrt{E_{b} / E}$. Values of T_{w} and T_{n} for different E are shown in Table I and Table II.

This result was unexpected to us at first. After a little survey over some standard textbooks, it was found that two books did warn about such an error ${ }^{5,6}$, although without elaborations. Another book did an example with correct connection relation ${ }^{7}$, but did not give general discussions. Two other books used the standard tunneling factor without warning ${ }^{8,9}$, although one of them indicated that it is just a rough approximation ${ }^{9}$. In this case, we have reasons to assume that the restrictions in applying the standard WKB formula are not very well known to students. Therefore, we would like to show how to apply WKB method to solve a tunneling problem more carefully.

In section II, we briefly review the derivation of the standard WKB tunneling factor using standard connection relations, which are also useful for
our discussions later, over a typical turning point. In section III, the tunneling factor is corrected when one turning point is a sharp edge. In section IV, further correction is made when the tunneling probability is not small. Section V considers the case that $E \rightarrow 0$. Section VI deals with the case that $E \approx E_{b}$. Finally section VII treats the case that $E>E_{b}$. It will be shown that WKB method does give good approximation to the tunneling probability if we use different connection relations for different energy range appropriately.

II. Standard WKB tunneling formula

Consider (1) with x near a turning point $x=0$. Assume that $k^{2}(x)$ can be approximated by:

$$
\begin{equation*}
\left.k^{2}(x) \approx \frac{d k^{2}}{d x}\right|_{x=0} x \tag{6}
\end{equation*}
$$

Let $\left(d k^{2} / d x\right)_{0}>0$ for the time being. Solutions of (1) with k^{2} given by (6) can be written as combinations of Airy's functions ${ }^{10} \mathrm{Ai}(-\lambda x)$ and $\operatorname{Bi}(-\lambda x)$ with $\lambda \equiv\left|\left(d k^{2} / d x\right)_{0}\right|^{1 / 3}$. Then the asymptotic behaviors of Ai and Bi give the standard WKB connection relations ${ }^{10}$:

$$
\begin{array}{ccccc}
-\infty & \longleftarrow & x & \longrightarrow & \infty \\
\frac{1}{2 \sqrt{\kappa}} e^{-\int_{x}^{0} \kappa d y} & \longleftarrow & \sqrt{\frac{\pi}{\lambda}} \operatorname{Ai}(-\lambda x) & \longrightarrow & \frac{1}{\sqrt{k}} \sin \left(\int_{0}^{x} k d y+\frac{\pi}{4}\right) \tag{7}\\
\frac{1}{\sqrt{\kappa}} e^{\int_{x}^{0} \kappa d y} & \longleftarrow & \sqrt{\frac{\pi}{\lambda}} \operatorname{Bi}(-\lambda x) & \longrightarrow & \frac{1}{\sqrt{k}} \cos \left(\int_{0}^{x} k d y+\frac{\pi}{4}\right)
\end{array}
$$

For $\left(d k^{2} / d x\right)_{0}<0$, we only need to change λ to $-\lambda$ in (7), interchange the limits of integrations and interchange left and right hand sides. These standard connection relations are valid only if the turning point is smooth enough, i.e., we require (6) to be valid up to some x where (3) is also satisfied. This is not always possible ${ }^{3}$.

Consider a barrier with $k^{2}>0$ for $x \leq a$ and $x \geq b, k^{2}<0$ for $a \leq x \leq b$ and that WKB condition (3) is valid over the whole range of x except near the two smooth turning points a and b. Then for a incident wave from $x=-\infty$ direction, we have only outgoing wave for $x>b$:

$$
\begin{equation*}
\psi=\frac{1}{\sqrt{k}} e^{i \int_{b}^{x} k d y} \tag{8}
\end{equation*}
$$

