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WKB — Not So Bad After All
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It was found recently that tunneling probabilities over a barrier is roughly

twice as large as that given by standard WKB formula. Here we explained

how this come from and showed that WKB method does give a good approx-

imation over almost entire energy range provided that we use appropriate

connection relations.

PACS numbers: 02.60+y, 03.65Sq, 02.70+d.
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I. Introduction

WKBmethod was first invented by Jeffreys1 and was applied to solve Schrödinger

equation by Wentzel, Kramers and Brillouin2. It is a powerful tool and has

many applications, e. g. , waves in a inhomogeneous plasma3. Consider a

second order ordinary differential equation:

ψ′′(x) + k2(x)ψ(x) = 0, (1)

where prime denotes differentiation with respect to argument. The function

k2 may be negative for some x. In this case, we define κ2(x) ≡ −k2(x). WKB

method approximates solutions of (1) by combinations of

exp
(

±i
∫ x

k(y) dy
)/

√

k(x) , (2)

provided that
∣

∣

∣k′/k2
∣

∣

∣≪ 1 (3)

is satisfied. If (3) is not satisfied over a range (or at a point), then we need

to connect WKB solutions of both sides appropriately by some connection

relations. One common situation where (3) breaks down is that k2 ≈ 0 near

a turning point.

In a recent paper4, a quantum mechanical tunneling example is consid-

ered. The Schrödinger equation in this one dimensional problem can be
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represented by (1) with

k2(x) =

{

E − αx2 for 0 ≤ x ≤ b
E otherwise,

(4)

where b =
√

Eb/α and E, Eb and α are constants. E may be assigned

the physical meaning of energy. It was shown that, for E < Eb, the true

(numerical) tunneling probabilities Tn (see Appendix for numerical method)

are roughly twice as large as the well known WKB tunneling factor:

Tw = e−2
∫ b

a
κ(x) dx = e

E
√

α

{

ln[β+
√

β2−1]−β
√

β2−1

}

, (5)

where a =
√

E/α and β =
√

Eb/E. Values of Tw and Tn for different E are

shown in Table I and Table II.

This result was unexpected to us at first. After a little survey over some

standard textbooks, it was found that two books did warn about such an

error5,6, although without elaborations. Another book did an example with

correct connection relation7, but did not give general discussions. Two other

books used the standard tunneling factor without warning8,9, although one

of them indicated that it is just a rough approximation9. In this case, we

have reasons to assume that the restrictions in applying the standard WKB

formula are not very well known to students. Therefore, we would like to

show how to apply WKB method to solve a tunneling problem more carefully.

In section II, we briefly review the derivation of the standard WKB tun-

neling factor using standard connection relations, which are also useful for
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our discussions later, over a typical turning point. In section III, the tun-

neling factor is corrected when one turning point is a sharp edge. In section

IV, further correction is made when the tunneling probability is not small.

Section V considers the case that E → 0. Section VI deals with the case

that E ≈ Eb. Finally section VII treats the case that E > Eb. It will be

shown that WKB method does give good approximation to the tunneling

probability if we use different connection relations for different energy range

appropriately.

II. Standard WKB tunneling formula

Consider (1) with x near a turning point x = 0. Assume that k2(x) can be

approximated by:

k2(x) ≈ dk2

dx

∣

∣

∣

∣

∣

x=0

x . (6)

Let (dk2/dx)0 > 0 for the time being. Solutions of (1) with k2 given by (6)

can be written as combinations of Airy’s functions10 Ai(−λx) and Bi(−λx)

with λ ≡ |(dk2/dx)0|
1/3

. Then the asymptotic behaviors of Ai and Bi give

the standard WKB connection relations10:

−∞ ←− x −→ ∞
1

2
√
κ
e−
∫

0

x
κ dy ←−

√

π
λ
Ai(−λx) −→ 1√

k
sin(

∫ x
0 k dy +

π
4
)

1√
κ
e
∫

0

x
κ dy ←−

√

π
λ
Bi(−λx) −→ 1√

k
cos(

∫ x
0 k dy +

π
4
).

(7)
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For (dk2/dx)0 < 0, we only need to change λ to −λ in (7), interchange

the limits of integrations and interchange left and right hand sides. These

standard connection relations are valid only if the turning point is smooth

enough, i.e., we require (6) to be valid up to some x where (3) is also satisfied.

