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GRAPH BOOTSTRAP PERCOLATION

JÓZSEF BALOGH, BÉLA BOLLOBÁS, AND ROBERT MORRIS

Abstract. Graph bootstrap percolation is a deterministic cellular automaton which was
introduced by Bollobás in 1968, and is defined as follows. Given a graph H , and a set
G ⊂ E(Kn) of initially ‘infected’ edges, we infect, at each time step, a new edge e if there
is a copy of H in Kn such that e is the only not-yet infected edge of H . We say that G

percolates in the H-bootstrap process if eventually every edge of Kn is infected.
The extremal questions for this model, when H is the complete graph Kr, were solved

(independently) by Alon, Kalai and Frankl almost thirty years ago. In this paper we study
the random questions, and determine the critical probability pc(n,Kr) for the Kr-process
up to a poly-logarithmic factor. In the case r = 4 we prove a stronger result, and determine
the threshold for pc(n,K4).

1. Introduction

Cellular automata, which were introduced by von Neumann (see [30]) after a suggestion of
Ulam [32], are dynamical systems (defined on a graph G) whose update rule is homogeneous
and local. We shall study a particular cellular automaton, called H-bootstrap percolation,
which was introduced over 40 years ago by Bollobás [13]. This model is a substantial gen-
eralization of r-neighbour bootstrap percolation (see below), an extensively studied model
related to statistical physics. We shall determine the critical probability for Kr-percolation
up to a poly-logarithmic factor for every r > 4 and moreover, using a completely different
method, we shall determine the threshold for percolation in the case r = 4.

Given a graph H , we define H-bootstrap percolation (or H-edge-bootstrap percolation) as
follows. Given a set G ⊂ E(Kn) of initially ‘infected’ edges on vertex set [n] (that is, given
a graph), we set G0 = G and define, for each t > 0,

Gt+1 := Gt ∪
{

e ∈ E(Kn) : ∃H with e ∈ H ⊂ Gt ∪ {e}
}

.

In words, this says that an edge e becomes infected at time t + 1 if there exists a copy of
H in Kn for which e is the only uninfected edge at time t. Let 〈G〉H =

⋃

t Gt denote the
closure of G under the H-bootstrap process, and say that G percolates (or H-percolates) in
Kn if 〈G〉H = E(Kn).

The H-bootstrap process was introduced over 40 years ago by Bollobás [13] (see also [15]),
under the name ‘weak saturation’. He conjectured that if a graph G percolates in the Kr-
process, then G has at least

(

n
2

)

−
(

n−r+2
2

)

edges, and, building on work in [12], proved his
conjecture when r 6 7. For general r, the conjecture was proved using linear algebraic
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methods by Alon [1], Frankl [22] and Kalai [28]. See [9] for more recent extremal results, on
a closely related process, using such methods.

In this paper, we shall study the H-bootstrap process in the random setting, i.e., when
the initial graph G is chosen to be Gn,p. Apart from its intrinsic interest, this question is
motivated by the following, closely related cellular automaton, which was introduced in 1979
by Chalupa, Leath and Reich [17] in the context of disordered magnetic systems, and for
which our process is named. Given an underlying graph G, an integer r and a set of infected
vertices A ⊂ V (G), set A0 = A and let

At+1 := At ∪
{

v ∈ V (G) : |N(v) ∩ At| > r
}

for each t > 0; that is, we infect a vertex if it has at least r already-infected neighbours. Say
that the set A percolates if the entire vertex set is eventually infected. This process is known
as r-neighbour bootstrap percolation, and has been extensively studied by mathematicians
(see, for example, [3, 5, 16, 25, 26, 31]), physicists (see [2], and the references therein) and
sociologists [23, 33], amongst others. It has moreover found applications in the Glauber
Dynamics of the Ising model (see [21, 29]).

The r-neighbour bootstrap model is usually studied in the random setting, where the
main question is to determine the critical threshold at which percolation occurs. To be
precise, if V (G) = [n] and the elements of A ⊂ V (G) are chosen independently at random,
each with probability p, then one aims to determine the value pc of p = p(n) at which
percolation becomes likely. Sharp bounds on pc have recently been determined in several
cases of particular interest, such as [n]d (see [5, 6, 7, 8, 24, 25]), on a large family of ‘two-
dimensional’ graphs [18], on trees [10, 20], and on various types of random graph [11, 27].
In each case, it was shown that the critical probability has a sharp threshold.

Motivated by these results, let us define the critical threshold for H-bootstrap percolation
on Kn as follows:

pc(n,H) := inf
{

p : P
(

〈Gn,p〉H = Kn

)

> 1/2
}

,

where Gn,p is the Erdős-Rényi random graph, obtained by choosing each edge independently
with probability p. (For background on the theory of Random Graphs, see [14].) Our aim is
to determine pc(n,H) for every graph H . Here we shall study the case H = Kr, the complete
graph; our main theorems partially solve Problem 1 of [15].

In order to aid the reader’s intuition, let us first consider the case H = K3, which is trivial.
Indeed, it is easy to see that G percolates in the K3-process if and only if G is connected.
It is well-known (see [14]) that, with high probability, Gn,p is connected if and only if it has
no isolated vertex; thus, a straightforward calculation gives the following theorem of Erdős
and Rényi [19], which was one of the first results on random graphs:

pc(n,K3) =
log n

n
+ Θ

(

1

n

)

.

In fact Erdős and Rényi proved even more: that if p = (logn + c)/n, then the probability

that Gn,p percolates in the K3-process converges to e−e−c

as n → ∞. We remark that the
same result holds for the Ck-process, for any k > 3, see Section 5.
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For r > 4, the problem is more challenging, since there seems to be no simple description
of the closed sets under the Kr-process. Set

λ(r) :=

(

r
2

)

− 2

r − 2
.

The following theorem is our main result.

Theorem 1. For every r > 4, there exists a constant c = c(r) > 0 such that

n−1/λ(r)

c log n
6 pc(n,Kr) 6 n−1/λ(r) log n

for every sufficiently large n ∈ N.

In fact we shall prove slightly stronger bounds (see Propositions 3 and 8); however, we do
not expect either of our bounds to be sharp. The proof of the lower bound in Theorem 1 is
based on an extremal result on graphs which cause a given edge to be infected (see Lemma 9).
Although it is not long, the proof of this lemma is delicate, and does not seem to extend
easily to other graphs. The upper bound, on the other hand, holds for a much wider family
of graphs H (see Section 2), which we call ‘balanced’.

In the case r = 4 we shall prove the following stronger result, which determines pc(n,K4)
up to a constant factor.

Theorem 2. If n is sufficiently large, then

1

4

√

1

n logn
6 pc(n,K4) 6 5

√

1

n logn
.

The proof of Theorem 2 is completely different from that of Theorem 1, and is based on
ideas from two-neighbour bootstrap percolation on [n]d. Although we have not done so, it
seems plausible to us that one could prove a sharp threshold in the case H = K4.

The rest of the paper is organized as follows. In Sections 2 and 3 we shall prove the upper
and lower bounds in Theorem 1, respectively. In Section 4 we shall prove Theorem 2, and
in Section 5 we shall discuss other graphs H , and state some open problems.

2. An upper bound for balanced graphs

In this section we shall prove the upper bound in Theorem 1; in fact we prove a stronger
bound for a more general family of graphs, H . Throughout, we shall assume that v(H) > 4,
since otherwise the problem is trivial. We make the following definition.

Definition 1 (Balanced graphs). We call a graph H balanced if e(H) > 2v(H)− 2, and

e(F )− 1

v(F )− 2
6 λ(H) :=

e(H)− 2

v(H)− 2

for every proper subgraph F ⊂ H with v(F ) > 3.

It is straightforward to check that the complete graph Kr is balanced for every r > 4.
Thus, the upper bound in Theorem 1 follows immediately from the following proposition.
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Proposition 3. If H is a balanced graph, then

pc(n,H) 6 C

(

log n

log log n

)2/λ(H)

n−1/λ(H),

for some constant C > 0.

Note that λ(Kr) = λ(r) satisfies

r

2
6 λ(r) 6

r + 1

2

if r > 4 (we shall use these bounds several times during the proof), so Proposition 3 actually
implies the following slightly stronger upper bound than that stated in Theorem 1:

pc(n,Kr) 6 n−1/λ(H)
(

logn
)4/r

.