By (7), ψ connects to:

$$
\begin{equation*}
\psi=\left[\frac{1}{\sqrt{\kappa}} e^{\int_{x}^{b} \kappa d y}+\frac{i}{2 \sqrt{\kappa}} e^{-\int_{x}^{b} \kappa d y}\right] e^{-i \pi / 4} \tag{9}
\end{equation*}
$$

for $a<x<b$. Then for x close to a,

$$
\begin{equation*}
\psi \approx \frac{e^{I}}{\sqrt{\kappa}} e^{-\int_{a}^{x} \kappa d y-i \pi / 4} \tag{10}
\end{equation*}
$$

where $I \equiv \int_{a}^{b} \kappa d y$ and is assumed large. By (7) again, ψ connects to

$$
\begin{equation*}
\psi=2 \frac{e^{I-i \pi / 4}}{\sqrt{k}} \sin \left(\int_{x}^{a} k d y+\pi / 4\right) \tag{11}
\end{equation*}
$$

for $x \leq a$. Since the sine term is just a combination of incoming and reflected wave with equal intensity, we have reflection coefficient $R_{w} \approx 1$ and tunneling probability $T_{w}=e^{-2 I}$. This is how (5) come from.

From the above derivation, we see that in order to apply the standard WKB tunneling factor (5), three conditions must be satisfied :
(i) there are two and only two turning points;
(ii) (3) is valid except near the two turning points where k^{2} can be approximated by (6); and
(iii) $T_{w} \ll 1$.

We immediately see that the potential given by (4) does not satisfy (ii) since k^{2} is discontinuous at $x=b$. This is the main reason for the factor of two error. Also, for larger E, T_{w} is not very small, (iii) is also violated.

III. Sharp turning point correction

Let us now consider k^{2} with a discontinuity at $x=b$, so that $k^{2}=-\kappa_{b}^{2}<0$ at $b-0^{+}$and $k^{2}=k_{b}^{2}>0$ at $b+0^{+}$. We still assume that the WKB condition (3) remains valid except at b and near the smooth turning point $x=a$. For $x>b$, there is only outgoing wave (8). It connects to

$$
\begin{equation*}
\psi=\frac{1}{2 \sqrt{\kappa}}\left\{\left[\sqrt{\frac{\kappa_{b}}{k_{b}}}-i \sqrt{\frac{k_{b}}{\kappa_{b}}}\right] e^{\int_{x}^{b} \kappa d y}+\left[\sqrt{\frac{\kappa_{b}}{k_{b}}}+i \sqrt{\frac{k_{b}}{\kappa_{b}}}\right] e^{-\int_{x}^{b} \kappa d y}\right\} \tag{12}
\end{equation*}
$$

for $a<x \leq b$. We can check whether (12) is correct by substituting $x=b$ into (8) and (12). We should see that ψ and ψ^{\prime} are indeed continuous. Similar to steps (9) to (11) and still assuming I to be large, the corrected tunneling
probability can be found as:

$$
\begin{equation*}
T_{1}=\frac{4 \kappa_{b} k_{b}}{\kappa_{b}^{2}+k_{b}^{2}} T_{w} . \tag{13}
\end{equation*}
$$

For k^{2} given by (4),

$$
\begin{equation*}
T_{1}=\frac{4 \sqrt{E_{b} / E-1}}{E_{b} / E} T_{w} . \tag{14}
\end{equation*}
$$

It can be easily shown by (13) that $T_{1} \leq 2 T_{w}$. The equal sign holds for $k_{b}=\kappa_{b}$. This explains the factor of two found by ref. 4, Some values of T_{w} and T_{1} are shown in Table I to compare with true (numerical) tunneling probabilities T_{n}. Parameters $\alpha=0.040965, E_{b}=1.2776$ were chosen so that we may compare with Table I of ref. 4. We see that T_{1} is much closer to T_{n} from $E \approx 0.2$ to $E \approx 0.6$ while T_{w} is nearly a factor of two smaller. However, for large E when T_{w} lager than $0.2, T_{1}$ also fails since we assumed T_{w} to be small in the above derivation. This error will be corrected in next section.

