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Abstract—In this article, the joint fluctuations of the extreme of sampled covariance matrices for dynamical systems [10],
eigenvalues and eigenvectors of a large dimensional sample[11]. In this article, we propose a novel subspace approach
covariance matrix are analyzed when the associated populah 1, go|ve the problem of off-line detection and identificatio

covariance matrix is a finite-rank perturbation of the identity f local fail f ind dent or li v ti Hield
matrix, which corresponds to a so-called spiked model in radom ot local failures from independent or linearly tme-co

matrix theory. The asymptotic fluctuations, as the matrix sze Samples. _ _
grows large, are shown to be intimately linked with matrices We precisely assume the observation of measurements sug-

from the Gaussian unitary ensemble (GUE). When the spiked gesting an error has already occurred in the network. We
population eigenvalues have unit multiplicity, the fluctuaions wish the detection of a failure to be fast so we will assume
follow a central limit theorem. This result is used to develp . .
an original framework for the detection and diagnosis of loal that the numbem_ of successive Sensor data reports is not
failures in large sensor networks, for known or unknown failure ~ €xtremely large with respect to the sizeof the network. We
magnitude. Simulations are carried out that show the strong will also assume that the hypothetical failure scenaries tar
performance of the derived failure localization algorithms. some extent, known in advance. In this context, calliiig
the hypothesis that the system does not undergo any failure
and Hy, 1 < k < K, the hypothesis that a failure of type
k occurs, the question of failure detection and localization
In the field of fault detection and diagnosis, one of theonsists in proceeding to the successive hypotheses tests:
elementary requests is the fast, reliable and computdlyondi) decide whether the concatenation matrixrofsuccessive
light identification of a system failure. In dynamical scdag, network observation& = [si,...,s,] € CN*" suggests
these systems are composed of several fluctuating parametgpothesisi, or its complementary{, (i.e. the event union
whose evolutions are tracked by a mesh of sensors reportafgthe ), and (i) upon decision ofHy, decide whatH,
successive correlated and noisy data measurements toralcerst the most likely. Both problems are optimally solved by
decision unit. With the growth in size and complexity of sucmulti-hypothesis Neyman-Pearson tests| [12] with maximum
systems, it becomes increasingly difficult for decisiontsinilikelihood performance given the observatioh However,
to process simultaneously and at a low computational cdbts procedure is computationally intense for large system
the augmenting load of reported measurements. Examplesdishensions.
such systems are the recent cognitive radio netwarks [1] andThe approach under consideration here follows the theory
smart grid technologies|[2]. In the former, multiple coagtare  of large dimensional random matrices. Precisely, we censid
wireless communication devices, referred to as the secgndthe setting where botliV and n grow large and such that
network, exchange sensed data in order to decide collbctivey = N/n — ¢, with 0 < ¢ < 1. Under this assumption, we
which communication bandwidths are left unused by thben develop asymptotic results on the extreme eigenvalues
licensed, also called primary, network users. Fast detectiand associated eigenvectors of a certain family of random ma
of sudden changes, e.g. new primary user communicationstrises to provide novel subspace methods for failure dietect
here demanded to minimize the interference generated by saad localization. Our interest is on random matrices of the
ondary users. In the smart-grid framework, a large dimeradio type spiked modelintroduced by Johnstone [13], specifically
graph of interconnected electricity producers, trangiimm here of matrices modeled & = (Iy + P)%X, where X
systems, and consumers evolve in real-time, their behavidasi a left-unitarily invariant random matrix anf is a rank-
being reported by diverse sensors such as voltage phasdtiermitian matrix withr < N. Such matrix models have
measurements][3] at the nodes of the electricity grid toomgi been largely studied in the recent random matrix literature
controllers. Fast detection of link and node failures isuested very often in the special case whekeis astandard Gaussian
in this scenario to minimize the risk of cascaded failuramatrix, which refers in this article to a random matrix with
leading to regional blackoutsi[4]. There exists a rich &itare independen@N(0, 1/n) entries. In[[14],[[15], forX a standard
on failure detection, diagnosis and change-point estonati Gaussian matrix, it is first shown that there exists a natural
ranging from off-line detection methods of uncorrelatetbdamapping between the extreme (empirical) eigenvaluesf
[5], [6] to fast change detection methods in time correlatexhd the (population) eigenvalues Bf It is then proved that,
signals [7], 8], [9]. Subspace methods were in particulaimost surely, the extreme empirical eigenvalues convirge
proposed to detect changes from changes in the eigens&uctieterministic limits in the asymptotic setting, found eithat
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the edges of the support of the Martenko-Pastur law [18rs uq,...,ux. The notationS+ is the space orthogonal to
i.e. the weak limit of the eigenvalue distribution & X*, or S. We denoteC* = {z € C, 3(z) > 0}. The norm|| X of a
away from them, depending on the corresponding populatiblermitian matrixX is understood as the spectral norm, and the
eigenvalues. This induces a phase transition having irapbrtnorm ||z|| of a vectorz is understood as the Euclidean norm.