We begin by sketching the proof of Proposition 3. We shall define for each d ∈ N a rooted
graph, i.e., a pair (Hd, e) where Hd is a graph and e ∈

(

V (Hd)
2

)

is its ‘root’, with the following
properties:

(a) v(Hd) = (v(H)− 2)d+ 2 (b) e(Hd) = (e(H)− 2)d+ 1 (c) e ∈ 〈Hd〉H .
That is, if Hd occurs in Gn,p, then its root e is infected in the H-bootstrap process.

To define Hd, choose a sequence of edges (e1, e2, . . .) of H , with e1 = e, such that for every
j ∈ N, ej and ej+1 do not share an endpoint. Let (V1, V2, . . .) be a sequence of vertex sets with
|Vj| = |V (H)| for each j ∈ N, such that |Vi∩Vj | = 2 if |i−j| = 1, and |Vi∩Vj | = 0 otherwise.
We remark that although the definition of Hd will depend on the choice of (e1, e2, . . .), the
proof below will work for any such sequence.

Definition 2 (The graph Hd). For each d ∈ N, let (Hd, e) denote the rooted graph with
root e = e1, vertex set V1∪ . . .∪Vd, and edge set E(Hd) = E(Hd[V1])∪ . . .∪E(Hd[Vd]), such
that

Hd[Vj] = H −
{

ej , ej+1

}

and Vj ∩ Vj+1 = ej+1 for every 1 6 j 6 d− 1, and Hd[Vd] = H − {ed}.
In other words, we place a copy of H on each Vj , in such a way that Vj ∩ Vj+1 = ej+1 for

each j ∈ [d− 1], and then remove the edges e1, . . . , ed.

Observation 4. Properties (a), (b) and (c) hold for Hd.

Let Xd(e) be the random variable which counts the number of copies of Hd in Gn,p, rooted
at a given edge e. It is straightforward (using property (a)) to show that the expected value
of Xd is large if pλ(H)n > (logn)2 (see Lemma 5); the main challenge will be to bound
the variance of Xd. The key step is therefore Lemma 6, below, which controls the number
of edges in the intersection of two copies of Hd with the same root. Having bounded the
variance of Xd, the proposition follows easily by Chebychev’s inequality.

We begin by bounding the expected value of Xd(e).
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Lemma 5. Let H be a balanced graph, and e ∈ E(Kn). If p = p(n) and d = d(n) are chosen

so that pλ(H)n > ωv(H)d and ω(v(H)−2)d > n for some function ω = ω(n), and pn → ∞,

then

E
(

Xd(e)
)

→ ∞
as n → ∞.

Proof. Recall that Hd has (v(H)− 2)d+ 2 vertices and (e(H)− 2)d+ 1 edges. Thus

E
(

Xd(e)
)

>

(

n

v(Hd)− 2

)

pe(Hd) >

(

n

v(H)d

)(v(H)−2)d

p(e(H)−2)d+1.

Since e(H)− 2 = λ(H)(v(H)− 2), and using our bounds on ω, it follows that

E
(

Xd(e)
)

> p

(

pλ(H)n

v(H)d

)(v(H)−2)d

> p · ω(v(H)−2)d > pn → ∞,

as required. �

Let root(Hd) denote the root of Hd, and recall that e(Hd) =
(

v(Hd) − 2
)

λ(H) + 1. We
shall next prove that the variance of Xd(e) is small; the following lemma is the key step.

Lemma 6. Let H be a balanced graph, and let d ∈ N. If F ( Hd and root(Hd) ⊂ V (F ),
then

e(F ) 6
(

v(F )− 2
)

λ(H).

Proof. We shall use induction on d. The case d = 1 is trivial, since e = root(Hd) ⊂ V (F ),
so either v(F ) = 2 and e(F ) = 0, or v(F ) > 3 and F + e ( H , and so the bound follows
by Definition 1. Let d > 2, and assume that the result holds for every d′ < d. For each
j ∈ [d], let V (Fj) = V (F ) ∩ Vj and let Fj = H [V (Fj)] be the subgraph of H induced by
these vertices.

Suppose first that v(Fj) 6 1 for some j ∈ [d], and let F ′ and F ′′ be the subgraphs of Hd

induced by V (F ) ∩
(

V1 ∪ . . . ∪ Vj−1

)

and V (F ) ∩
(

Vj+1 ∪ . . . ∪ Vd

)

, respectively. Applying
the induction hypothesis to F ′, we see that

e(F ) = e(F ′) + e(F ′′) 6
(

v(F ′)− 2
)

λ(H) + e(F ′′),

so it will suffice to prove that e(F ′′) 6 v(F ′′)λ(H). Now, applying the induction hypothesis
to F ∗, the subgraph of H induced by V (F ′′) ∪ (Vj ∩ Vj+1), we get either

e(F ∗) 6
(

v(F ∗)− 2
)

λ(H) 6 v(F ′′)λ(H)

as required, or V (F ∗) = Vj+1 ∪ . . . ∪ Vd. But in the latter case e(F ∗) − e(F ′′) > 1 (since
v(Fj) 6 1 and H is balanced), so

e(F ′′) 6 e(F ∗)− 1 =
(

v(F ∗)− 2
)

λ(H) 6 v(F ′′)λ(H),

as required. Hence we may assume that v(Fj) > 2 for every j ∈ [d]. Moreover, a similar
easy calculation proves the lemma if V (F ) = V (Hd), so we may assume that v(F ) < v(Hd).
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Now, for each j ∈ [d − 1], let Ej denote the event that Vj ∩ Vj+1 ⊂ V (F ), and let 1[·]
denote the indicator function. Then, recalling that Fj = H [V (Fj)], we have

e(F ) 6

( d
∑

j=1

e(Fj)

)

− 1− 2
d−1
∑

j=1

1[Ej ],

by the definition of Hd, and since root(Hd) ⊂ V (F ). We next claim that, since H is balanced
and F 6= Hd, it follows that

e(F ) 6

d
∑

j=1

(

(

v(Fj)− 2
)

λ(H) + 2
)

− 2− 2
d−1
∑

j=1

1[Ej ]

=

(

d
∑

j=1

v(Fj)− 2d

)

λ(H) +
(

2d− 2
)

− 2
d−1
∑

j=1

1[Ej ].

To see this, observe that e(Fj) 6
(

v(Fj)−2
)

λ(H)+1 holds for every Fj ( H with v(Fj) > 2,
by Definition 1, and that Fj 6= H for some j ∈ [d], since v(F ) < v(Hd).

Finally, observe that

v(F ) >

d
∑

j=1

v(Fj)− (d− 1)−
d−1
∑

j=1

1[Ej ],

and so

e(F ) 6

(

v(F )− d− 1 +

d−1
∑

j=1

1[Ej ]

)

λ(H) +
(

2d− 2
)

− 2

d−1
∑

j=1

1[Ej ].

But
(

d− 1−
d−1
∑

j=1

1[Ej ]

)

λ(H) > 2d− 2− 2

d−1
∑

j=1

1[Ej ],

since λ(H) > 2, by Definition 1. Hence

e(F ) 6
(

v(F )− 2
)

λ(H)

for every F ( H , as required. �

It is now straightforward to deduce the required bound on the variance of Xd(e).

Lemma 7. Let H be a balanced graph, and e ∈ E(Kn). If p = p(n) and d = d(n) are chosen

so that v(Hd)
−2pλ(H)n → ∞ as n → ∞, then

Var
(

Xd(e)
)

E
(

Xd(e)
)2 → 0

as n → ∞.
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Proof. Let ℓ(Hd) denote the number of copies of Hd, rooted at e, which share the same vertex
set. Then

E
(

Xd(e)
)

=

(

n

v(Hd)− 2

)

ℓ(Hd) · pe(Hd).

Moreover, we claim that

Var
(

Xd(e)
)

6

v(Hd)−2
∑

m=1

ℓ(Hd)
2

(

n

m

)(

n

v(Hd)−m− 2

)2

p2e(Hd)−λ(H)m. (1)

To see this, we simply count (ordered) pairs (A,B), where A and B are copies of Hd in Gn,p

with root e. Let F = A ∩ B and m = |V (A) ∩ V (B)| − 2, and note that we expect at most

E
(

Xd(e)
)2

such pairs (A,B) with m = 0.
By Lemma 6, if A 6= B then e(F ) 6 λ(H)m, and so e(A ∪ B) > 2e(Hd) − λ(H)m.