IV. Finite T_{w} correction

First, let us consider the correction of T_{w} itself. If we keep both terms in (9), then ψ will connects to

$$
\begin{equation*}
\psi=\frac{1}{\sqrt{k T_{w}}}\left[2 \sin (\theta)+\frac{i}{2} T_{w} \cos (\theta)\right] e^{-i \pi / 4} \tag{15}
\end{equation*}
$$

for $x<a$ where $\theta \equiv \int_{x}^{a} k d y+\pi / 4$. Then by finding the coefficient of incoming term, the corrected tunneling probability can be found as:

$$
\begin{equation*}
T_{w 2}=T_{w} /\left(1+T_{w} / 4\right)^{2} \tag{16}
\end{equation*}
$$

Similarly, keeping both terms in (12) gives correction of T_{1} :

$$
\begin{equation*}
T_{2}=T_{1} /\left(1+T_{1} / 2+T_{w}^{2} / 4\right) \tag{17}
\end{equation*}
$$

Some values of T_{2} are also shown in Table I and Table II. We see that $T_{2} \rightarrow T_{1}$ as $T_{w} \rightarrow 0$. But for large T_{w}, T_{2} differs from T_{1} quite a lot and gives better approximation to T_{n} up to $E \approx 1$, or $T_{w} \approx 0.65$, which is quite large. However, for $E \rightarrow E_{b}, T_{2}$ also fails. For example, for $E=E_{b}$, both T_{1} and T_{2} equal to zero while T_{n} is actually quite large. The reason for this error is that we assumed that WKB condition (3) is satisfied up to $x=b$. This is not true for $E \rightarrow E_{b}$, since κ is small, even for $x=b$, while κ^{\prime} is not small. So we cannot use (13) or (17) for E close to E_{b}. Another way to apply WKB method for this case is discussed in section VI.

In the other extreme, the fact that for $E \rightarrow 0, T_{w} \rightarrow$ finite value while $T_{n} \rightarrow 0$, is another limitation of the standard WKB tunneling factor ${ }^{4}$. Although T_{1} and T_{2} give the right value, i.e. zero, at $E=0$ as shown in Table I, the dependence of E is wrong as we can see from Table II. We see that $T_{n} \propto E$ as $E \rightarrow 0$ while $T_{2} \approx T_{1} \propto \sqrt{E}$. So, there are extremely large error between T_{n} with T_{1} or T_{2}. We will discuss this case in the next section.

V. For $E \rightarrow 0$

Consider the general case first. Let $k^{2}=E \rightarrow 0$ for $x \leq a$. By (12) and connection formula (7), we know

$$
\begin{equation*}
\psi \approx \frac{1}{\sqrt{T_{w}}}\left[\sqrt{\frac{\kappa_{b}}{k_{b}}}-i \sqrt{\frac{k_{b}}{\kappa_{b}}}\right] \sqrt{\frac{\pi}{\lambda}} \operatorname{Ai}(\lambda x) \tag{18}
\end{equation*}
$$

for $x \rightarrow a^{+}$, where $\lambda^{3} \equiv-\left(d k^{2} / d x\right)_{x=a}$. Again, T_{w} small was assumed, although this assumption can be removed if higher accuracy is desired. Now assume

$$
\begin{equation*}
\psi=C e^{i \sqrt{E} x}+D e^{-i \sqrt{E} x} \tag{19}
\end{equation*}
$$

for $x<a \rightarrow 0$, where C and D are constants. Matching (18) and (19) at $x=0$ and using the fact that $E \rightarrow 0$, we got the tunneling probability:

$$
\begin{equation*}
T=\frac{1}{|C|^{2} \sqrt{E}}=\frac{\sqrt{E}}{\pi \lambda\left[\operatorname{Ai}^{\prime}(0)\right]^{2}} T_{1} \tag{20}
\end{equation*}
$$

Note that power series expansions for Airy's functions are ${ }^{10}$:

$$
\begin{align*}
\operatorname{Ai}(z) & =c_{1} f(z)-c_{2} g(z) \\
\operatorname{Bi}(z) & =\sqrt{3}\left[c_{1} f(z)+c_{2} g(z)\right] \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
f(z) & =1+\frac{z^{3}}{2 \cdot 3}\left\{1+\frac{z^{3}}{5 \cdot 6}\left[1+\frac{z^{3}}{8 \cdot 9}(1+\cdots)\right]\right\} \\
g(z) & =z \cdot\left(1+\frac{z^{3}}{3 \cdot 4}\left\{1+\frac{z^{3}}{6 \cdot 7}\left[1+\frac{z^{3}}{9 \cdot 10}(1+\cdots)\right]\right\}\right) \\
c_{1} & =0.355028 \\
c_{2} & =0.258819 .
\end{aligned}
$$