consequences on fault detectability in sensor netwarkk [1The notations %', ‘=, and P denote convergence
This observation is extended to the non-Gaussian case ard g8most sure, weak, and in probability, respectively. Thalsyl

eralized to a other spiked models in [18]. The fluctuations gf[.] denotes expectation. The notativn(z) is the indicator
the extreme eigenvalues are studied with different appe®c function of the setA.

depending on whether the limiting eigenvalues are found at
the edge or outside the support of the MarCenko-Pastur IaW b eTECTION AND LOCALIZATION OF LOCAL FAILURES

When at the edge, it is proved successively in [19]] [13]],[20 ) . .
g P yin [191) (43111 To motivate the study of the fluctuations of extreme eigen-

[21], [22] that the (centered and scaled) limiting eigenedias X ; ) :
Tracy-Widom fluctuations. When outside the support, thoé@'ues and eigenvectors of sample covariance matricesein th

fluctuations are linked to the distribution of the eigeneslof CO”FEXt of IOCE_‘I failures in I_arge dlmens_lonal sensor neksp
GUE matrices, as shown in [21]. In the specific case where t€ introduce in the following two basic examples of sensor
spiked eigenvalues a? have unit multiplicity, the fluctuations "€twork failure scenarios, which can all be modeled as small
are Gaussian. rank perturbations of the identity matrix.

In this article, the properties on the extreme eigenvalues
in a spiked model will be used to provide failure detectioA. Node failure
tests, in the same line as 23], [24]. For failure locali@ati  consider the following model
pure eigenvalue tests will turn out to be inefficient and we
therefore develop novel results on the eigenspaces atsibcia y=H0+ow (1)
to these eigenvalugs. _In [25], it is §h0wn, in the real _G‘WSSiwhereH € CN>? s deterministic,0 = [0(1), ..., 0(p)]T €
case, that the pr.o!ectlo.n of the elgerlvectors associaté Wer, w e CN have independent and identically distributed
the extreme emplrlcal elggnvalgesBE on the subspagg of (i.i.d.) complex standard Gaussian entries, and> 0. We
the corresponding population eigenvectordbhas a positive denotey — [y(1),...,y(N)]T € CV. In a sensor network

!'m't'?g 30{;‘?' \[/\f;;c:\ |fhclose tgl for © small. -l:l'hrlls remarkt composed ofN nodes,y represents the observation through
is extended inlL18] to the non Gaussian case. This proper Y& channeH of the vectom, constituted of centered and nor-

E:e fundartr;len;tlal lgas;_s of o?rthnov_el falluret dlagn_05|t_s met?o alized independent Gaussian system paraniktienpaired
owever, the fluctuations of the eigenvector projections; by white Gaussian noise. TherefoRiyy*| — HH*+02Iy £

damental here to derive test statistics for failure loedion,
have never be_en derived before_ for either the Gaussian Ol case of failure of sensok, y(k), the k" entry of
the non-Gaussian cases. The main mathematical resultsof thi

icle. Th nil4. is to derive the joint fluctuati ¢ thid will start suddenly to return inconsistent noisy outputs,
aricle, 1heore , 15 10 derive the joint Tuctuations o ecorrelated from the rest of the network. Assuming this@oi
eigenvalues and eigenspace projections for the eigersval

. . . 2
found away from the limiting support o X*. Our proof aussian with zero mean and variangeand denoting/’ the

i : T : b ti f th twork with fail t
technique is largely inspired by [18], [26], [27]. We alsoeus\?vriiee}rva lons of the network with failure at senggwe can

some tools from[[28] and_[29]. Based on these results, we
provide in this article a novel framework for local failure
detection and identification in large sensor networks. whered’ is distributed liked ande;, € CV is such thaty (k) =