Moreover, given m, there are at most

ℓ(Hd)
2

(

n

m

)(

n

v(Hd)−m− 2

)2

choices for A and B. This proves (1).
Combining the bounds above, and setting k = v(Hd), we obtain

Var
(

Xd(e)
)

E
(

Xd(e)
)2 6

k−2
∑

m=1

2m(k − 2)!2

m!(k −m− 2)!2

(

pλ(H)n
)−m

6

k−2
∑

m=1

2
(

k−2pλ(H)n
)−m

→ 0

as n → ∞, as required. �

We can now deduce Proposition 3 using Chebychev’s inequality and sprinkling.

Proof of Proposition 3. LetH be a balanced graph, suppose that p ≫
(

logn
log logn

)2/λ(H)

n−1/λ(H),

and let

d(n) =

⌊

log n

log logn

⌋

.

We claim that p(n) and d(n) satisfy the conditions of Lemmas 5 and 7. Indeed, setting
ω(n) = d(n) we have pλ(H)n ≫ ωd and ω2d ≫ n, so Lemma 5 holds, and pλ(H)n ≫ d2, so
Lemma 7 holds. Thus, by Chebychev’s inequality,

P
(

Xd(e) = 0
)

6
Var
(

Xd(e)
)

E
(

Xd(e)
)2 → 0

as n → ∞. Moreover, if Xd(e) 6= 0 then e ∈ 〈Gn,p〉H , since if e is the root of some copy of
Hd then it is infected after at most d steps of the H-process. Hence, by Markov’s inequality,

if pλ(H)n ≫
(

logn
log logn

)2

then, with high probability, all but o(n2) edges of Kn are infected in

the H-process on Gn,p.
To finish the proof, we shall show that by sprinkling O(n logn) extra edges, we shall infect

all of the remaining edges, with high probability. We use the following easy claim.

Claim: If e
(

〈Gn,p〉H
)

>
(

n
2

)

− o(n2), then there is a clique of size n− o(n) in G = 〈Gn,p〉H .
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Proof of Claim. Let 0 < c < 1 be arbitrary. By the pigeonhole principle, there are o(n) pairs
{x, y} such that dG(x) + dG(y) < (2− c)n. We claim that every other edge is in G.

Indeed, if dG(x)+dG(y) > (2− c)n then, by Turán’s Theorem, there is a (v(H)−2)-clique
in NG(x) ∩ NG(y), since o(n2) edges are missing. But then xy ∈ 〈G〉, which implies that
xy ∈ G, since G is closed under the H-bootstrap process. Thus e(G) >

(

n
2

)

− o(n), and so
the claim follows. �

Finally, let us sprinkle edges with density p; that is, let us take a second copy of Gn,p and
consider the union of the two random graphs. We obtain a random graph Gn,p∗ of density
p∗ = 1 − (1 − p)2 < 2p. Let K be the clique found in the claim, and observe that if every
vertex outside K has at least v(H) − 1 neighbours in K (in the second copy of Gn,p) then
Gn,p∗ will percolate. Since pn ≫ logn, this occurs with high probability, and hence

pc(n,H) 6 C

(

log n

log log n

)2/λ(H)

n−1/λ(H),

if C is sufficiently large, as required. �

3. Lower bound for Kr-percolation

In this section we shall prove the following proposition, which shows that, if r > 4 and
(p logn)λ(r)n 6 1, then with high probability o(n2) edges are infected in the Kr-bootstrap
process with initial set Gn,p.

Proposition 8. Let r > 4, and let e ∈ E(Kn). If pn
1/λ(r) log n 6 1/(2e), then

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0

as n → ∞.

The idea of the proof is as follows. If e ∈ 〈G〉Kr
for some graph G, then there must exist

a ‘witness set’ of edges of G which caused e to be infected. We shall describe an algorithm
which finds such a set F = F (e) of edges, and show that this set has two useful properties:

(a) e(F ) > λ(r)
(

v(F )− 2
)

+ 1 (see Lemma 9).

(b) If e(F ) >
(

r
2

)

L, then L 6 e(F (f)) 6
(

r
2

)

L for some f ∈ 〈G〉Kr
(see Lemma 13).

Property (a) will allow us to bound the expected number of such sets when G = Gn,p and
e(F ) = O(logn); combining it with property (b) will allow us to do so when e(F ) is larger
than this.

3.1. Extremal results. Let r > 4 be fixed for the remainder of this section, and let G be
an arbitrary graph. We begin by describing the algorithm which finds F (e).

The Witness-Set Algorithm. We assign a graph F = F (e) ⊂ G to each edge e ∈ 〈G〉Kr

as follows:

1. If e ∈ G then set F (e) = {e}.
2. Choose an order in which to infect the edges of 〈G〉Kr

, and at each step identify which
r-clique was completed (if more than one is completed then choose one).
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3. Infect the edges one by one. If e is infected by the r-clique K, then set

F (e) :=
⋃

e 6=e′∈K

F (e′).

We call the graph F (e) a witness set for the event e ∈ 〈G〉Kr
.

Since every e 6= e′ ∈ K is either in G, or was infected earlier in the process, the algorithm
is well-defined. Note that the graphs F (e) depend on the order in which we chose to infect
the edges (that is, they depend on Step 2 of the algorithm); the results below hold for every
possible such choice.

We shall say that a graph F is an r-witness set if there exists a graph G, an edge e, and
a realization of the Witness-Set Algorithm (i.e., a choice as in Step 2) such that F = F (e).
The key lemma in the proof of Proposition 8 is the following extremal result.

Lemma 9. Let F be a graph and r > 4, and suppose that F is an r-witness set. Then

e(F ) > λ(r)
(

v(F )− 2
)

+ 1.

We shall prove Lemma 9 using induction; in order to do so, we shall need to state a more
general version of it (see Lemma 10, below). The statement is slightly technical, and we shall
need some preparatory definitions. We shall use the following algorithm, which is simply a
restatement of the Witness-Set Algorithm.

The Red Edge Algorithm. Let G be a graph, let r > 4, and let e ∈ 〈G〉Kr
\G.

1. Run the Witness-Set Algorithm until edge e is infected.
2. Let (e1, e2, . . . , em) be the edges infected in the process with F (ej) ⊂ F (e) and ej 6∈ G,

written in the order in which they are infected, where em = e.
3. For each 1 6 j 6 m, let K(j) be the r-clique which is completed by ej .
4. Colour the edges {e1, . . . , em} red, and note that ej ∈ K(j) \

(

K(1) ∪ . . . ∪K(j−1)
)

.

The key observation is that F (e) =
(

K(1) ∪ . . . ∪K(m)
)

\
{

e1, . . . , em
}

, or, in words, F (e)
consists of all the non-red edges of the cliques. We shall bound the number of non-red edges
after t steps of the Red Edge Algorithm. Thus, given a realization of the algorithm and
t ∈ [m], define

Bt :=
(

K(1) ∪ . . . ∪K(t)
)

\
{

e1, . . . , et
}

.

We shall only use the following properties of the Red Edge Algorithm: at step j an r-clique
is added, one of the edges ej of K

(j) is coloured red, and ej 6∈ K(i) for every i < j.
In order to state Lemma 10, we need to define two more parameters of the model, which

will both play a key role in the induction step.

Definition 3 (ℓ and k). Let Gt denote the graph, obtained using the Red Edge Algorithm,
whose vertices are the cliques

{

K(1), . . . , K(t)
}

, and in which two cliques are adjacent if they
share at least two vertices.

Let ℓ = ℓt denote the number of components of Gt, let c(v) = ct(v) denote the number of
components of Gt containing the vertex v ∈ V (G), and set

k = kt =
∑

v∈V (G)

(

ct(v)− 1
)

.
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Here, and throughout, we treat C1 as a component in Gt, and also as a subset of V (G), and
trust that this will not cause confusion.

The following lemma easily implies Lemma 9, since when t = m we have ℓ = 1 and hence
k = 0.