So, $\mathrm{Ai}^{\prime}(0)=-c_{2}$. In the derivation of (20), we assumed λ finite and k^{2} smooth enough near $x=a$. However, for k^{2} given by (4), $\lambda=(4 \alpha E)^{1 / 6} \rightarrow 0$. This means that $T \propto E^{5 / 6}$. This is not correct since $T_{n} \propto E$. The reason is that as $E \rightarrow 0,\left(d k^{2} / d x\right)_{a} \rightarrow 0$ while $\left(d^{2} k^{2} / d x^{2}\right)_{a}=-2 \alpha$ is constant. This means that (6) is not valid and we cannot approximate solutions by Airy's functions. In order to correct this, we need to consider specifically the potential given by (4). Now, as $E \rightarrow 0, k^{2} \rightarrow-\alpha x^{2}$ for $0 \leq x \leq b$. Use a change of variable $y=\alpha^{1 / 4} x$, (1) becomes:

$$
\begin{equation*}
\psi_{y y}-y^{2} \psi=0 . \tag{22}
\end{equation*}
$$

This equation can be solved by so called parabolic cylinder functions ${ }^{10}$. Actually, we may use these functions to solve (1) with k^{2} given by (4) exactly and write the tunneling probability in closed form. This is out of the scope of this paper. So let us assume that we do not know these functions. We will see that we do not need to solve (22) exactly. Instead, we may study it by WKB method! First, note that $(d y / d y) / y^{2}=1 / y^{2} \ll 1$ as $y \rightarrow \infty$, i.e. the WKB condition (3) is satisfied asymptotically. So (22) has asymptotic solutions given by (2) with $k^{2}=-y^{2}$. Let us define two solutions of (22) by their asymptotic behaviors as $y \rightarrow \infty$:

$$
\begin{align*}
& \operatorname{Aj}(y) \rightarrow \frac{1}{\sqrt{y}} e^{-\int_{0}^{y} z^{2} d z}=\frac{1}{\sqrt{y}} e^{-y^{2} / 2} \tag{23}\\
& \operatorname{Bj}(y) \rightarrow \frac{1}{\sqrt{y}} e^{\int_{0}^{y} z^{2} d z}=\frac{1}{\sqrt{y}} e^{y^{2} / 2}
\end{align*}
$$

Then we may write the solution for $0 \leq x \leq b$ as

$$
\begin{equation*}
\psi=\left[\operatorname{Bj}^{\prime}(\eta) \operatorname{Aj}(y)-\operatorname{Aj}^{\prime}(\eta) \operatorname{Bj}(y)\right] / 2 \tag{24}
\end{equation*}
$$

where $\eta \equiv \alpha^{1 / 4} b$, in order to match with an outgoing solution $e^{i \sqrt{E} x} \rightarrow 1$ for $x \geq b$. Note that we have used the fact that the Wronskian $W=\mathrm{AjBj}^{\prime}-$ $\mathrm{Aj}^{\prime} \mathrm{Bj}=2$ and that $E \rightarrow 0$. Using similar steps as (19) to (20) and neglecting $\mathrm{Aj}^{\prime}(\eta)$ as compared with $\mathrm{Bj}^{\prime}(\eta)$, the tunneling probability can be found as:

$$
\begin{equation*}
T_{0}=16 E /\left\{\alpha^{1 / 2}\left[\operatorname{Aj}^{\prime}(0) \mathrm{Bj}^{\prime}(\eta)\right]^{2}\right\} . \tag{25}
\end{equation*}
$$

This gives the correct E dependence since α and b are independent of E. To find $\mathrm{Bj}^{\prime}(\eta)$, we may use (23) as a first approximation:

$$
\begin{equation*}
\operatorname{Bj}^{\prime}(y) \approx \sqrt{y} e^{y^{2} / 2} \tag{26}
\end{equation*}
$$

So,

$$
\begin{equation*}
T_{0}=\frac{16 E}{\alpha^{1 / 4} E_{b}^{1 / 2}\left[\mathrm{Aj}^{\prime}(0)\right]^{2}} T_{w} \tag{27}
\end{equation*}
$$

