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MASS-CAPACITY INEQUALITIES FOR CONFORMALLY FLAT

MANIFOLDS WITH BOUNDARY

ALEXANDRE FREIRE AND FERNANDO SCHWARTZ

Abstract. In this paper we prove a mass-capacity inequality and a volumetric
Penrose inequality for conformally flat manifolds, in arbitrary dimensions. As
a by-product of the proofs, capacity and Aleksandrov-Fenchel inequalities for
mean-convex Euclidean domains are obtained. For each inequality, the case of
equality is characterized.

1. Introduction and Main Results

Inequalities between quasi-local quantities and global quantities have recently
generated a fair amount of interest. Among those, the spacetime Penrose inequality
stands out as one of the challenging open problems in mathematical relativity.

The Riemannian version of the Penrose inequality for three-dimensional mani-
folds was proved by Huisken and Ilmanen [7] using inverse mean curvature flow (for
the case of connected horizons), and by Bray [1] using a conformal flow of the met-
ric (for the general case). The argument of Bray uses the mass-capacity inequality
in order to prove the monotonicity of the ADM mass along the conformal flow.

The proof of the mass-capacity inequality in Bray’s work relies on the positive
mass theorem and a modification of the reflection argument of [5]. A related re-
flection argument (implicitly involving a mass-capacity inequality) was later used
by Bray and Lee [3] (also using the positive mass theorem) in order to prove the
Riemannian Penrose inequality for dimensions less than eight. For the case of a
connected boundary, but now only for dimension 3, Bray and Miao [4] gave a proof
of the mass-capacity inequality which uses the monotonicity of the Hawking mass
along the inverse mean curvature flow [7] instead of the positive mass theorem.

Our proof of the mass-capacity inequality (as well as the proof of the other two
inequalities) uses only classical arguments and works in arbitrary dimensions.

Definition. A conformally flat manifold with boundary, or CF-manifold for short,
is a manifold (Mn, g), n ≥ 3, isometric to the complement of a smooth bounded
open set (not necessarily connected) Ω ⊂ R

n together with a conformally flat metric

gij = u
4

n−2 δij , where u > 0 is smooth, and so that:

• g is asymptotically flat, with non-negative scalar curvature (i.e. ∆0u ≤ 0),
and normalized so that u→ 1 at infinity,

• Σ = ∂Ω is mean-convex with respect to the Euclidean metric (i.e. H0 > 0),
• Σ = ∂M is minimal with respect to the metric g (i.e. Hg = 0).

The main results of this paper are a mass-capacity inequality and a volumetric
Penrose inequality for CF-manifolds (the latter is an improved version of the in-
equality of [12]), as well as a capacity and an Aleksandrov-Fenchel inequality for
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Euclidean domains. The precise statements are the following. (See Section 2 for
definitions.)

Theorem 1. Let (M, g) be a CF-manifold as above, and let m denote its ADM
mass.

(a) Mass-capacity inequality:

m ≥ Cg(Σ),

where Cg(Σ) denotes the capacity of Σ in (M, g). Equality holds if and only
if g the Riemannian Schwarzschild metric.

(b) Volumetric Penrose inequality:

m ≥ 2

(

V0
βn

)

n−2

n

,

where V0 is the Euclidean volume of Ω, and βn is the volume of the Eu-
clidean unit n-ball. Equality holds if and only if g is the Riemannian
Schwarzschild metric.

Theorem 2. Let Ω ⊂ R
n be a smooth bounded domain (not necessarily connected)

with mean-convex boundary Σ = ∂Ω. Denote by V0 its volume, and by A0, H0 > 0
the area and mean curvature of Σ, respectively. Then

(a) Capacity inequality:

C0(Σ) ≤
1

(n− 1)ωn−1

∫

Σ

H0dσ0,

with equality achieved if and only if Ω is a round ball.
(b) Aleksandrov-Fenchel inequality: Assume further that Σ is outer-minimizing.

Then

1

(n− 1)ωn−1

∫

Σ

H0dσ0 ≥

(

A0

ωn−1

)
n−2

n−1

,

with equality achieved if and only if Ω is a round ball.

The proof of the above results follows from Theorem 4 below, which relies on
classical arguments including Huisken and Ilmanen’s inverse mean curvature flow
for arbitrary dimensions [7, 8].

The novelty in part (a) of Theorem 1 is that it does not use the positive mass
theorem and applies in all dimensions. Compared to [12], the novelty in part (b)
of Theorem 1 is that it is a sharp estimate and includes a rigidity statement. In
the case of convex domains, part (a) of Theorem 2 is related to a classic result
of Szegö [9]. Our result for mean-convex domains is more general. Part (b) of
Theorem 2 is included in the family of classical Aleksandrov-Fenchel inequalities
for the cross-sectional volumes of convex domains. These were generalized to the
case of star-shaped k-convex domains in [6]. Our result for outer-minimizing, mean-
convex domains (or 1-convex, k = 1) does not require the domain to be star-shaped
(or even connected), hence it is more general.
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2. Preliminaries