Lemma 10. e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + k − ℓr
)

+ ℓ

((

r

2

)

− 1

)

.

We shall prove Lemma 10 by induction on t. The induction step will be relatively straight-
forward when ℓt > ℓt−1; when ℓt < ℓt−1 we shall need the following lemma.

Say that a (multi-)family of sets A is a double cover of X if every element of X is in at
least two members of A.

Lemma 11. Let m > 2 and r > 4, and let A be a multi-family of subsets of [m]. If A is a

double cover of [m], and |A| 6 r, then
∣

∣

∣

∣

{

{A,B} ∈
(A
2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

6 λ(r)

(

∑

A∈A

|A| − 2m

)

+ m. (2)

Proof of Lemma 11. We shall use induction on m. Suppose first that m = 2, and let A
consist of x sets of size two and y sets of size one. If x > 2, then we have

(

x

2

)

+ xy +

(

y

2

)

=

(

x+ y

2

)

= λ(x+ y)(x+ y − 2) + 2 6 λ(r)
(

2x+ y − 4
)

+ 2,

since 2x+ y > 4 and x+ y 6 r. Similarly, if x = 1 then y+
(

y−1
2

)

6 λ(r)(y− 2)+2 for every

3 6 y 6 r − 1, and if x = 0, then 1 +
(

y−2
2

)

6 λ(r)(y − 4) + 2 for every 4 6 y 6 r.
So let m > 3, and let A be a multi-family as described, let T = {A ∈ A : m ∈ A}, and

apply the induction hypothesis to the multi-family A′ obtained by removing m from each
element of T . Letting t = |T |, assume first that t < r. This gives

∣

∣

∣

∣

{

{A,B} ∈
(A
2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

6

∣

∣

∣

∣

{

{A,B} ∈
(A′

2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

+

(

t

2

)

6 λ(r)

(

∑

A∈A′

|A| − 2m+ 2

)

+ (m− 1) +

(

t

2

)

= λ(r)

(

∑

A∈A

|A| − 2m

)

+ (m− 1) +

(

t

2

)

− λ(r)(t− 2),

so it will suffice to show that λ(r)(t− 2) >
(

t
2

)

− 1. But
(t
2
)−1

t−2
= t+1

2
, and λ(r) > r

2
if r > 4.

Hence we are done unless t = r.
Finally, suppose that t = r. Then the left-hand side of (2) is equal to

(

r
2

)

, and the
right-hand side is at least

λ(r)
(

r + 2(m− 1) − 2m
)

+ m =

(

r

2

)

− 2 + m >

(

r

2

)

,
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since A is a double cover of [m] and m > 2. The induction step, and hence the lemma,
follows. �

In fact, the following reformulation of Lemma 11 will be more convenient for us in the
proof below. Here N0 = {0, 1, 2, . . .}, and P(m) denotes the non-empty subsets of [m].

Lemma 12. Let m > 2 and r > 4. Given any function a : P(m) → N0 such that
∑

S aS 6 r
and

∑

S∋j aS > 2 for every j ∈ [m], we have

∑

S∈P(m)

(

aS
2

)

+
∑

{S,T}∈J

aSaT 6 λ(r)

(

∑

S∈P(m)

aS|S| − 2m

)

+ m, (3)

where J =
{

{S, T} ∈
(

P(m)
2

)

: S ∩ T 6= ∅
}

.

Proof. We apply Lemma 11 to the multi-family A which contains exactly aS copies of S for
each S ⊂ [m]. The condition

∑

S∋j aS > 2 implies that A is a double cover, and
∑

S aS 6 r

implies that |A| 6 r. Thus (2) holds, which is clearly equivalent to (3). �

We can now deduce Lemma 10.

Proof of Lemma 10. We shall prove the lemma by induction on t. When t = 1 we have
v(B1) = r and e(B1) =

(

r
2

)

− 1. Clearly ℓ1 = 1 and k1 = 0, and

e(B1) =

(

r

2

)

− 1 = λ(r)
(

v(B1)− r
)

+

(

r

2

)

− 1,

so in fact equality holds. For the induction step we divide into three cases. Let t > 2, and
assume that the lemma holds for smaller values of t.

Case 1: ℓt = ℓt−1 + 1.

Since Gt has one more component than Gt−1, it follows that K(t) intersects every other
clique in at most one vertex. Hence all of the edges of K(t) are new, and so

e(Bt) = e(Bt−1) +

(

r

2

)

− 1.

Now let b be the number of vertices of K(t) which are not new, and hence intersect other
components of M . Then v(Bt) = v(Bt−1) + r − b and kt = kt−1 + b, so, by the induction
hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

=

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr
)

+ ℓt

((

r

2

)

− 1

)

as required.

Case 2: ℓt = ℓt−1.
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Since Gt and Gt−1 have the same number of components, it follows that K(t) must intersect
some component, C1, in at least two vertices, and intersects every clique not in C1 in at most
one vertex. Thus, the only edges ofK(t) which are not new have both endpoints in C1. Hence,
letting a = |K(t) ∩ C1|, we have

e(Bt) > e(Bt−1) +

(

r

2

)

−
(

a

2

)

− 1.

Now, let b be the number of vertices of K(t) \ C1 which are not new, and hence intersect
other components of Gt. Then v(Bt) = v(Bt−1) + r − a − b and kt = kt−1 + b, so, by the
induction hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

−
(

a

2

)

>

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr − r + a
)

+
(

ℓt + 1
)

((

r

2

)

− 1

)

−
(

a

2

)

.

If a 6 r − 1 then
(

r

2

)

− 1−
(

a

2

)

− (r − a)

(

(

r
2

)

− 2

r − 2

)

> 0,

since the worst cases are the extremes (a = 2 and a = r− 1), and using the fact that r > 4.
But if a = r, then our bound on e(Bt) can be improved to e(Bt) > e(Bt−1) (which is trivial
since we are not allowed to colour edges of Bt−1 red), and v(Bt) = v(Bt−1), so we are done
in this case as well.

Case 3: ℓt < ℓt−1.

This case is more difficult, and we shall need to use Lemma 12. Set m = ℓt−1 − ℓt + 1,
and observe that m > 2, and that K(t) intersects m components C1, . . . , Cm in at least two
vertices each, and intersects every clique not in these components in at most one vertex.
Define, for each S ∈ P(m),

aS =
∣

∣

{

v ∈ K(t) : v ∈ Cj ⇔ j ∈ S
}
∣

∣,

and set

e(A) =
∑

S∈P(m)

(

aS
2

)

+
∑

{S,T}∈J

aSaT ,

where J =
{

{S, T} ∈
(

P(m)
2

)

: S ∩ T 6= ∅
}

, as in Lemma 12. Then

e(Bt) > e(Bt−1) +

(

r

2

)

− e(A)− 1.

Set a =
∑

S∈P(m) aS, and let b denote the number of vertices of K(t) \
(

C1 ∪ . . . ∪ Cm

)

which intersect other components of Gt. Then v(Bt) = v(Bt−1) + r − a − b. Also, let
c =

∑

S∈P(m) aS(|S| − 1), and observe that kt 6 kt−1 + b− c.
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Thus, by the induction hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

− e(A)

>

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr −mr + a + c
)

+
(

ℓt +m
)

((

r

2

)

− 1

)

− e(A).

Note that a 6 r and
∑

S∋j aS = |K(t) ∩ Cj| > 2. Hence, by Lemma 12,

e(A) 6 λ(r)

(

∑

S∈P(m)

aS|S| − 2m

)

+m = λ(r)
(

a + c
)

− m

(

λ(r)r −
(

r

2

)

+ 1

)

,

since 2λ(r)− 1 = λ(r)r −
(

r
2

)

+ 1. Thus

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr
)

+ ℓt

((

r

2

)

− 1

)

,

as required. This completes the induction step, and hence the proof of the lemma. �

For completeness, let us quickly note formally that Lemma 9 follows immediately from
Lemma 10.

Proof of Lemma 9. Let F be an r-witness set for the graph G and the edge e, and run the
Red Edge Algorithm. We claim that the graph Gm is connected. To see this, consider the
component C of Gm which contains the edge e, and run the process backwards. A little
thought reveals that every edge of F (e) must lie in some clique in C, and so the component
C must span the entire graph Gm, as claimed.