The remainder of this document unfolds as follows. Sectidnande (i) = 0, for all ¢ # k.
[M introduces elementary examples of sensor networks forThereforey’ is Gaussian (as the sum of Gaussian variables)
which local failures translate simply into small rank pertu with zero mean and variance
bations of the identity matrix. Sectign]lll reminds importa . . . . s . 9
notions of random matrix theory and introduces the maily ¥ 1 = (I — exer) HH(In — exer) + ojeney, + oIy
mathematical results of this article. Practical applmatlgo- penotings = R—2y/, we have
rithms along with simulations are then carried out in Sectio

y' = (In — exer)HO + operer0 + ow

* -1 * * -1
V] Finally, Sectior[¥ concludes the article. Elss"] = In — R"2?HH"epe, R™2
thations:_ln this document, capital characters stand for + R*%ek [(eZHH*ek I ai)eZR*% _ e,*;HH*R*%} _
matrices while lowercase characters stand either for iIscala

vectors, with/y € CV*¥ the identity matrix. The'" entry of Therefore, the population covariance matkifss*| is a per-
a vectorz is denotedr(i). The symbol(-)* denotes complex turbation of the identity matrix by

transpose. For a functioffi and a Hermitian matrixX € N ) i .
CNXN | £(X) = Udiag(f(M(X)),.... FON(X)U* with P =R Zey [(ekHH er +oj)ep R —e  HH'R ]

i NXxXN

)\1(X), .. .,)\_N(X)_ the elgenyalue_s oK andU € CY*¥ the . R*%HH*ekeZR’%. )
unitary matrix of its respective eigenvectors. The sym§pl
denotes the support (?f the probability measur@he notation 1yt 4 right-product off7 by a positive diagonal matrix, the variance of
Span(ui, ..., u;) designates the space generated by the vele entries o can be assumed all equal to one without loss of generality.



Notice that the image ofP; is included in the subspaceNote that, contrary to the one-dimensional case, the e@env

mension two. Generalizing the above A6 node failures at anday,.

nodesks, ..., kyr, the vectors is now such that In the following section, we introduce the novel detection
. 1 1 and localization framework, making reference, whenever po

Blss'|= Iy - R :HH'EE"R"* sible, to the examples described in this section.

+RIE [(E*HH*E +A%)E*R™E — E*HH*R‘%}

With E = [en,...,ex], A = diag(on,, ..., on, ), where C. Detection and localization

now (2) becomes For either of the models above, let us assume a general

W1 . . - . L scenario with K possible failure events, identified by the
Py, SRZE[(E*HH'E+A*)E* —E*HH*| R™%  index1 < k < K and let nows,. ...,s, be n successive

_ R IHH*EE*R™ 3 (3) independent observations of the random variabl®enote
thenY £ LJ[sy,...,s,] € CV*", From the fact thats is

which is a matrix of rank at most\M v ;
: Gaussian with zero mean and covariaride + Pj) for a

certaink, we can write

B. Sudden parameter change S = (In +Pk)%X

Consider again the elementary model[df (1) and now assume Nan _ S
that, instead of a sensor failing(k), the k' entry of §, Where X < C%*" is a given matrix with independent
experiences a sudden change in mean and variance. fifissian entries of zero mean and variaige. We also

resumng Observatio@/ can be modeled as denote for Slmp|ICItyP0 = ( for the extra eventk = 0
) corresponding to the no-failure scenario.
y' = H(Ip + akerer)d + ppHey, + ow The natural approach to detect and identify a failure event

in a sensor network upon the observations...,s, is to
systematically perform a maximum likelihood test on the

\?véer’;] E’fy); ;ZS?}Z’; (Szl),lp:p(())sé Th; ;?(;;hlzr%a;tlgﬁ:ﬁir Ifr: ?)Sv?:’ K +1 hypothese${y, .. ., Hx, with ¥, defined as the event
F 'rv CN(0,Iny + P). However, this optimal approach is in

to the experimenter in the sense that a failure on parame‘?e

6(k) always leads to a change in mean and standard deviatﬁ)enneral computationally intensive, especially wieérand K

. . . . are large. Since the node failure information is carried by
linked to p,ag. In this scenario, we now have that is . . S )