Let (Mn, g), n ≥ 3 be a complete, non-compact Riemannian manifold with
boundary Σ = ∂M . Here, we don’t assume Σ is connected. For simplicity, let
us assume M has only one end, E . Such a manifold is said to be asymptotically
flat if, outside a compact set, (M, g) is diffeomorphic to the complement of a ball
in Euclidean space, and in the coordinates given by this diffeomorphism the metric
has the asymptotic decay

|g − δ| = O(|x|−p), |∂g| = O(|x|−p−1), |∂2g| = O(|x|−p−2),

where p > n−2
2 . Furthermore, we require (M, g) to have integrable scalar curvature

∫

M
|Rg|dVg <∞.
For these manifolds the ADM mass does not depend on the choice of asymptot-

ically flat coordinates and is defined by

m = mADM (g) =
1

2(n− 1)ωn−1
lim
r→∞

∫

Sr

∑

i,j

(∂jgij − ∂igjj)ν
jdσ0

r .

Here, Sr is a Euclidean coordinate sphere, dσ0
r is Euclidean surface area.

There are several results in the literature which give lower bounds for the ADM
mass in terms of geometric quantities. For example, the celebrated positive mass
theorem [10, 13] (valid for asymptotically flat manifolds without boundary) asserts
that if the scalar curvature of g is non-negative and either 3 ≤ n ≤ 7 or M is spin,
then

m ≥ 0,

and m = 0 if and only if the manifold is Euclidean space.

Another well-known inequality is the Riemannian Penrose inequality, which can
be thought of as a refinement of the positive mass theorem. It asserts that if
M has non-negative scalar curvature and contains a compact outermost minimal
hypersurface Σ, then

m ≥
1

2

(

|Σ|

ωn−1

)

n−2

n−1

,

where |Σ| denotes the g-area of Σ and ωn−1 is the volume of the (n−1)-dimensional
sphere. Rigidity also holds for the Riemannian Penrose inequality. More precisely,
equality holds above if and only if the manifold is a Riemannian Schwarzschild
manifold of mass m > 0

gij =
(

1 +
m

2rn−2

)
4

n−2

δij ,

where g is defined outside the ball of radius Rs := (m2 )
1

n−2 . This inequality was
proved in [7] for n = 3 and connected Σ (using inverse mean-curvature flow and
monotonicity of the Hawking mass), and in [1] for n = 3 without the connectedness
assumption. The approach of [1] was generalized for 3 ≤ n ≤ 7 in [3], although the
rigidity statement requires the extra hypothesis that the manifold be spin.

It is natural to wonder if there is a proof of the Riemannian Penrose inequal-
ity in the general conformally flat case that uses only properties of superharmonic
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functions in R
n (see [2]). Our work provides evidence in this direction.

In what follows we will be using the notion of capacity of hypersurfaces. The
precise definition is the following.

Definition. Let (M, g) be a complete, non-compact Riemannian manifold with
compact boundary Σ and one end E . The capacity of a hypersurface Σ ⊂ (M, g) is

Cg(Σ) = inf
ϕ∈M1

0

{

1

(n− 2)ωn−1

∫

M

|∇gϕ|
2
gdVg

}

,

where M1
0 denotes the set of all smooth functions on M which are exactly 0 on Σ

and approach 1 towards infinity in the end E . We denote by C0(Σ) the Euclidean
capacity of a hypersurface Σ = ∂Ω ⊂ R

n.

Remark 1. The normalization constant of the above definition is chosen so that
C0(SR) = Rn−2, where SR = ∂BR in R

n.

Remark 2. The infimum of the definition is attained by the unique g-harmonic
function in M1

0 . If the ambient manifold is Euclidean space, it follows that the
harmonic function which realizes the infimum has the asymptotic expansion

ϕ(x) = 1−
C0(Σ)

|x|n−2
+O(|x|1−n) as x→ ∞.

Remark 3. Changing the boundary conditions we could also define (for a 6= b):

C(a,b)
g (Σ) = inf

ϕ∈Mb
a

{

1

(n− 2)ωn−1

∫

M

|∇gψ|
2
gdVg

}

,

whereM b
a is defined as above. Since the map ψ 7→ a−ψ

a−b defines a bijectionM b
a → M1

0

which scales the integral of the square of the gradient by a constant, it follows that

C
(a,b)
g (Σ) = (a− b)2Cg(Σ).

In this paper we are interested in the case when (M, g) is a CF-manifold. Recall
from its definition that this means that M is diffeomorphic to Ωc := R

n \Ω, where
Ω ⊂ R

n is a smoothly bounded domain (not necessarily connected), and g is con-

formal to the Euclidean metric. That is, gij = u
4

n−2 δij with u > 0, and u → 1 at
Euclidean infinity.

In what follows we denote Σ = ∂Ω. By a theorem of Schoen and Yau [10], up to
changing m by an arbitrarily small amount (and g by a point-wise ratio arbitrarily
close to 1), one may assume g is “harmonically flat at infinity”. In our case, this
becomes ∆0u = 0 outside a sufficiently large Euclidean ball. Using an expansion in
spherical harmonics we can further assume

u = 1 +
m

2rn−2
+O(r1−n), ur = −

(n− 2)m

2
r1−n +O(r−n), m = mADM (g).