Thus ℓm = 1, and so c(v) = 1 for every v ∈ V (F ), which means that km = 0. Hence, by
Lemma 10,

e(F ) >

(

(

r
2

)

− 2

r − 2

)

(

v(F )− r
)

+

((

r

2

)

− 1

)

= λ(r)
(

v(F )− 2
)

+ 1,

as required. �

3.2. Bootstrap methods. To deduce Proposition 8, we shall borrow only one simple idea
from the theory of bootstrap percolation. The following lemma is based on an idea of
Aizenman and Lebowitz [3].

Lemma 13. Let F be an r-witness set on a graph G, and let L ∈ N. If e(F ) >
(

r
2

)

L, then
there exists an edge f ∈ E(G) with

L 6 e
(

F (f)
)

6

(

r

2

)

L

in the same realization of the Witness-Set Algorithm.

Proof. Run the Witness-Set Algorithm, and observe that the maximum size of e(F (f)), over
all infected edges, increases by at most a factor of

(

r
2

)

at each step of the process. It follows
immediately that a graph F (f) as described must have been created, at some point in the
process. Moreover, such a graph exists with F (f) ⊂ F . �



14 JÓZSEF BALOGH, BÉLA BOLLOBÁS, AND ROBERT MORRIS

We have finally finished with our deterministic preliminaries, and it is time to reintroduce
randomness. There is, however, little left to do: the bound we require will follow easily from
Lemmas 9 and 13 by Markov’s inequality.

For each m ∈ N and every e ∈ E(Kn), let

Ym(e) :=
∣

∣

∣

{

S ⊂ [n] : e ⊂ S, and e
(

Gn,p[S]
)

> m > λ(r)
(

|S| − 2
)

+ 1
}
∣

∣

∣

be the random variable which counts the number of sets S which contain e, and also at least
m > λ(r)

(

|S| − 2
)

+ 1 edges of Gn,p. We first bound the expected size of Ym(e).

Lemma 14. For every r > 4, there exists a C(r) > 0 such that the following holds. If n ∈ N

and p > 0 satisfy pn1/λ(r) log n 6 1/(2e), and n is sufficiently large, then

E
(

Ym(e)
)

6

(

m+ C(r)

2
(

r
2

)

log n

)m−λ(r)

for every e ∈ E(Kn) and every λ(r) + 1 6 m 6
(

r
2

)

logn.

Proof. Let ℓ ∈ N be maximal such that m > λ(r)
(

ℓ− 2
)

+ 1. Then |S| 6 ℓ, and hence

E
(

Ym(e)
)

6 2

(

n

ℓ− 2

)(

ℓ2/2

m

)

pm 6
2

(ℓ− 2)!

(

epℓ2

2m

)m−λ(r)(ℓ−2) (
epℓ2n1/λ(r)

2m

)λ(r)(ℓ−2)

.

Note that 1 6 m − λ(r)
(

ℓ − 2
)

6 λ(r), and that 2
(ℓ−2)!

(

epℓ2

2m

)α
6 1 for every α ∈ [λ(r)],

assuming n is sufficiently large. Thus it suffices to observe that

ℓ2

4m
6

m+ C(r)

2
(

r
2

)

if C(r) is sufficiently large, since m
(

m+ C(r)
)

>
(

m+ 2λ(r)
)2

>
(

λ(r)ℓ
)2

> r2ℓ2

4
. �

We can now easily deduce Proposition 8.

Proof of Proposition 8. Let r > 4, let n ∈ N, and let p = p(n) > 0 satisfy pn1/λ(r) log n 6

1/(2e). We claim that, for every e ∈ E(Kn),

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0

as n → ∞. Indeed, suppose that e ∈ 〈Gn,p〉Kr
, run the Witness-Set Algorithm, and consider

the graph F = F (e) ⊂ Gn,p.
Suppose first that e(F ) 6

(

r
2

)

log n. By Lemma 9, we have

e(F ) > λ(r)
(

v(F )− 2
)

+ 1,

and thus either e ∈ Gn,p, or Ym(e) > 1 for some

λ(r) + 1 6 m 6

(

r

2

)

log n.
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By Lemma 14, this has probability at most

p +

(r
2
) logn
∑

m=λ(r)+1

E
(

Ym(e)
)

6 p +

(r
2
) logn
∑

m=λ(r)+1

(

m+O(r)

2
(

r
2

)

log n

)m−λ(r)

→ 0,

as n → ∞, as claimed.
So suppose next that e(F ) >

(

r
2

)

log n. By Lemma 13, there must exist an edge f in Kn

such that logn 6 e(F (f)) 6
(

r
2

)

logn, which means that Ym(f) > 1 for some logn 6 m 6
(

r
2

)

log n. By Lemma 14, the expected number of such edges f is at most

(

n

2

) (r
2
) logn
∑

m=log n

(

m+ C(r)

2
(

r
2

)

logn

)m−λ(r)

6 n2

(

2

r2

)logn−λ(r)

→ 0,

as n → ∞, since r > 4. This proves the proposition. �

We finish by noting that Theorem 1 follows immediately from Propositions 3 and 8.

Proof of Theorem 1. By Proposition 3, we have

pc(n,H) ≪
(

logn
)2/λ(H)

n−1/λ(H)

for every balanced graph H . Moreover Kr is balanced, since
(

r−1
2

)

− 1

r − 3
6

(

r
2

)

− 2

r − 2

for every r > 4, and λ(Kr) = λ(r) > 2, so the upper bound follows.
For the lower bound, suppose that pn1/λ(r) log n 6 1/(2e), and n is sufficiently large. By

Proposition 8, we have

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0

for every edge e ∈ E(Kn). Thus Gn,p does not percolate, with high probability, as required.
�

4. The threshold for K4-percolation

In this section we shall prove Theorem 2, which determines the threshold forK4-percolation
on Kn. The proof is quite different from that of Theorem 1, and uses ideas from the study
of 2-neighbour bootstrap percolation on [n]d; see in particular [3, 4, 24].

We begin with a simple but key observation. A hypergraph H is said to be triangle-free if
there do not exist distinct vertices v1, v2, v3 and edges e1, e2, e3 ∈ E(H) such that v1 ∈ e2∩e3,
v2 ∈ e1 ∩ e3 and v3 ∈ e1 ∩ e2.

Observation 15. For every graph G, the graph 〈G〉K4
consists of a collection of edge-disjoint

cliques. Moreover, the hypergraph defined by these cliques is triangle-free.
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Proof. For the first part, simply note that if two cliques R1 and R2 share more than one
vertex, then the closure 〈R1 ∪ R2〉R4

is a clique on vertex set V (R1) ∪ V (R2). To prove the
second part, observe that if R1, R2 and R3 form a triangle, then the closure 〈R1∪R2∪R3〉R4

is a clique on vertex set V (R1) ∪ V (R2) ∪ V (R3). �

Say that a clique K is internally spanned by a graph G if 〈G∩K〉K4
= K. We shall study,

for each ℓ ∈ N and p > 0, the probability

P (ℓ, p) := P
(

Kℓ is internally spanned by Gn,p

)

.

The following bounds are both straightforward.

Lemma 16. For every 3 6 ℓ ∈ N and p ∈ (0, 1) with pℓ2 6 1,
(

1

2e2

)ℓ

(ℓp)2ℓ−3
6 P (ℓ, p) 6 (4e)3

(

3

4

)2ℓ
(

ℓp
)2ℓ−3

.

Proof. For the lower bound, simply count the graphs on vertex set [ℓ], and with 2ℓ−3 edges,
in which every vertex j > 3 sends two edges ‘backwards’ in the order induced by Z. It is
easy to see, by induction on t, that the clique Kt with vertex set [t] is internally spanned,
for each t ∈ [ℓ]. The number of such graphs is

ℓ
∏

j=3

(

j − 1

2

)

>
(ℓ!)2

2ℓℓ3
>

2πℓ2ℓ−3

(2e2)ℓ
,

by Stirling’s formula, and each is an induced subgraph of Gn,p with probability at least

p2ℓ−3(1−p)ℓ
2

> p2ℓ−3/2π. Since these events are mutually exclusive, the lower bound follows.
For the upper bound, recall that if a graph G internally spans Kℓ, then e(G) > 2ℓ − 3.