. ; , the perturbation matrix®,, we provide in the following an
Gaussian with zero mean and variance

improved maximum likelihood test relying on the properties
Ely'y™*] = H(I, + [13 + (1 + ax)? — Uerer) H* + 0?1y linking P to the observatiort, as the system dimensions
) _ ) (N, n) grow large. Precisely, based on recent advances in the
Denoting R = HH™ + o?Iy as in the previous example ande|d of large dimensional random matrix theory [30], we will
taking s = R~2y’, we finally have provide a two-step approach to successively (i) decide en th
* 2 2 -1 T | existence of a failure and (ii) identify the failure evenhid
Blss™) = Iy + [ui + (1 + ag)” — JR2 Heyel H™ R technique relies on the strflti)stics o];ythe extreme eigepgalu
which is here a rank-perturbation of the identity matrix by and eigenspace projections &fx*, given the perturbation
the matrix matrix P. The following section is dedicated to the study
P2 ﬁkR_%HerzH*R_% of those statistics as the dimensions of the makigrow
large. The application of those results to failure diagaasi

with B, = pj, + (1 + ax)? — 1. Note that, in this scenario, sensor networks is deferred to Section IV.
the eigenvector of’, associated with the non-zero eigenvalue

is independent of:;, and «y. For practical applications, this
has the interesting advantage that simple localizationlean
performed even ifi;, and oy are unknown. This is further The derivation arguments found in this section follow the
discussed in Sectidn 1V. ideas of([[31],[[26] and [27]. In our proofs, we shall also lwovr

The derivation above generalizes to sudden changessefme of the arguments df [29] whose context is close to ours.
multiple parameters. If the means and variances for the sen-

sorsky, ..., ky are modified simultaneously with respectiv%' Notations, assumptions and basic results
parametersgi, , ..., ftk,, andag,, ..., ak,,, then

for some real parameters, o, and where;, € C? is defined

I1l. M AIN RESULTS

) ) We start by summarizing the major notations and facts
E[ss*|=In+ R 2HEAE*H*R™ 2 needed here. We consider a generic small rank perturbation

. . model and define
with E = [eg,, ..., ek, ] andA = diag(Br, ;- -, Brp )s Bk, = )
pz. + (1 + ax,)* — 1, which is a rankd/ perturbation of the Y=(Un+P)2X

identity matrix by the matrix ] o ]
with X € CV*" left-unitarily invariant, and where the rank-

Pk = R *HEAE*H*R™ 2. Hermitian matrixP has the spectral factorizatidh = UQU*



with eigenvalue spectrum of X*. Givene > 0 andz € C\ [a —
wilj, e,b + ¢], denote byd, the distance fron: to [a — ¢,b + ¢].
Q= Then for anyp > 0,

wtljt

* K,
E Hla(XX*)C[afs.,bJrs]u (Q(z) — O‘(Z)IN)’UHP < deZ;/Q
andw; > ... >ws > 0> wsp1 > ... >w > —1. Of course, o
ji+---+ji = r. We write accordingly/ = [U; - - - U] where where the constank’, depends orp only. Similarly, for any

U; € CN*Ji, We denote by\; > --- > Ay the eigenvalues 2,2/ €C\[a—¢,b+e], we have

of ¥¥*. Fori € {1,...,s}, we letX(i) = j1 + - + ji_1, . A trQ(2)Q(2) P
taking by conventionj, = 0. Fori € {s+1,...,t+ 1}, we Ello(xxcla-cpau’ |Q()Q(Z) — N Injv
let X(i) = N — (j, + --- + j.). One of the purposes of this K,

section is to establish an asymptotic relation betwegand < PP NP2

the \gc(i)1¢ for £ = 1,..., j; which holds under a conditionon ~_“"*'

We now start our analysis of the extreme eigenvalues and
eigenspace projections df>* by studying the first order
behavior.

w; that will be specified. We also denote ﬁy the orthogonal
projection matrix, when it exists, on the eigenspaceaf*
associated with the eigenvalu@éx(i)M}%;l. Similarly, we
denote byil; = U,U; the orthogonal projection matrix on the
eigenspace ofP associated with the eigenvalug. Finally,
we denote byQ(z) = (XX* — zIy)~! the resolvent of the 1) Eigenvalues:Suppose that € R is not an eigenvalue
matrix X X* and bya(z) = 4 tr Q(z) its normalized trace, of X X*. We first write

both analyt|call orC™. . det (55 — 21y)