Remark 4. For CF-manifolds which are harmonically flat at infinity the positive
mass theorem follows easily for all n ≥ 3.

Indeed, the transformation law formula for scalar curvature under conformal

deformations gives that the scalar curvature of gij = u
4

n−2 δij , denoted by Rg, is
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given by

(1) Rg = u−
n+2

n−2

(

−
4(n− 1)

n− 2
∆0u+Rδu

)

.

(Naturally, here Rδ ≡ 0.) In particular, we obtain that Rg ≥ 0 ⇔ ∆0u ≤ 0. The
ADM integrand is easily computed in this case:

∑

i,j

(∂jgij − ∂igjj)ν
j = −

4(n− 1)

n− 2
u

6−n
n−2ur,

and since u→ 1 at infinity, we obtain
∫

Sρ

u
6−n
n−2urdσ

0
ρ ∼

∫

Sρ

urdσ
0
ρ =

∫

Bρ

∆0udx ≤ 0.

Thus, m ≥ 0, with equality if and only if u is positive harmonic on R
n with u→ 1

at infinity, i.e. u ≡ 1.

3. Model Case and Main Theorem

The motivation for this note is to investigate whether the mass-capacity inequal-
ity holds for CF-manifolds in all dimensions. The following transformation formula
for the Laplacian plays a key role.

Lemma 3. Let g = u
4

n−2 δ and f ∈ C∞(M). Then ∆gf = u−
n+2

n−2 (∆0(uf)−f∆0u).
In particular, if ∆0u = 0, then ∆0(uf) = 0 if and only if ∆gf = 0.

We use the Lemma in the following main example.

Model Case. Our prototypical example is the so-called Riemannian Schwarzschild
manifold. (Compare with Theorem 9 of [1].) It is constructed as follows. For
Rs > 0, denote m = 2Rn−2

s , and define on B
c
Rs

= R
n \ BRs

the function

(2) u = 1 +

(

Rs
r

)n−2

= 1 +
m

2
r2−n.

Note that u is actually defined and harmonic (∆0u = 0) on R
n \ {0}.

Now define

ϕ =
1− (Rs

r )n−2

1 + (Rs

r )n−2
.

Then ∆0(uϕ) = 0, so ∆gϕ = 0 by Lemma 3 above. Moreover ϕ→ 1 as r → ∞,
and ϕ|Σ = 0 for Σ = ∂BRs

. Thus, by direct integration we obtain

Cg(Σ) =
1

ωn−1(n− 2)

∫

B
c
Rs

|∇gϕ|
2
gdVg =

1

n− 2

∫ ∞

Rs

u2ϕ2
rr
n−1dr = m.

That is, the equality case of the mass-capacity inequality is achieved by the Rie-
mannian Schwarzschild manifold; this should be the extremal case for the inequality
and it is our motivational starting point.

In view of the above example we now generalize the notion of Riemannian
Schwarzschild metric to general euclidean domains, not necessarily the complement
of a round ball.
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Definition. Let Ωc ⊂ R
n. The harmonic metric of Ωc is the asymptotically flat,

conformally flat metric gs = u
4

n−2

s δ, where us > 0 is a positive function on Ωc which
is uniquely determined by the following conditions:

• ∆0us = 0 (thus Rgs = 0),
• us → 1 as x→ ∞,
• (us)ν = − n−2

2(n−1)usH0 on Σ = ∂Ω, or equivalently, Hgs(Σ) = 0.

(Note that harmonic metrics are CF-manifolds whenever Σ = ∂Ω is Euclidean
mean-convex.) We are now ready to state our main result.

Theorem 4. Let n ≥ 3 and Ω ⊂ R
n be a smoothly bounded domain with boundary

Σ = ∂Ω, not necessarily connected. Let (M, g) be isometric to a conformally flat

metric gij = u
4

n−2 δij on Ωc which is asymptotically flat with ADM mass m. (Here
u > 0 and u → 1 towards infinity.) Assume further that (M, g) has non-negative
scalar curvature Rg ≥ 0. Then

(I) If Σ is Euclidean mean-convex (H0 > 0) and g-minimal (Hg = 0), then

C0(Σ) < Cg(Σ) ≤ C0(Σ) +
m

2
.

Equality occurs in the second inequality if and only if g is a harmonic met-
ric, i.e. ∆0u = 0.

(II) (Euclidean estimate.) Assume H0 > 0 on Σ. Then:

C0(Σ) ≤
1

(n− 1)ωn−1

∫

Σ

H0dσ0.

Equality holds if and only if Σ is a round sphere.

(III) Let α = minΣ u. Under the same assumptions on Σ as in (I), we have:

1

(n− 1)ωn−1

∫

Σ

H0dσ0 ≤
m

α
.

Equality holds if and only if g is the Riemannian Schwarzschild metric, for
which we have α = 2. (Note that by Lemma 5 below, α > 1.)

(IV) Under the same assumptions on Σ as in (I)

C0(Σ) ≤
m

2
.