(This was first proved in [13]; see also Lemma 18 for a short proof.) It follows that

P (ℓ, p) 6

(

ℓ2/2

2ℓ− 3

)

p2ℓ−3
6

(

eℓ

4ℓ− 6

)2ℓ−3
(

ℓp
)2ℓ−3

6 (4e)3
(

3

4

)2ℓ
(

ℓp
)2ℓ−3

,

as required. �

4.1. The lower bound. The following lemma, like Lemma 13, it is based on an idea of
Aizenman and Lebowitz [3], who proved the corresponding result in the context of two-
neighbour bootstrap percolation on [n]d. The lower bound in Theorem 2 will follow by
combining it with Lemma 16.

Lemma 17. Suppose that 〈G〉K4
= Kn, and let 1 6 L 6 n. There exists a clique K ⊂ Kn

which is internally spanned by G, with

L 6 v(K) 6 3L.

We remark that this result does not generalize to Kr-percolation for r > 5. In fact, it is
not hard to construct a graph G for which 〈G〉Kr

= Kn, but no clique Kℓ with r < ℓ < n is
internally spanned.

In order to prove Lemma 17 we shall introduce a simple algorithm for filling Kn, which we
call the Clique-Process. This algorithm will also provide a short proof of the bound e(G) >
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2ℓ − 3 for a graph G which internally spans Kℓ. It is analogous to the ‘rectangle process’
in two-neighbour bootstrap percolation on [n]d (see Proposition 30 of [25] or Theorem 11
of [4]).

The Clique Process. Let G be a graph on n vertices, and run the K4-process as follows:

0. At each step of the process, we will maintain a collection (R1, A1), . . . , (Rm, Am),
where Rj is a clique and Aj ⊂ E(G), such that 〈Aj〉K4

= Rj for each j ∈ [m].

1. At time zero, set Rj = Aj = {ej} for each j ∈ [m], where E(G) = {e1, . . . , em}.
2. At time t ∈ 2Z, choose a pair {i, j} such that |Ri ∩ Rj | > 2, if such a pair exists.

Delete (Ri, Ai) and (Rj , Aj), and replace them with (〈Ai ∪Aj〉K4
, Ai ∪ Aj).

3. At time t ∈ 2Z+1, choose a triple {i, j, k} such that Ri, Rj, and Rk form a triangle in
the hypergraph defined by the cliques, if such a triple exists. Delete (Ri, Ai), (Rj , Aj)
and (Rk, Ak), and replace them with (〈Ai ∪ Aj ∪ Ak〉K4

, Ai ∪Aj ∪ Ak).

4. Repeat steps 2 and 3 until all edges of 〈G〉K4
are infected.

The algorithm terminates by the proof of Observation 15. Observe moreover that the Aj

are in fact disjoint sets of edges of G. We can now prove Lemma 17.

Proof of Lemma 17. Suppose that 〈G〉K4
= Kn, and run the Clique Process for G. At each

step of the process, the value of maxj∈[m] v(Rj) increases by a factor of at most three. Hence,
for every L ∈ [n], there exists a clique K = Rj ⊂ Kn, with

L 6 v(K) 6 3L,

which is internally spanned by G, as claimed. �

We can also easily deduce the following bound, which was first proved by Bollobás [13].

Lemma 18. If G internally spans Kℓ then e(G) > 2ℓ− 3.

Proof. We shall use induction on ℓ; for ℓ 6 3 the result is trivial. Now suppose that G
internally spans R = Kℓ, and run the Clique Process for G. At the penultimate step we
have either two or three disjointly internally spanned proper sub-cliques of R, which together
span R. If these cliques are S = 〈A〉K4

and T = 〈B〉K4
, and A ∩B = ∅ then

e(G) > e(A) + e(B) > 2
(

v(S) + v(T )
)

− 6 > 2v(R)− 2,

since |S ∩ T | > 2, so v(S) + v(T ) > v(R) + 2. If they are S = 〈A〉K4
, T = 〈B〉K4

and
U = 〈C〉K4

, with A,B,C pairwise disjoint, then we have

e(G) > e(A) + e(B) + e(C) > 2
(

v(S) + v(T ) + v(U)
)

− 9 > 2v(R)− 3,

since (S, T, U) form a triangle, so v(S) + v(T ) + v(U) > v(R) + 3. �

We can now prove the lower bound on pc(n,K4) in Theorem 2. It follows easily from
Lemmas 16 and 17, using Markov’s inequality.

Proposition 19. If p2n logn 6 16/(9e3), then

P
(

〈Gn,p〉K4
= Kn

)

→ 0

as n → ∞.
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Proof. Let p2n logn = 16/(9e3) and L = log n. By Lemma 17, if 〈Gn,p〉K4
= Kn then there

exists an internally spanned clique R with L 6 v(R) 6 3L. By Lemma 16, the expected
number of such cliques is at most

(4e)3
3L
∑

ℓ=L

(

n

ℓ

)(

3

4

)2ℓ
(

ℓp
)2ℓ−3

6

3L
∑

ℓ=L

(

4e

ℓp

)3(
9eℓp2n

16

)ℓ

6

3L
∑

ℓ=L

n3/2

(

ℓ

e2 logn

)ℓ

.

Thus
3L
∑

ℓ=L

n3/2

(

ℓ

e2 log n

)ℓ

6 3L · n3/2e−2ℓ → 0

as n → ∞, as required. �

4.2. The upper bound. We shall use the second moment method (and Lemma 16) in order
to show that Gn,p internally spans a clique of order ∼ logn with high probability. We will
then deduce the upper bound in Theorem 2 using sprinkling.

Let X(ℓ, p) denote the random variable which counts the number of copies of Kℓ which
are internally spanned by Gn,p. We first bound the expected value of X(ℓ, p).

Lemma 20. For every n ∈ N, 3 6 ℓ ∈ N and p ∈ (0, 1) with pℓ2 6 1,

E
(

X(ℓ, p)
)

>

(

p2nℓ

2e2

)ℓ(
1

ℓp

)3

.

Proof. By Lemma 16, we have

E
(

X(ℓ, p)
)

>

(

n

ℓ

)(

1

2e2

)ℓ

(ℓp)2ℓ−3 >

(

p2nℓ

2e2

)ℓ(
1

ℓp

)3

as required. �

To bound the variance of X(ℓ, p), we shall use the following extension of Lemma 18. Given
cliques S ⊂ R, let

D(S,R) :=
{

〈

(Gn,p ∪ S) ∩R
〉

K4

= R
}

denote the event that R is internally spanned by Gn,p ∪ S. Lemma 18 is equivalent to the
case v(S) = 3 of the following lemma.

Lemma 21. If D(S,R) holds, then e
(

(Gn,p \ S) ∩ R
)

> 2
(

v(R)− v(S)
)

.

Proof. We shall use induction on ℓ = v(R). Suppose thatD(S,R) holds, and apply the Clique
Process, except starting with the clique S already formed. Suppose at the penultimate step
we have two disjointly internally spanned cliques, T = 〈A ∪ S〉K4

and U = 〈B〉K4
, where

A ∩ S = A ∩ B = ∅. (That A and B may be taken to be disjoint follows by the comment
after the Clique Process.) By the induction hypothesis, we have

e
(

(Gn,p \ S) ∩ R
)

> e(A) + e(B) > 2
(

v(T )− v(S)
)

+ 2v(U)− 3 > 2
(

v(R)− v(S)
)

,

since |T ∩ U | > 2. The case of three cliques is similar, so we shall skip the details. �

We can now bound the variance of X(ℓ, p). Let P (k, ℓ) = P
(

D(Kk, Kℓ)
)

.
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Lemma 22. Let n ∈ N, 4ℓ 6 log n and p2n logn > 1/4e. Then

Var
(

X(ℓ, p)
)

≪ E
(

X(ℓ, p)
)2

as n → ∞.

Proof. We first claim that

Var
(

X(ℓ, p)
)

6

ℓ
∑

k=2

E
(

X(ℓ, p)
)

(

ℓ

k

)(

n

ℓ− k

)

P (k, ℓ).