This is not always possible3.

Consider a barrier with k2 > 0 for x ≤ a and x ≥ b, k2 < 0 for a ≤ x ≤ b

and that WKB condition (3) is valid over the whole range of x except near the

two smooth turning points a and b. Then for a incident wave from x = −∞

direction, we have only outgoing wave for x > b:

ψ =
1√
k
ei
∫ x

b
k dy. (8)

By (7), ψ connects to:

ψ =

[

1√
κ
e
∫ b

x
κdy +

i

2
√
κ
e−
∫ b

x
κ dy

]

e−iπ/4 (9)

for a < x < b. Then for x close to a,

ψ ≈ eI√
κ
e−
∫ x

a
κ dy−iπ/4, (10)

where I ≡ ∫ ba κ dy and is assumed large. By (7) again, ψ connects to

ψ = 2
eI−iπ/4

√
k

sin
(
∫ a

x
k dy + π/4

)

(11)

for x ≤ a. Since the sine term is just a combination of incoming and reflected

wave with equal intensity, we have reflection coefficient Rw ≈ 1 and tunneling

probability Tw = e−2I . This is how (5) come from.
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From the above derivation, we see that in order to apply the standard

WKB tunneling factor (5), three conditions must be satisfied :

(i) there are two and only two turning points;

(ii) (3) is valid except near the two turning points where k2 can be approx-

imated by (6); and

(iii) Tw ≪ 1 .

We immediately see that the potential given by (4) does not satisfy (ii) since

k2 is discontinuous at x = b. This is the main reason for the factor of two

error. Also, for larger E, Tw is not very small, (iii) is also violated.

III. Sharp turning point correction

Let us now consider k2 with a discontinuity at x = b, so that k2 = −κ2b < 0

at b−0+ and k2 = k2b > 0 at b+0+. We still assume that the WKB condition

(3) remains valid except at b and near the smooth turning point x = a. For

x > b, there is only outgoing wave (8). It connects to

ψ =
1

2
√
κ











√

κb
kb
− i

√

kb
κb



 e
∫ b

x
κdy +





√

κb
kb

+ i

√

kb
κb



 e−
∫ b

x
κdy







(12)

for a < x ≤ b. We can check whether (12) is correct by substituting x = b

into (8) and (12). We should see that ψ and ψ′ are indeed continuous. Similar

to steps (9) to (11) and still assuming I to be large, the corrected tunneling
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probability can be found as:

T1 =
4κbkb
κ2b + k2b

Tw. (13)

For k2 given by (4),

T1 =
4
√

Eb/E − 1

Eb/E
Tw. (14)

It can be easily shown by (13) that T1 ≤ 2Tw. The equal sign holds for

kb = κb. This explains the factor of two found by ref. 4, Some values of

Tw and T1 are shown in Table I to compare with true (numerical) tunneling

probabilities Tn. Parameters α = 0.040965, Eb = 1.2776 were chosen so that

we may compare with Table I of ref. 4. We see that T1 is much closer to Tn

from E ≈ 0.2 to E ≈ 0.6 while Tw is nearly a factor of two smaller. However,

for large E when Tw lager than 0.2, T1 also fails since we assumed Tw to be

small in the above derivation. This error will be corrected in next section.

IV. Finite Tw correction

First, let us consider the correction of Tw itself. If we keep both terms in (9),

then ψ will connects to

ψ =
1√
kTw

[

2 sin(θ) +
i

2
Tw cos(θ)

]

e−iπ/4 (15)

for x < a where θ ≡ ∫ ax k dy+π/4. Then by finding the coefficient of incoming

term, the corrected tunneling probability can be found as:

Tw2 = Tw/ (1 + Tw/4)
2 . (16)
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Similarly, keeping both terms in (12) gives correction of T1 :

T2 = T1/
(

1 + T1/2 + T 2
w/4

)

. (17)

Some values of T2 are also shown in Table I and Table II. We see that T2 → T1

as Tw → 0. But for large Tw, T2 differs from T1 quite a lot and gives better

approximation to Tn up to E ≈ 1, or Tw ≈ 0.65, which is quite large.