Equality holds only for the Riemannian Schwarzschild manifold.

(V) Assume H0 > 0 on Σ, and Σ is outer-minimizing with area A. Then:

1

(n− 1)ωn−1

∫

Σ

H0dσ0 ≥

(

A

ωn−1

)

n−2

n−1

.

Equality holds if and only if Σ is a round sphere.
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4. Proof of Theorem 4

The first inequality of part (I) of Theorem 4 follows from the following lemma
of [12], as we see below.

Lemma 5 ([12]). Assume u > 0 and ∆0u ≤ 0 in Ωc = R
n \Ω, with Σ = ∂Ω mean-

convex for the euclidean metric (H0 > 0) and minimal for the metric g = u
4

n−2 δ
(Hg = 0), where u > 0, u→ 1 at infinity. Then u > 1 on Ωc.

The key ingredients in the proof of this Lemma are the minimum principle for
superharmonic functions and the transformation formula for mean curvature of a
hypersurface under conformal deformations of the metric. This is given by the
equation

(3) Hg = u−
2

n−2

(

H0 +
2(n− 1)

n− 2

uν
u

)

,

where ν is the euclidean-unit outward normal of Ω. (To check the constant multiply-
ing uν/u, observe that the boundary is minimal for the Riemannian Schwarzschild
metric).

Proof of Theorem 4. As remarked earlier, we may assume (M, g) is harmonically
flat at infinity. Namely, we have that

∆0u = 0 for r > R0, u = 1+
m

2rn−2
+O

(

1

rn−1

)

, ur = −
(n− 2)m

2rn−1
+O

(

1

rn

)

.

Proof of (I). To prove the first (strict) inequality of (I), we note that

(4)

∫

M

|∇gϕ|
2
gdVg =

∫

Ωc

u−
4

n−2 |∇0ϕ|
2u

2n
n−2 dV0 =

∫

Ωc

u2|∇0ϕ|
2dV0.

Since u > 1 on Ωc from Lemma 5 above, we conclude that C0(Σ) ≤ Cg(Σ). To show
that equality is not possible in this inequality, note that both infima for the capaci-
ties are achieved, as discussed in Remark 2. Therefore, if C0(Σ) = Cg(Σ), there ex-
ists functions ϕ, ψ with equal boundary conditions so that C0(Σ) =

∫

M
|∇0ψ|

2
0dV0 =

Cg(Σ) =
∫

M |∇gϕ|
2
gdVg. Using equation (4) and the fact that u > 1 we get

∫

Ωc |∇0ϕ|
2dV0 <

∫

Ωc u
2|∇0ϕ|

2dV0 =
∫

M |∇0ψ|
2
0dV0, contradicting the fact that ψ

achieves the infimum for the euclidean capacity. (Here we have used the fact that
a non-constant harmonic function is not constant over sets of positive measure.)

For the second inequality in (I), let v : Ωc → (0, 1) be the unique harmonic
function (∆0v = 0) satisfying v|Σ = 0, v(x) → 1 as x → ∞. Then with ϕ = v

u we
have ϕ|Σ = 0, ϕ→ 1 at infinity. Thus

(n− 2)ωn−1Cg(Σ) ≤

∫

M

|∇gϕ|
2
gdVg =

∫

Ωc

u2|∇0(
v

u
)|2dV0 := I = lim

ρ→∞
Iρ,

where

Iρ :=

∫

Bρ\Ω

u2|∇0(
v

u
)|2dV0 =

∫

Bρ\Ω

[

|∇0v|
2 −∇0(v

2) ·
∇0u

u
+ v2

|∇0u|
2

u2

]

dV0.

Now
∫

Bρ\Ω

∇0(v
2) ·

∇0u

u
dV0 = −

∫

Bρ\Ω

v2div0(
∇0u

u
)dV0 +

∫

Sρ

v2
ur
u
dσ0

ρ
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since v|Σ = 0. Noting div0(u
−1∇0u) = u−1∆0u−u−2|∇0u|

2 and ∆0u ≤ 0, we have

(5)

∫

Bρ\Ω

∇0(v
2) ·

∇0u

u
dV0 ≥

∫

Bρ\Ω

v2
|∇0u|

2

u2
dV0 +

∫

Sρ

v2
ur
u
dσ0

ρ,

and hence we obtain

Iρ ≤

∫

Bρ\Ω

|∇0v|
2dV0 −

∫

Sρ

v2
ur
u
dσ0

ρ.

Taking limits as ρ→ ∞ and using the asymptotics of u we find

I ≤ (n− 2)ωn−1C0(Σ) + (n− 2)ωn−1
m

2
.

From this it follows Cg(Σ) ≤ C0(Σ) +
m
2 , as claimed.

Rigidity. For the rigidity statement of (I) we first assume that all the above
inequalities are equalities. From the equality attained in equation (5) it follows
directly that u is harmonic. This proves one direction of the equivalence.