This follows by considering ordered pairs (S, T ) of internally spanned ℓ-cliques which intersect
in a k-clique. By Lemma 21, if D(S ∩ T, T ) holds then there are at least 2(ℓ − k) edges of
Gn,p in T \ S, and so

P (k, ℓ) 6

(

(ℓ2 − k2)/2

2ℓ− 2k

)

p2(ℓ−k)
6

(

e(ℓ+ k)p

4

)2(ℓ−k)

.

Thus, by Lemma 20,

P (k, ℓ) 6

(

e(ℓ+ k)p

4

)2(ℓ−k)(
2e2

p2nℓ

)ℓ

(ℓp)3 E
(

X(ℓ, p)
)

.

But, using the fact that (ℓ+ k)ℓ−k 6 e2k(ℓ− k)ℓ−k, an easy calculation gives
(

ℓ

k

)(

n

ℓ− k

)(

e(ℓ+ k)p

4

)2(ℓ−k)(
2e2

p2nℓ

)ℓ

6

(

e5

4

)ℓ(
1

8kp2n

)k

.

Hence, using the fact that (1/Cx)x 6 e1/Ce and (ℓp)3
(

e5

4

)ℓ ≪ n−1/2−o(1), we obtain

Var
(

X(ℓ, p)
)

6 E
(

X(ℓ, p)
)2

(ℓp)3
(

e5

4

)ℓ ℓ
∑

k=2

(

1

8kp2n

)k

≪ E
(

X(ℓ, p)
)2
,

as required. �

Using Chebychev, and sprinkling, we can now deduce the following bound on pc(n,K4).

Proposition 23. If p2n logn > 18, then

P
(

〈Gn,p〉K4
= Kn

)

→ 1

as n → ∞.

Proof. Set 4ℓ = log n and p2n logn = 1 > 1/4e, and observe that the conditions of Lemmas 20
and 22 are satisfied. By Lemma 20, we obtain

E
(

X(ℓ, p)
)

>

(

p2nℓ

2e2

)ℓ(
1

ℓp

)3

>

(

1

8e2

)logn/4

n3/2−o(1) → ∞.

Thus, by Lemma 22 and Chebychev’s inequality, with high probability there exists a copy
of Kℓ which is internally spanned by H := Gn,p.

Now set pj = 2−j+4p for each j ∈ N, and let Gj = Gn,pj be independent random graphs
with density pj. We make the following claim.
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Claim 1: Let ε > 0 be sufficiently small. If 22j−2ℓ = t 6 εn, then 〈Gj ∪Kt〉K4
contains a

clique of size 4t, with probability at least 1− e−t/8.

Proof of Claim 1. Observe that every vertex v that has at least two neighbours in Kt (in the
graph Gj) is added to the clique in 〈Gj ∪ Kt〉. It therefore suffices to show that there are
at least 3t such vertices, with high probability. The expected number of such vertices is at
least

3n

4
·
(

t

2

)

p2j(1− pj)
t−2

> 16tp2nℓ > 4t

since pjt = 2j+2ℓp = 8p
√
ℓt = O(

√
ε).

This event (having two neighbours) is independent for each vertex. Thus, by Chernoff’s
inequality, with probability at least 1 − e−t/8, the number of such vertices is at least 3t, as
required. �

We apply the claim for each j > 0. It follows that, with high probability, 〈H ∪⋃∞
j=1Gj〉K4

contains a clique of order εn, for some ε > 0. Finally, let H ′ be another independent copy
of Gn,p.

Claim 2: If t > εn, then 〈H ′ ∪Kt〉K4
= Kn with high probability.

Proof of Claim 2. We apply the same argument as in the proof of Claim 1. Indeed, the
probability that a vertex v has at most one neighbour in Kt is at most

(1− p)t + tp(1− p)t−1 6
(

1 + 2tp
)

e−tp ≪ 1

n2

as n → ∞. Hence, by Markov, the probability that there exists such a vertex is at most 1/n,
as required. �

To complete the proof, we simply note that the graph G = H ∪H ′ ∪⋃∞
j=1Gj is a random

graph Gn,p∗ of density

p∗ 6 2p+

∞
∑

j=1

2−j+4p 6 18p,

and Gn,p∗ percolates in the K4-process with high probability, as required. �

Theorem 2 follows immediately from Propositions 19 and 23.

5. Other graphs, and open problems

In this section we shall mention some simple results for graphs other than Kr, and state
several of the many open problems relating to this model. Since the results will all be fairly
straightforward, we shall only sketch the proofs. We being by stating a simple extension of
the (trivial) result for the K3-process mentioned in the Introduction.

Proposition 24. Let H = Ck for some k > 3, or H = K2,3. Then,

pc(n,H) =
log n

n
+ Θ

(

1

n

)

.
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Sketch of proof. We shall show that, with high probability, the graph Gn,p percolates in the
H-bootstrap process if and only if it is connected. The bounds on pc(n,H) then follow by
standard results, see [14].

Indeed, first let H = Ck and consider a path of length at least k attached to a triangle; we
claim that this graph spans a clique (on its vertex set). To see this, identify the vertices with
[ℓ] so that the edges are {i(i+1) : i ∈ [ℓ−1]}∪{13}, and say that ij is a t-edge if |i− j| = t.
The edges are infected in the following order: (k − 1)-edges, k-edges, 2-edges, 3-edges, 4-
edges, and so on. Finally, observe that if Gn,p is connected then, with high probability, every
vertex has a path of length at least k leading to a triangle.

For H = K2,3 the proof is similar. Let x, y ∈ V (Gn,p), and suppose that there exist vertex
disjoint paths from x and y to opposite corners of a copy of C4. Then it is easy to see that
the percolation process works its way along these paths and eventually infects the edge xy.
This gives a large complete bipartite graph, and if there is an edge in each part then the
closure is a complete graph. Since Gn,p is connected, every vertex is eventually swallowed
by this clique. �

The case H = K2,3 is the first we have seen for which pc(n,H) 6= n−1/λ(H)+o(1). We shall
now determine a large family of such graphs. Define

λ∗(H) := min
e∈E(H)

max
F⊂H−e

{

e(F )

v(F )

}

.

This parameter gives us a general lower bound on pc(n,H).

Proposition 25. For every graph H, there exists a constant c(H) such that

pc(n,H) > c(H)n−1/λ∗(H)

for every n ∈ N.

Sketch of proof. We shall show that if p 6 c(H)n−1/λ∗(H) then, with probability at least 1/2,
no new edges are infected in the H-bootstrap process. To do so, for each e ∈ E(H) choose a
subgraph F = F (e) ⊂ H−e which maximizes e(F )/v(F ), and note that e(F )/v(F ) > λ∗(H).
Thus, the expected number of copies of F in Gn,p is at most

(

n

v(F )

)

pe(F )
6 c(H)nv(F )−e(H)/λ∗(H)

6 c(H).

Summing over edges of H , we obtain

P
(

F (e) ⊂ Gn,p for some e ∈ E(H)
)

6 e(H)c(H) <
1

2
,

if c(H) is sufficiently small. But if F (e) 6⊂ Gn,p for every e ∈ E(H) then H − e 6⊂ Gn,p for
every e ∈ E(H), and hence no new edges are infected, as claimed. �

We next show that Proposition 25 is sharp for a large class of graphs H .

Proposition 26. If H has a leaf, then

pc(n,H) = Θ
(

n−1/λ∗(H)
)

.
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Sketch of proof. The lower bound follows from Proposition 25. For the upper bound, let p ≫
n−1/λ∗(H) and recall (see [14]) that, with high probability, H − e ⊂ Gn,p for some e ∈ E(H).
(To see this, let e and F ⊂ H−e be such that e(F )/v(F ) = maxF ′⊂H−e e(F

′)/v(F ′) = λ∗(H),
find a copy of F in Gn,p by the second moment method, and then find H − e by sprinkling.)
Let v1 be the neighbour of a leaf in H , and observe that we can infect every edge which is
incident with v (and is not in our copy of H − e).

Now, take a second, independent copy of Gn,p, and apply the same argument inside the
neighbourhood of v1. We find a vertex v2 such that we can add (almost) all edges incident
with v2. Repeating this process v(H) times, we find (with high probability) a clique on v(H)
vertices in 〈Gn,p∗〉H , where p∗ = v(H)p.