However, for E → Eb, T2 also fails. For example, for E = Eb, both T1 and

T2 equal to zero while Tn is actually quite large. The reason for this error is

that we assumed that WKB condition (3) is satisfied up to x = b. This is

not true for E → Eb, since κ is small, even for x = b, while κ′ is not small.

So we cannot use (13) or (17) for E close to Eb. Another way to apply WKB

method for this case is discussed in section VI.

In the other extreme, the fact that for E → 0, Tw →finite value while

Tn → 0, is another limitation of the standard WKB tunneling factor4. Al-

though T1 and T2 give the right value, i.e. zero, at E = 0 as shown in Table

I, the dependence of E is wrong as we can see from Table II. We see that

Tn ∝ E as E → 0 while T2 ≈ T1 ∝
√
E. So, there are extremely large error

between Tn with T1 or T2. We will discuss this case in the next section.
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V. For E → 0

Consider the general case first. Let k2 = E → 0 for x ≤ a. By (12) and

connection formula (7), we know

ψ ≈ 1√
Tw





√

κb
kb
− i

√

kb
κb





√

π

λ
Ai(λx) (18)

for x → a+, where λ3 ≡ − (dk2/dx)x=a. Again, Tw small was assumed,

although this assumption can be removed if higher accuracy is desired. Now

assume

ψ = Cei
√
Ex +De−i

√
Ex (19)

for x < a → 0, where C and D are constants. Matching (18) and (19) at

x = 0 and using the fact that E → 0, we got the tunneling probability:

T =
1

|C|2
√
E

=

√
E

πλ [Ai′(0)]
2T1. (20)

Note that power series expansions for Airy’s functions are10:

Ai(z) = c1f(z) − c2g(z),

Bi(z) =
√
3[c1f(z) + c2g(z)],

(21)

where

f(z) = 1 +
z3

2 · 3

{

1 +
z3

5 · 6

[

1 +
z3

8 · 9 (1 + · · ·)
]}

,

g(z) = z ·
(

1 +
z3

3 · 4

{

1 +
z3

6 · 7

[

1 +
z3

9 · 10 (1 + · · ·)
]})

,

c1 = 0.355028,

c2 = 0.258819.
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So, Ai′(0) = −c2. In the derivation of (20), we assumed λ finite and k2

smooth enough near x = a. However, for k2 given by (4), λ = (4αE)1/6 → 0.

This means that T ∝ E5/6. This is not correct since Tn ∝ E. The reason

is that as E → 0, (dk2/dx)a → 0 while (d2k2/dx2)a = −2α is constant.

This means that (6) is not valid and we cannot approximate solutions by

Airy’s functions. In order to correct this, we need to consider specifically the

potential given by (4). Now, as E → 0, k2 → −αx2 for 0 ≤ x ≤ b. Use a

change of variable y = α1/4x, (1) becomes:

ψyy − y2ψ = 0. (22)

This equation can be solved by so called parabolic cylinder functions10. Ac-

tually, we may use these functions to solve (1) with k2 given by (4) exactly

and write the tunneling probability in closed form. This is out of the scope

of this paper. So let us assume that we do not know these functions. We

will see that we do not need to solve (22) exactly. Instead, we may study it

by WKB method! First, note that (dy/dy)/y2 = 1/y2 ≪ 1 as y → ∞, i.e.

the WKB condition (3) is satisfied asymptotically. So (22) has asymptotic

solutions given by (2) with k2 = −y2. Let us define two solutions of (22) by

their asymptotic behaviors as y →∞ :

Aj(y) → 1√
y
e−
∫ y

0
z2 dz = 1√

y
e−y2/2,

Bj(y) → 1√
y
e
∫ y

0
z2 dz = 1√

y
ey

2/2.
(23)
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Then we may write the solution for 0 ≤ x ≤ b as

ψ = [Bj′(η)Aj(y)− Aj′(η)Bj(y)] /2 , (24)

where η ≡ α1/4b, in order to match with an outgoing solution ei
√
Ex → 1

for x ≥ b. Note that we have used the fact that the Wronskian W = AjBj′−

Aj′Bj = 2 and that E → 0. Using similar steps as (19) to (20) and neglecting

Aj′(η) as compared with Bj′(η), the tunneling probability can be found as:

T0 = 16E
/{

α1/2 [Aj′(0)Bj′(η)]
2
}

. (25)

This gives the correct E dependence since α and b are independent of E. To

find Bj′(η), we may use (23) as a first approximation:

Bj′(y) ≈ √yey2/2. (26)

So,

T0 =
16E

α1/4E
1/2
b [Aj′(0)]

2
Tw. (27)

This gives the dependence on E, α and Eb since Aj′(0) is only a constant.