Assume, on the other hand, that u is harmonic. Let ψ be the function that
achieves the infimum for the capacity Cg(Σ). From Lemma 3 it follows that such
function (i.e. the g-harmonic function which is exactly zero on Σ and goes to one at
infinity) satisfies ∆0(uψ) = 0. We immediately recognize that uψ must be equal to
the function v from above since both are harmonic and equal on Σ and at infinity.
Therefore, ψ equals ϕ = v/u from above, and all the above inequalities become
equalities. This proves (I). �

Proof of (II). Here we use a modification of the method described in [4]. First,
we get an upper bound for C0(Σ) using test functions of the form ϕ = f ◦φ, where
φ ∈ C1(Ωc,R+) is a (soon to be determined) proper function vanishing on Σ = Σ0

whose level sets define a foliation (Σt)t≥0 of Ωc. As noted in [4], we have

(6) (n− 2)ωn−1C0(Σ) ≤ inf

{
∫ ∞

0

(f ′)2w(t)dt : f(0) = 0, f(∞) = 1

}

,

where w(t) =
∫

Σt
|∇0φ|dσ

0
t > 0.

(We omit the subscript/superscript ‘0’ for the remainder of the proof of (II).)

Moving away from the method of [4], we note that the one-dimensional varia-
tional problem (6) is easily solved.

Claim. Provided w−1 ∈ L1(0,∞), the infimum of the right hand side of (6) equals

I
−1 = (

∫∞

0
1

w(s)ds)
−1, and is attained by the function f(t) = 1

I

∫ t

0
w−1(s)ds.

Proof. This follows from

1 =

∫ ∞

0

f ′dt =

∫ ∞

0

f ′w1/2w−1/2dt ≤

(
∫ ∞

0

(f ′)2w(t)dt

)1/2 (∫ ∞

0

w−1(t)dt

)1/2

.

�

Remark 5. If Ω ⊂ R
n is convex, it is natural to try to use the distance function

φ = dist(·,Σ) for the above process. In this case, the level sets of φ give a foliation
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of Ωc by outer parallel hypersurfaces. We get |∇φ| ≡ 1, so w(t) = |Σt| is the
Euclidean (n-1)-dimensional area. By a well-known formula

|Σt| = |Σ|+

n−2
∑

j=0

(
∫

Σ

σj(~k)dσ

)

tj + ωn−1t
n−1,

where σj(~k) is the j-th elementary symmetric function of the principal curvatures
~k = (k1, . . . , kn−1), ki > 0 of Σ. Now since

σ1(~k) = H and σj(~k) ≤ Hj for j = 1, . . . , n− 1,

we see that an estimate based on this foliation would involve the integrals
∫

Σ
Hjdσ.

Since we are interested in estimating the capacity in terms of the ADM mass (espe-
cially in view of part (III)), we choose a different function to construct the foliation.

Consider the foliation (Σt)t≥0 defined by the level sets of the function given by
Huisken and Ilmanen’s inverse mean curvature flow [7,8] in Ωc ⊂ R

n. We recall the
summary given in [4] (which holds in all dimensions):

Theorem 6 (Huisken-Ilmanen, [7, 8]).

• There exists a proper, locally Lipschitz function φ ≥ 0 on Ωc, φ|Σ = 0. For

t > 0, Σt = ∂{φ ≥ t} and Σ′
t = ∂{φ > t} define increasing families of C1,α

hypersurfaces;
• The hypersurfaces Σt (resp.Σ′

t) minimize (resp. strictly minimize) area
among surfaces homologous to Σt in {φ ≥ t} ⊂ Ωc. The hypersurface
Σ′ = ∂{φ > 0} strictly minimizes area among hypersurfaces homologous to
Σ in Ωc.

• For almost all t > 0, the weak mean curvature of Σt is defined and equals
|∇φ|, which is positive a.e. on Σt.

From Theorem 6 and the Claim from above it follows that

(7) (n− 2)ωn−1C0(Σ) ≤

(
∫ ∞

0

w−1(t)dt

)−1

, where w(t) :=

∫

Σt

Hdσt.

Lemma 7. Consider the foliation {Σt} given by IMCF in Ωc ⊂ R
n as above. Then

∫

Σt

Hdσ ≤

(
∫

Σ0

Hdσ

)

e
n−2

n−1
·t

for t ≥ 0.

Remark 6. Note that equality holds in the above inequality for the foliation by

IMCF outside a sphere, which is given by Σt = ∂BR(t) ⊂ R
n, where R(t) = e

t
n−1 .

Proof of Lemma 7. From [7] we have that, so long as the evolution remains smooth,

(8)
d

dt

(
∫

Σt

Hdσt

)

=

∫

Σt

(

H −
|A|2

H

)

dσt ≤
n− 2

n− 1

∫

Σt

Hdσt,

where A denotes the second fundamental form, and the second inequality follows
from

(9) H −
|A|2

H
−
n− 2

n− 1
H =

1

(n− 1)H
(H2 − (n− 1)|A|2) ≤ 0.
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(Note that equality occurs in this last inequality if and only if each connected
component of Σt is a sphere.) It is easy to see that the inequalities extend through
countably many jump times since the total mean curvature does not increase at
the jump times. �

By straightforward integration, Lemma 7 implies:
(
∫ ∞

0

w−1(t)dt

)−1

≤
n− 2

n− 1

∫

Σ

Hdσ.