This gives the dependence on E, α and E_{b} since $\mathrm{Aj}^{\prime}(0)$ is only a constant. In order to compare T_{0} with T_{n} numerically, we need to know $\mathrm{Aj}^{\prime}(0)$, which can be found by numerical integration of (22). I found ${ }^{11} \mathrm{Aj}^{\prime}(0) \approx-0.9777$. Using this, some values of T_{0} are shown in Table II. We can see that they are quite close, although there are more than 10% difference. The main error can be shown to be due to the approximation in (26). To see this, we note that the factor before the exponential function in (23) should actually be an
asymptotic series ${ }^{10}$. The series of Bj can be found by requiring cancellations between terms when it is put into (22):

$$
\begin{equation*}
\operatorname{Bj}(y) \longrightarrow \frac{e^{y^{2} / 2}}{\sqrt{y}}\left(1+\frac{3}{4 \cdot 4 y^{2}}\left\{1+\frac{5 \cdot 7}{8 \cdot 4 y^{2}}\left[1+\frac{9 \cdot 11}{12 \cdot 4 y^{2}}(1+\cdots)\right]\right\}\right) \tag{28}
\end{equation*}
$$

This series can be evaluated numerically up to a term with smallest magnitude. This brought a factor of 1.133 to T_{0} in Table II, e.g. T_{0} changed from 5.97×10^{-10} to 6.76×10^{-10} for $E=10^{-8}$. This is very close to T_{n} which is 6.78×10^{-10}.

The dependence of α and E_{b} in (27) were also be verified numerically by choosing different α and E_{b}. In general, as α decreases or E_{b} increases, i.e. $T_{w} \rightarrow 0$, the difference between T_{0} and T_{n} decreases. The fact that we can find out the dependence of the tunneling probability on E, α and E_{b} by using WKB idea without solving (22) shows how powerful WKB method may be if applied correctly.

VI. For $E \approx E_{b}$

For $E \approx E_{b}$, (14) and (17) no longer give values close to T_{n} as we can see from Table I. However, we still can calculate the tunneling probability by WKB method. Now, $b-a$ is small, we may approximate (4) by $k^{2} \approx-\lambda^{3}(x-a)$ for x in a region near a, including b, where $\lambda^{3}=2(\alpha E)^{1 / 2}$. Then for this region,
the solution is given by:

$$
\begin{equation*}
\psi=\pi e^{i \sqrt{E} b}\left\{\left[\operatorname{Bi}^{\prime}(\xi)-\frac{i}{\lambda} \sqrt{E} \operatorname{Bi}(\xi)\right] \operatorname{Ai}(z)+\left[-\operatorname{Ai}^{\prime}(\xi)+\frac{i}{\lambda} \sqrt{E} \operatorname{Ai}(\xi)\right] \operatorname{Bi}(z)\right\} \tag{29}
\end{equation*}
$$

where $z \equiv \lambda(x-a), \xi \equiv \lambda(b-a)$, in order to match with an outgoing solution $e^{i \sqrt{E} x}$ for $x \geq b$. Using standard connection formula (7), we may connect it to WKB type solutions (2) for $x \rightarrow-\infty$. Then, by grouping the coefficient of the incoming terms, we found the tunneling probability:

$$
\begin{equation*}
T_{b}=\frac{4 \lambda \sqrt{E} / \pi}{\left[\operatorname{Bi}(\xi) \sqrt{E}-\lambda \operatorname{Ai}^{\prime}(\xi)\right]^{2}+\left[\operatorname{Ai}(\xi) \sqrt{E}+\lambda \operatorname{Bi}^{\prime}(\xi)\right]^{2}} \tag{30}
\end{equation*}
$$

The Airy's functions can be evaluated by power series expansions (21). Some values of T_{b} are shown in Table I for $E \leq E_{b}$ and in Table III for $E>E_{b}$. We see that T_{b} gives a quite good approximation to T_{n} for $\left|E-E_{b}\right|<0.7$. The range of validity for this approximation is surprisingly large at first sight. However, if we remember that the potential is proportional to x^{2} so that although $\left|E-E_{b}\right|$ is not small, $|a-b|$ may be small enough for the approximation to work.