In order to compare T0 with Tn numerically, we need to know Aj′(0), which

can be found by numerical integration of (22). I found11 Aj′(0) ≈ −0.9777.

Using this, some values of T0 are shown in Table II. We can see that they are

quite close, although there are more than 10% difference. The main error

can be shown to be due to the approximation in (26). To see this, we note

that the factor before the exponential function in (23) should actually be an

11



asymptotic series10. The series of Bj can be found by requiring cancellations

between terms when it is put into (22):

Bj(y) −→ ey
2/2

√
y

(

1 +
3

4 · 4y2
{

1 +
5 · 7
8 · 4y2

[

1 +
9 · 11
12 · 4y2 (1 + · · ·)

]})

. (28)

This series can be evaluated numerically up to a term with smallest magni-

tude. This brought a factor of 1.133 to T0 in Table II, e.g. T0 changed from

5.97× 10−10 to 6.76× 10−10 for E = 10−8. This is very close to Tn which is

6.78× 10−10.

The dependence of α and Eb in (27) were also be verified numerically by

choosing different α and Eb. In general, as α decreases or Eb increases, i.e.

Tw → 0, the difference between T0 and Tn decreases. The fact that we can

find out the dependence of the tunneling probability on E, α and Eb by using

WKB idea without solving (22) shows how powerful WKB method may be

if applied correctly.

VI. For E ≈ Eb

For E ≈ Eb, (14) and (17) no longer give values close to Tn as we can see from

Table I. However, we still can calculate the tunneling probability by WKB

method. Now, b−a is small, we may approximate (4) by k2 ≈ −λ3(x−a) for

x in a region near a, including b, where λ3 = 2(αE)1/2. Then for this region,
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the solution is given by:

ψ = πei
√
Eb
{[

Bi′(ξ)− i

λ

√
EBi(ξ)

]

Ai (z) +
[

−Ai′(ξ) + i

λ

√
EAi(ξ)

]

Bi (z)
}

,

(29)

where z ≡ λ(x−a), ξ ≡ λ(b−a), in order to match with an outgoing solution

ei
√
Ex for x ≥ b. Using standard connection formula (7), we may connect it

to WKB type solutions (2) for x → −∞. Then, by grouping the coefficient

of the incoming terms, we found the tunneling probability:

Tb =
4λ
√
E/π

[

Bi(ξ)
√
E − λAi′(ξ)

]2
+
[

Ai(ξ)
√
E + λBi′(ξ)

]2 . (30)

The Airy’s functions can be evaluated by power series expansions (21). Some

values of Tb are shown in Table I for E ≤ Eb and in Table III for E > Eb.

We see that Tb gives a quite good approximation to Tn for |E − Eb| < 0.7.

The range of validity for this approximation is surprisingly large at first

sight. However, if we remember that the potential is proportional to x2 so

that although |E −Eb| is not small, |a − b| may be small enough for the

approximation to work.

VII. For E > Eb

For the case that E larger than Eb, Tw = 1 while the true “tunneling prob-

ability”(it may be better to call it transmission coefficient now) may differ

from 1 quite a lot. However, WKB method still gives a good approximation.
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We now assume that WKB condition (3) is satisfied for x ≤ b all the way

to −∞. Then, we only need to match the outgoing solution ei
√
Ex for x ≥ b

with WKB type solutions (2) for x ≤ b. Find the coefficient of the incoming

term. Then the transmission coefficient can be found

T∞ =
4
√

E(E −Eb)
[√
E −Eb +

√
E
]2 . (31)

Some values of T∞ are shown in Table III. Since both T∞ and Tn → 1 as E →

∞. It is more appropriate to compare reflection coefficients R∞ ≡ 1 − T∞

and Rn ≡ 1 − Tn. We see that R∞ gives a very good approximation to Rn

for large E. For E close to Eb, T∞ fails and we need to use Tb instead.