Together with equation (7) this gives

C0(Σ) ≤
1

(n− 1)ωn−1

∫

Σ

Hdσ,

as claimed in part (II) of the main theorem.

Rigidity. From Remark 6 it follows that the inequality of part (II) is an equality
whenever Σ is a round sphere.

On the other hand, if equality holds in part (II), it follows that
∫

Σt

Hdσ =

(
∫

Σ0

Hdσ

)

e
n−2

n−1
·t for a.e. t ≥ 0,

and therefore:

H2 = (n− 1)|A|2 on Σt, for a.e. t ≥ 0.

This implies Σt is a disjoint union of round spheres, for a.e. t ≥ 0. For a solution
of inverse mean curvature flow in R

n, this is only possible if Σt is, in fact, a single
round sphere for every t. (See e.g. the Two Spheres Example 1.5 of [7].) This
proves part (II). �

Proof of (III). From the transformation law for the mean curvature given by
equation (3), together with the divergence theorem, it follows that

∫

Bρ\Ω

∆0udV0 =

∫

Sρ

urdσ
0
ρ −

∫

Σ

uνdσ0

= −mωn−1
n− 2

2
+O(ρ−1) +

n− 2

2(n− 1)

∫

Σ

H0udσ0.

Taking the limit ρ→ ∞ we obtain

(10) m = −
2

(n− 2)ωn−1

∫

Ωc

∆0udV0 +
1

(n− 1)ωn−1

∫

Σ

H0udσ0.

Since ∆0u ≤ 0 on Ωc and u ≥ α on Σ, this gives the inequality in (III), as well as
the fact that equality in (III) implies ∆0u ≡ 0 on Ωc.

Rigidity. For the rigidity statement of (III) we only need to prove one direction
since (clearly) for the Riemannian Schwarzschild manifold, the above inequalities
are all equalities. Thus, we now assume that all the above inequalities are equalities.
In particular, we have that

(11)

∫

Σ

H0dσ0 = (n− 1)ωn−1
m

α
.

Claim. u is harmonic on Ωc, and is (the same) constant on (all components of) Σ.
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Proof. Indeed, notice that from the remark below equation (10) it follows ∆0u =
0. Furthermore, since the inequality in (III) is obtained from equation (10) by
replacing u by its minimum on Σ, it follows that, in the case of equality in (III), u
equals its minimum on Σ, i.e. u|Σ ≡ minΣ u = α. �

Claim. Σ is a (single) round sphere.

Proof. From the previous claim ∆0u = 0, so

0 =

∫

Ωc

u∆0udV0 = −

∫

Ωc

|∇0u|
2dV0 −

m

2
ωn−1(n− 2)−

∫

Σ

uuνdσ0.

Also, from that claim u|Σ ≡ α, so we know u is the optimal function for C
(α,1)
0 (Σ)

(cf. Remark 2). Furthermore, using Remark 3 it follows that
∫

Ωc |∇0u|
2dV0 =

(n− 2)ωn−1(α− 1)2C0(Σ). Combining this with the above equation we obtain

(n− 2)ωn−1(α− 1)2C0(Σ) = −
m

2
ωn−1(n− 2) +

n− 2

2(n− 1)
α2

∫

Σ

H0dσ0.

We now use equation (11) to substitute the last term in the above equation. We
get

(12) (α− 1)C0(Σ) =
m

2
.

We now claim that α = 2 and we are actually in the equality case of (II).

Indeed, equation (11) combined with the inequality in (II) implies α ≤ 2. On
the other hand, consider the inequality C0(Σ) ≤ m/2 from part (IV) (which is
independent of part (III)). Together with equation (12) this implies α ≥ 2. Hence
α = 2 and

C0(Σ) =
m

2
=

1

(n− 1)ωn−1

∫

Σ

H0dσ0.

Thus we are in the equality case of part (II), and it follows from the already proven
rigidity there that Σ is a round sphere. �

Claim. g is the Riemannian Schwarzschild manifold, or equivalently, u is a function
like the one in equation (2).

Proof. From the above claim we obtain that Σ is a sphere of radius r0 > 0
centered at some p. Consider the function v(x) := 1 + rn−2

0 |x − p|2−n. Then both
u and v are harmonic, equal on Σ (i.e. u|Σ = v|Σ ≡ 2), and tend to 1 at infinity.
By the maximum principle, u = v on Ωc. This concludes the proof of (III). �

Proof of (IV). Given ǫ > 0 arbitrary, let f : [1,∞) → R+ be a C2 function satis-
fying the following conditions:

f > 0, f ′ < 0, f ′′ > 0 on [1,∞), f(1) = 1, f ′(1) = −1 and f(α) = ǫ, where
α = minΣ u > 1.

Then f ◦ u → 1 at infinity, while 0 < (f ◦ u)|Σ ≤ ǫ. It follows from Remark 3
that

(1− ǫ)2(n− 2)ωn−1C0(Σ) ≤

∫

Ωc

|∇0(f ◦ u)|2dV0.
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Thus, to prove part (IV) it suffices to show that the right hand side of the above
inequality is bounded above by (n− 2)ωn−1(m/2).