VII. For $E>E_{b}$

For the case that E larger than $E_{b}, T_{w}=1$ while the true "tunneling probability" (it may be better to call it transmission coefficient now) may differ from 1 quite a lot. However, WKB method still gives a good approximation.

We now assume that WKB condition (3) is satisfied for $x \leq b$ all the way to $-\infty$. Then, we only need to match the outgoing solution $e^{i \sqrt{E} x}$ for $x \geq b$ with WKB type solutions (2) for $x \leq b$. Find the coefficient of the incoming term. Then the transmission coefficient can be found

$$
\begin{equation*}
T_{\infty}=\frac{4 \sqrt{E\left(E-E_{b}\right)}}{\left[\sqrt{E-E_{b}}+\sqrt{E}\right]^{2}} \tag{31}
\end{equation*}
$$

Some values of T_{∞} are shown in Table III. Since both T_{∞} and $T_{n} \rightarrow 1$ as $E \rightarrow$ ∞. It is more appropriate to compare reflection coefficients $R_{\infty} \equiv 1-T_{\infty}$ and $R_{n} \equiv 1-T_{n}$. We see that R_{∞} gives a very good approximation to R_{n} for large E. For E close to E_{b}, T_{∞} fails and we need to use T_{b} instead.

VIII. Conclusions

From the above discussions, we see that the standard WKB tunneling factor T_{w} fails badly for $E \rightarrow 0, E \approx E_{b}$ and may have error up to factor of two in between. However, WKB approximation not necessarily fail provided that we use appropriate connection relations. For the example that k^{2} given by (4), WKB approximation works for almost entire energy range from $E=0$ to $E \rightarrow \infty$ if we use different connection relations for different ranges of energy. Our conclusion is that when we use the standard WKB formula T_{w}, we need to be very careful. If higher accuracy is desired, we need to consider connection relations case by case.

Appendix: Numerical calculation of T_{n}

Although a numerical method to find T_{n} was described in ref. 4, a different method was used in this paper. Let

$$
\begin{aligned}
\psi(b) & =e^{i \sqrt{E} b} \\
\psi_{x}(b) & =i \sqrt{E} e^{i \sqrt{E} b}
\end{aligned}
$$

so that ψ connects to an outgoing solution $e^{i \sqrt{E} x}$ for $x \geq b$. Use Runga-Kutta method to integrate (1), with k^{2} given by (4), from $x=b$ back to $x=0$. Match with incoming and reflected waves for $x \leq 0$ and find the coefficient of the incoming term. Then the transmission coefficient can be found by

$$
T_{n}=4 /\left|\psi(0)-\frac{i}{\sqrt{E}} \psi_{x}(0)\right|^{2}
$$

Table I.

Comparison of tunneling probabilities, T_{w}, T_{1}, T_{2} and T_{b} calculated by WKB method using different approximations with T_{n} calculated numerically, for energy E in the middle range. Parameters $\alpha=0.040965, E_{b}=1.2776$ were chosen so that we may compare with Table I of ref. 4.

E	T_{w}	T_{1}	T_{2}	T_{b}	T_{n}
0	0.00181	0	0	-	0
0.1	0.00611	0.00656	0.00654	0.0342	0.00987
0.2	0.0144	0.0210	0.0208	0.0543	0.0285
0.3	0.0297	0.0504	0.0491	0.0896	0.0609
0.4	0.0555	0.103	0.0979	0.142	0.112
0.5	0.0962	0.188	0.171	0.214	0.187
0.6	0.156	0.312	0.269	0.301	0.283
0.7	0.240	0.479	0.382	0.397	0.391
0.8	0.351	0.678	0.495	0.494	0.500
0.9	0.486	0.886	0.590	0.584	0.597
1.0	0.640	1.06	0.647	0.663	0.678
1.1	0.799	1.11	0.646	0.729	0.741
1.2	0.938	0.896	0.537	0.783	0.791
E_{b}	1	0	0	0.817	0.821

Table II.

Comparison of tunneling probabilities, T_{w}, T_{2} and T_{0}, calculated by WKB method using different approximations with T_{n} calculated numerically, for energy $E \rightarrow 0\left(\alpha=0.040965, E_{b}=1.2776\right)$.