Finally, observe that 〈Kv(H)〉H = Kn, since we may add the remaining vertices to the

clique one by one. Thus p = O
(

n−1/λ∗(H)
)

, as claimed. �

A slightly less trivial case, which lies somewhere between a clique and a tree, also matches
the general lower bound in Proposition 25. Say that H is an r-clique-tree if (for some
2 6 ℓ ∈ N) it is composed of ℓ disjoint copies of Kr, plus ℓ−1 extra edges, and is connected.

Proposition 27. Let H be an r-clique tree. Then

c(H)n−1/λ∗(H)
6 pc(n,H) 6 n−1/λ∗(H) log n

for some c(H) > 0.

Sketch of proof. The lower bound again follows by Proposition 25. For the upper bound,
first observe that

λ∗(H) =

(

r
2

)

r
+

ℓ− 2

ℓr
,

where v(H) = ℓr. Assume first that ℓ > 3, and let p ≫ n−1/λ∗(H) (we shall prove a stronger
result in this case). Note that, as in the previous proof, H − e ⊂ Gn,p for some e ∈ E(H)
with high probability; in fact, there exist at least v(H) copies of H − e. Moreover, setting
ε = ℓ−2

ℓr
, there exist at least nε copies of Kr in Gn,p. Let X denote the union of those copies

of Kr which do not intersect a copy of H − e.
From each copy of H − e, pick a clique R which is the neighbour of a leaf (in the tree-

structure of H), and observe that we may infect every edge between R and X . We thus
obtain a complete bipartite graph, with parts of size v(H) and nε. Moreover, each part
consists of r-cliques, and thus these edges span a clique on the same vertex set.

Finally, sprinkling edges with density p, we see that every vertex in a copy of Kr minus an
edge, and with a neighbour in X , is added to the clique. With high probability there are n2ε

such vertices. Repeating this process 1/ε times, we infect the entire edge set, as required.
For the case ℓ = 2 we prove the weaker bound in the statement. Let p be as above, and

take logn copies of Gn,p. In the first we span a clique of order C, for some large constant C;
in the second a clique of order C2; in the third C3, and so on. In the first step this is just the
union of copies of Kr; in later steps it is the union of copies of Kr minus an edge which have
a neighbour in the clique formed in the previous step. The proposition now follows. �
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We give one final cautionary example, whose purpose is just to point out that λ(H) and
λ∗(H) are not the only possible values of

− lim sup
n→∞

logn

log pc(n,H)
.

Let DDr denote the ‘double-dumbbell’, the graph consisting of two disjoint copies of Kr,
plus two extra (disjoint) edges between the two cliques. Note that λ(DDr) = r/2 and
λ∗(DDr) = (2

(

r
2

)

+ 1)/2r, and therefore

λ∗(DDr) <

(

r
2

)

+ 1

r
< λ(DDr).

Proposition 28. For every r > 4,

− lim
n→∞

log n

log pc(n,DDr)
=

(

r
2

)

+ 1

r
.

Sketch of proof. The key observation is that if H = DDr and e ∈ E(DDr), then 〈H− e〉H =
K|H|, i.e., a copy of DDr spans a clique on its vertex set. Moreover, two (> 2r)-cliques which
overlap in two (or more) points span a clique on their union. We shall use these observations,
plus the usual ‘critical droplet’ argument from bootstrap percolation on [n]d.

Let’s begin with the (easier) upper bound. Let nrp(
r

2)+1 ≫ log n, and consider m = log n
copies G1, . . . , Gm of Gn,p. We claim that their union percolates with high probability. To
see this, first observe that Gn,p contains an r-clique R1 with high probability. Next, note
that the expected number of copies of Kr plus a pendant edge, with its endpoint in R1, is at

least |R1|
(

n−|R1|
r

)

p(
r

2
)+1 ≫ log n. Using Chebychev, it follows that there exist at least log n

such copies with high probability, and the closure of these is a clique R2 on at least log n
vertices. Now, simply repeat this procedure for each graph G3, . . . , Gm. A straightforward
calculation shows that, with high probability, at each step the clique Rj (at least) doubles in
size, until it reaches size 1/p. But now a positive fraction of the vertices have r neighbours
in Rm−2, so |Rm−1| > εn, and thus |Rm| = n with high probability, as required.

To prove the lower bound, we define a process analogous to the Clique Process in Section 4.
To be precise, we can break up the process into steps of the following two types: (a) if two
(> 2r)-cliques share two vertices then merge them, and (b) if an edge is infected then consider
the copy of H it completes, and merge the (> 2r)-cliques which provided the edges of H− e.
To see that this works, recall that 〈DDr − e〉DDr

= K2r.
Using this process, we can easily prove a result analogous to Lemma 17, except with 3

replaced by e(H). Indeed, at each step the size of the largest clique increases by at most a
factor of e(H). Moreover, by considering the penultimate step of the process, as in Lemma 18,
and using induction, we can prove the following extremal result: If 〈G〉DDr

= Kn and n > r,
then

e(G) >

(

(

r
2

)

+ 1

r

)

n− 1.

The result now follows by a straightforward (and standard) calculation (using Markov), as
in the proof of Proposition 19. �
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We now turn to some open problems. We begin by asking for sharper versions of Theo-
rems 1 and 2.

Problem 1. Determine pc(n,Kr) up to a constant factor.

Problem 2. Find 1/4 6 α 6 5, if it exists, such that

pc(n,K4) =
(

1 + o(1)
) α√

n log n
.

A natural family of graphs for which we do not have good bounds on the critical probability
are the complete bipartite graphs.

Problem 3. Determine pc(n,Ks,t), at least up to a poly-logarithmic factor, for all s, t ∈ N.

Another is the random graph, Gk,1/2.

Problem 4. Give bounds on pc(n,Gk,1/2) which hold with high probability as k → ∞.

Finally, we mention a substantial generalization of the problem we have considered in this
paper. Given graphs G and H , define H-bootstrap percolation on G by only allowing edges
of G to be infected, and say that a graph F percolates if, starting with F , eventually all
edges of G are infected. It seems likely that there are many beautiful theorems to discover
about this very general bootstrap process.

References

[1] N. Alon, An extremal problem for sets with applications to graph theory, J. Combin. Theory, Ser. A,
40 (1985), 82–89.

[2] J. Adler and U. Lev, Bootstrap Percolation: visualizations and applications, Braz. J. Phys., 33 (2003),
641–644.

[3] M. Aizenman and J.L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A., 21 (1988)
3801–3813.

[4] J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Prob. Theory Rel. Fields, 134

(2006), 624–648.
[5] J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for bootstrap percolation

in all dimensions, to appear in Trans. Amer. Math. Soc.

[6] J. Balogh, B. Bollobás and R. Morris, Majority bootstrap percolation on the hypercube, Combin. Prob.

Computing, 18 (2009), 17–51.
[7] J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in three dimensions, Ann. Prob., 37 (2009),

1329–1380.
[8] J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in high dimensions, Combin. Prob. Com-

puting, 19 (2010), 643–692.
[9] J. Balogh, B. Bollobás, R. Morris and O. Riordan, Linear algebra and bootstrap percolation, submitted.

[10] J. Balogh, Y. Peres and G. Pete, Bootstrap percolation on infinite trees and non-amenable groups,
Combin. Prob. Computing, 15 (2006), 715–730.

[11] J. Balogh and B. Pittel, Bootstrap percolation on random regular graphs, Random Structures Algo-

rithms, 30 (2007), 257–286.
[12] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar., 16 (1965), 447–452.
[13] B. Bollobás, Weakly k-saturated graphs, in Beiträlge zur Graphentheorie (H. Sachs, H.J. Voss, and

H. Walther, Eds.), pp. 25–31, Leipzig, Barth, 1968.
[14] B. Bollobás, Random Graphs, Academic Press, London, 1985.



GRAPH BOOTSTRAP PERCOLATION 25

[15] B. Bollobás, Graph bootstrap percolation, preprint (2011).
[16] R. Cerf and E. N. M. Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann. Prob.,

27 (1999), 1837–1850.
[17] J. Chalupa, P. L. Leath and G. R. Reich, Bootstrap percolation on a Bethe latice, J. Phys. C., 12

(1979), L31–L35.
[18] H. Duminil-Copin and A. Holroyd, Sharp metastability for threshold growth models. In preparation.
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