To prove this, we note that since

(13) ∆0(f ◦ u) = (f ′′ ◦ u)|∇0u|
2 + (f ′ ◦ u)∆0u ≥ 0,

we have

(14)

∫

Bρ\Ω

|∇0(f ◦ u)|2dV0 ≤

∫

Sρ

f ◦ u(f ◦ u)rdσ
0
ρ −

∫

Σ

f ◦ u(f ◦ u)νdσ.

We see that the second term of the right hand side of equation (14) (i.e. the integral
over Σ) may be dropped. Indeed, using the boundary condition on u we get
∫

Σ

f ◦ u(f ◦ u)νdσ =

∫

Σ

f ◦ u(f ′ ◦ u)uνdσ = −
2(n− 2)

n− 1

∫

Σ

f ◦ u(f ′ ◦ u)uH0dσ ≥ 0.

For the first term of the right hand side of equation (14) we use the asymptotics of
ur to see that, in the limit ρ→ ∞, the integral over Sρ satisfies

lim
ρ→∞

∫

Sρ

f ◦ u(f ◦ u)rdσ
0
ρ = −

m

2
(n− 2)ωn−1f(1)f

′(1) =
m

2
(n− 2)ωn−1,

concluding the proof of the inequality in part (IV).

Rigidity. For the rigidity statement of (IV) we only need to prove one direc-
tion, since direct calculation shows the Riemannian Schwarzschild manifold satisfies
equality in (IV). Thus, we now assume that C0(Σ) = m/2.

Claim. α ≤ 2.

Proof. This follows directly from parts (II) and (III), which can be combined to
form the double inequality

(15)
m

2
≤

1

(n− 1)ωn−1

∫

Σ

H0dσ0 ≤
m

α
.

�

Claim. α = 2.

Proof. To prove this, we use some of the calculations in the proof of the inequality
part of (IV) from above. It follows from equation (13) and the one before it that

(n− 2)ωn−1

[

(1− ǫ)2C0(Σ)−
m

2

]

≤−

∫

Ωc

(fǫ ◦ u)(f
′′
ǫ ◦ u)|∇0u|

2dV0(16)

−

∫

Ω−

α

(fǫ ◦ u)(f
′
ǫ ◦ u)∆0udV0

+
2(n− 2)

n− 1

∫

Σ

(fǫ ◦ u)(f
′
ǫ ◦ u)uH0dσ0,

where fǫ is the function denoted by f in the proof of (IV).

We now prepare to take the limit as ǫց 0+ in inequality (16).
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We may assume the family (fǫ) is pointwise decreasing as ǫ decreases to zero,
bounded below by zero. We have fǫ → g in C2[1, α]∩Liploc[1,∞), where g satisfies:

g > 0, g′ < 0, g′′ ≥ 0 on [1, α), g(α) = 0, g ≡ 0 on [α,∞).

Consider the sets:

Ω+
α := {x ∈ Ωc;u(x) ≥ α}, Ω−

α := {x ∈ Ωc;u(x) ≤ α}.

Note that Σ ⊂ Ω+
α and Ω−

α contains a neighborhood of the end E (since α > 1). In
the limit ǫց 0+

(fǫ ◦ u)(f
′
ǫ ◦ u) → (g ◦ u)(g′ ◦ u) in Ωc, with (g ◦ u)|Σ = 0,

(fǫ ◦ u)(f
′′
ǫ ◦ u) → (g ◦ u)(g′′ ◦ u) in Ω−

α ,

(fǫ ◦ u)(f
′′
ǫ ◦ u) → 0 in Ω+

α .

We now take the limit as ǫց 0 in inequality (16). Since C0(Σ) = m/2, we get that

0 ≤−

∫

Ω−

α

(g ◦ u)(g′′ ◦ u)|∇0u|
2dV0 −

∫

Ω−

α

(g ◦ u)(g′ ◦ u)∆0udV0

+
2(n− 2)

n− 1

∫

Σ

(g ◦ u)(g′ ◦ u)uH0dσ0.

The third term in the right hand side above vanishes since (g ◦ u)|Σ = 0. Using
g > 0 and g′′ ≥ 0, together with g′ ≤ 0 and ∆0u ≤ 0, we get a sign for the first two
terms in the right hand side above. From this it follows that

(17) (g ◦ u)(g′′ ◦ u)|∇0u|
2 = 0 and (g ◦ u)(g′ ◦ u)∆0u = 0, both a.e. in Ω−

α .