VIII. Conclusions

From the above discussions, we see that the standard WKB tunneling factor

Tw fails badly for E → 0, E ≈ Eb and may have error up to factor of two in

between. However, WKB approximation not necessarily fail provided that

we use appropriate connection relations. For the example that k2 given by

(4), WKB approximation works for almost entire energy range from E = 0

to E → ∞ if we use different connection relations for different ranges of

energy. Our conclusion is that when we use the standard WKB formula Tw,

we need to be very careful. If higher accuracy is desired, we need to consider

connection relations case by case.
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Appendix:Numerical calculation of Tn

Although a numerical method to find Tn was described in ref. 4, a different

method was used in this paper. Let

ψ(b) = ei
√
Eb

ψx(b) = i
√
Eei

√
Eb,

so that ψ connects to an outgoing solution ei
√
Ex for x ≥ b. Use Runga–Kutta

method to integrate (1), with k2 given by (4), from x = b back to x = 0.

Match with incoming and reflected waves for x ≤ 0 and find the coefficient

of the incoming term. Then the transmission coefficient can be found by

Tn = 4

/∣

∣

∣

∣

∣

ψ(0)− i√
E
ψx(0)

∣

∣

∣

∣

∣

2

.
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Table I.

Comparison of tunneling probabilities, Tw, T1, T2 and Tb calculated by WKB

method using different approximations with Tn calculated numerically, for

energy E in the middle range. Parameters α = 0.040965, Eb = 1.2776 were

chosen so that we may compare with Table I of ref. 4.

E Tw T1 T2 Tb Tn

0 0.00181 0 0 — 0

0.1 0.00611 0.00656 0.00654 0.0342 0.00987

0.2 0.0144 0.0210 0.0208 0.0543 0.0285

0.3 0.0297 0.0504 0.0491 0.0896 0.0609

0.4 0.0555 0.103 0.0979 0.142 0.112

0.5 0.0962 0.188 0.171 0.214 0.187

0.6 0.156 0.312 0.269 0.301 0.283

0.7 0.240 0.479 0.382 0.397 0.391

0.8 0.351 0.678 0.495 0.494 0.500

0.9 0.486 0.886 0.590 0.584 0.597

1.0 0.640 1.06 0.647 0.663 0.678

1.1 0.799 1.11 0.646 0.729 0.741

1.2 0.938 0.896 0.537 0.783 0.791

Eb 1 0 0 0.817 0.821
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Table II.

Comparison of tunneling probabilities, Tw, T2 and T0, calculated by WKB

method using different approximations with Tn calculated numerically, for

energy E → 0 (α = 0.040965, Eb = 1.2776).

E Tw T2 T0 Tn

10−8 1.81× 10−3 6.42× 10−7 5.97× 10−10 6.78× 10−10

10−7 1.81× 10−3 2.03× 10−6 5.97× 10−9 6.78× 10−9

10−6 1.81× 10−3 6.42× 10−6 5.97× 10−8 6.78× 10−8

10−5 1.81× 10−3 2.03× 10−5 5.97× 10−7 6.78× 10−7

10−4 1.82× 10−3 6.44× 10−5 5.99× 10−6 6.78× 10−6

10−3 1.86× 10−3 2.08× 10−4 6.11× 10−5 6.80× 10−5

10−2 2.17× 10−3 7.64× 10−4 7.11× 10−4 7.04× 10−4

10−1 6.11× 10−3 6.54× 10−3 1.93× 10−2 9.87× 10−3
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Table III.

Comparison of tunneling probabilities, Tb and T∞, calculated by WKB

method using different approximations with Tn calculated numerically, for

energy E > Eb. R∞ = 1 − T∞and Rn = 1 − Tn are reflection coefficients

(α = 0.040965, Eb = 1.2776).

E Tb T∞ Tn R∞ Rn

1.3 0.826 0.410 0.829 0.509 0.171

1.6 0.907 0.855 0.901 0.145 0.0986

2.0 0.956 0.938 0.947 0.0621 0.0528

2.6 0.985 0.972 0.974 0.0280 0.0262

3.0 1.01 0.981 0.982 0.0190 0.0184

4.0 — 0.991 0.991 0.00920 0.00901

5.0 — 0.995 0.995 0.00542 0.00539

6.0 — 0.996 0.996 0.00357 0.00356

7.0 — 0.997 0.997 0.00253 0.00252
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