E	T_{w}	T_{2}	T_{0}	T_{n}
10^{-8}	1.81×10^{-3}	6.42×10^{-7}	5.97×10^{-10}	6.78×10^{-10}
10^{-7}	1.81×10^{-3}	2.03×10^{-6}	5.97×10^{-9}	6.78×10^{-9}
10^{-6}	1.81×10^{-3}	6.42×10^{-6}	5.97×10^{-8}	6.78×10^{-8}
10^{-5}	1.81×10^{-3}	2.03×10^{-5}	5.97×10^{-7}	6.78×10^{-7}
10^{-4}	1.82×10^{-3}	6.44×10^{-5}	5.99×10^{-6}	6.78×10^{-6}
10^{-3}	1.86×10^{-3}	2.08×10^{-4}	6.11×10^{-5}	6.80×10^{-5}
10^{-2}	2.17×10^{-3}	7.64×10^{-4}	7.11×10^{-4}	7.04×10^{-4}
10^{-1}	6.11×10^{-3}	6.54×10^{-3}	1.93×10^{-2}	9.87×10^{-3}

Table III.

Comparison of tunneling probabilities, T_{b} and T_{∞}, calculated by WKB method using different approximations with T_{n} calculated numerically, for energy $E>E_{b} . R_{\infty}=1-T_{\infty}$ and $R_{n}=1-T_{n}$ are reflection coefficients $\left(\alpha=0.040965, E_{b}=1.2776\right)$.

E	T_{b}	T_{∞}	T_{n}	R_{∞}	R_{n}
1.3	0.826	0.410	0.829	0.509	0.171
1.6	0.907	0.855	0.901	0.145	0.0986
2.0	0.956	0.938	0.947	0.0621	0.0528
2.6	0.985	0.972	0.974	0.0280	0.0262
3.0	1.01	0.981	0.982	0.0190	0.0184
4.0	-	0.991	0.991	0.00920	0.00901
5.0	-	0.995	0.995	0.00542	0.00539
6.0	-	0.996	0.996	0.00357	0.00356
7.0	-	0.997	0.997	0.00253	0.00252

References

${ }^{1}$ H. Jeffreys, "On certain approximate solutions of linear differential equations of the second order, " Proc. London Math. Soc. 23 428-436 (1923).
${ }^{2}$ G. Wentzel, "A generalization of quantum conditions for the purposes of wave mechanics," Zeits. f. Physik, 38 518-529 (1926). H. A. Kramers, "Wave mechanics and semi-numerical quantisation," Zeits. f. Physik, 39 828-840 (1926). L. Brillouin, "The undulatory mechanics of Schrödinger," Comptes Rendus, 183 24-26 270-271 (1926). L. Brillouin, "Notes on undulatory mechanics," J. de Physique et le Radium, 7 353-368 (1926).
${ }^{3}$ D. G. Swanson, Plasma Waves (Academic, San Diego, CA, 1989), pp. 13-15, pp. 234-238.
${ }^{4}$ J. Crofton, P. A. Barnes, and M. J. Bozack, "Quantum mechanical tunneling in an ohmic contact," Am. J. Phys., 60 499-502 (1992).
${ }^{5}$ H. Enge, Introduction to Nuclear Physics (Addison-Wesley, Reading, MA, 1966), pp. 282-291.
${ }^{6}$ L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, England, 1977), 3rd ed., pp. 178-181.
${ }^{7}$ R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics (AddisonWesley, Reading, MA, 1960), pp. 245-253.
${ }^{8}$ E. Merzbacher, Quantum Mechanics(Wiley, New York, 1970), 2nd ed., pp. 116-138.
${ }^{9}$ E. Segrè, Nuclei and Particles (W. A. Benjamin, Reading, MA, 1977), 2nd ed., pp. 319-328.
${ }^{10}$ M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington D. C., 1964).
${ }^{11}$ With the knowledge of parabolic cylinder functions, it can be shown that $\mathrm{Aj}^{\prime}(0)=-2 \pi^{1 / 2} / \Gamma(1 / 4) \approx-0.97774$.