We are interested in showing that g′′ ◦ u = 0 a.e. in Ω−
α . For this, we use the

first equality of equation (17). Note that g ◦ u > 0 a.e. in Ω−
α since g > 0 in [1, α)

and u is harmonic. Also, |∇0u|
2 > 0 a.e in Ω−

α . Hence, g′′ ◦ u = 0 a.e. in Ω−
α , as

desired. We claim this implies α = 2.
Indeed if α < 2, necessarily g′′ > 0 on some open interval I ⊂ [1, α] (for g′′ ≡ 0

in [1, α] would force g(t) = 2− t for t ∈ [1, α], hence α = 2). But then u−1(I) ⊂ Ω−
α

is a non-empty open set on which g′′ ◦ u > 0, a contradiction. This proves the
claim. �

We have shown that α = 2. From equation (15) we see that we are in the equality
case of part (III). By the rigidity statement, it follows that g is the Riemannian
Schwarzschild metric. This ends the proof of (IV). �

Proof of (V). Recall that a hypersurface Σ = ∂Ω is called outer-minimizing if
whenever Ω′ is a domain with Ω′ ⊃ Ω then |∂Ω′| ≥ |Σ|. (An example of such a
hypersurface is given by the boundary of a collection of sufficiently far-apart con-
vex bodies in R

n.) Let us denote by |Σt| the area of the evolving hypersurface Σt
moving by IMCF with initial condition Σ0 ≡ Σ. Then, by Lemma 1.4 of [7], one
has |Σt| = et|Σ| for all t ≥ 0, provided Σ is outer-minimizing.

Now, from Lemma 7 and the fact that e(
n−2

n−1
)t = (|Σt|/|Σ|)

n−2

n−1 , we have that the
function

f(t) := |Σt|
−n−2

n−1

∫

Σt

Hdσt

is non-increasing along IMCF in R
n. By a known property of Euclidean IMCF,

for t large enough Σt is arbitrarily close to a round sphere, and hence f(t) →
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(n − 1)ω
1/(n−1)
n−1 as t → ∞. This proves the inequality in (V), since f(0) =

|Σ|−(n−2)/(n−1)
∫

ΣHdσ.

Rigidity. From Remark 6 it follows that the inequality of part (V) is an equality
whenever Σ is a round sphere. On the other hand, if the inequality in (V) were an
equality, we have f(∞) = f(0), so f(t) ≡ f(0) for all t since f is non-increasing.
This implies

∫

Σt
Hdσt = cet(n−2)/(n−1), and inequality (8) becomes an equality.

Thus, we have reduced rigidity here to the case of rigidity of part (II). �

5. Applications of the Main Theorem

Proof of part (a) of Theorem 1. The inequality Cg(Σ) ≤ m follows immedi-
ately combining parts (I) and (IV) of Theorem 5.

Rigidity. From the calculations in the Model Case, Cg(Σ) = m for Riemannian
Schwarzschild. On the other hand, if Cg(Σ) = m it follows from parts (I) and
(IV) of Theorem 4 that C0(Σ) = m/2. Rigidity of (IV) gives that g is Riemannian
Schwarzschild. �

Proof of part (b) of Theorem 1. As observed in [12], by spherical decreasing
rearrangement the Euclidean capacity of ∂Ω is bounded from below by the capacity
of a ball with the same volume as Ω. Namely, the ball of radiusR = (V/βn)

1/n, βn =
vol0(B

n), V0 = vol0(Ω). In other words,

(18) C0(Σ) ≥

(

V0
βn

)
n−2

n

.

On the other hand, part (IV) of Theorem 4 gives that m ≥ 2C0(Σ). Together with
(18) this gives

m ≥ 2

(

V0
βn

)
n−2

n

,

which is the claim of part (b) of Theorem 1.

Rigidity. Whenever equality holds above (clearly does for Riemannian Schwarzschild
since m = 2Rn−2

s ), we must have C0(Σ) = m/2 by part (IV) of Theorem 4. The
rigidity statement there implies g is Riemannian Schwarzschild. �

Proof of Theorem 2. This is just parts (II) and (V) of Theorem 4. �

Remark 7. Combining theorem 1(b) and theorem 2(a), we find:

1

(n− 1)ωn−1

∫

Σ

H0dσ0 ≥ C0(Σ) ≥

(

V0
βn

)

n−2

n

.

The resulting inequality between total mean curvature and volume, while weaker
than theorem 2(b) (via the isoperimetric inequality in R

n), holds without the re-
quirement that Σ be outer-minimizing.

Remark 8. The proof of the Riemannian Penrose inequality in [1] involves the
construction of a conformal flow of asymptotically flat Riemannian metrics (g(t))t≥0

in the conformal class of the initial metric g(0). It is crucial for the argument in [1]
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that the ADM mass m(t) of g(t) be non-increasing in t. The proof of this is based
on the relation ([1], section 7):

d

dt
m(t)|t=t0 = Cgt0 (Σ(t0))−m(t0)

(using the normalization in the present paper for the capacity, and one-sided deriva-
tives at the “jump times”). Given this relation, the fact that m(t) is non-increasing
follows from the mass-capacity inequality obtained here for conformally flat met-
rics (independently of the positive mass theorem, or PMT), while in [1] (for more
general metrics, in dimension 3) it is obtained applying the reflection argument of
[5] and the PMT. (In fact, this is apparently the only place in [1] where the PMT
is needed.) Thus our result of part (a) may be regarded as evidence that the Rie-
mannian Penrose inequality for conformally flat metrics in all dimensions can be
obtained from arguments of classical linear elliptic theory, as conjectured by Bray
and Iga in [2].
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