In the remainder of the paper, we shall consider the asymp- . 1
totic regime wheren — oo and N/n — ¢ € (0,1). The = detUn +P)det(X X" —aly +olly — (In +P)7])
notationn — oo will henceforth refer to this asymptotic = det(Inx + P)det(X X" — xly)
regime. x det(Iy + zP(Iy + P)"H(XX* —zIy)™})

We now state our basic assumptions: L. 1 1
Al Th bability | £X is invariant by lef " after noticing thatly — (Iy + P)~' = Py + P)".
e probability law ofX s invariant by left multi- Therefore, ifz is an eigenvalue oEX* but not of X X*, it

plication by a deterministic unitary matrix. must cancel the rightmost determinant. This determinant ca
Thanks to the left unitary invariance ok, Q(z) writeS pe further rewritten
as Q(z) = W(A — 2I,)"'W* where A is the matrix of .
eigenvalues ofX X*, W is a unitary random matrix Haar det(In +zP(Iy + P)" Q(x))
distributed on its unitary group, aill andA are independent. = det(I, + 2QU*(Ix + UQU*) " Q(2)U).
A2  For everyz € C*, a(z) converges almost surely togrom the identityU* (Iy + UQU*)~! = (I, + Q)~'U*, we
a deterministic functionn(z) which is the Stielties tnen nave
transforrd of a probability measurer with support .
[a,b] C (0, 00). det(XX* —zly) = det(In+ P) det(X X ™ —xIn) det(H(z))
A3 We have| XX*|| == band([(XX*)7 )" =5 a. where H(z) = I, + 2Q(I, + Q)" U*Q(2)U.
This last assumption implies in particular ths2 is satisfied Given anyz € C \ [a, b], AssumptionsA1-A3 in conjunction
forall z € C\ [a, b)]. with Lemmd_l show thaﬁ(z) is defined for alln large, almost
The most classical model of a matriX that satisfiesA1l- surely, and converges almost surely to
A3 is when X is standard Gaussian, i.e. with independent _
CN(0,1/n) elements, as introduced in the system models of H(z) =1, + 2m(2)Q(I, + Q) ! (5)
Section[I[-A and Sectiofi I[-B. For this model, the limiting(take v andv in Lemma[l as any couple of columns Bf
probability distributionr is the well known Mar€enko-Pasturtakep > 2 and use Borel-Cantelli's lemm@a[32]). We therefore

B. First order behavior

distribution [16]. Its Stieltjes transform is expect the solutions of the equatielet H(z) = 0 which
1 are outsidela, b] to coincide with the limits of the isolated
m(z) = 5— (1 —c—z+/(1—c—2)2— 420) (4) eigenvalues of2x*.

Let us now study the behavior of the solutions of this

where the branch of the square root is the one for whi ; ;
. ation. Leth(z) = on R ,b]. Sincea > 0, we
m(z) € C* if 2 € C*. gg\tlje i (x) = zm(x) \ [a, b]. Sincea Wi

The unitary invariance ofX is the basis of the following h A
important lemma, shown iri_[29] using an inequality bf1[28] B (z) = (zm(z)) = / 3
which involves Haar unitary matrices: (A —=2)

Lemma 1:AssumeAl. Let uw € CV andv € CN be two The functionh(x) is therefore increasing dR\\ [«, b] and with
vectors with norm||u|| = |lv|| = 1. Denote byo(X X*) the limit 0 asz — 0 and—1 asz — oo. Therefore, forw; > 0,

(B leads to

2We recall that the Stieltjes transform(z) of a real measure is defined h( ) + 1+w; -0 (6)
for z outside the support af by m(z) = [ 5L dmr()). P w;

dm(A) > 0.




having a unique real solutiop; satisfyingp; > b if and only Section[IV-C. In such scenarios, we then need to consider
if h(b™) + (14 w;)/w; < 0. Whenw; < 0, () has a unique eigenspaces properties Bf This is the target of the following
solution0 < p; < @ if and only if A(a™) + (1 + w;)/w; > 0.  section.

We therefore have the following result, for which a rigorous 2) Projections on eigenspacesGiven i < ¢, we now
proof is found in [[31]: assume that; satisfies the separation condition. Given two
Theorem 1:AssumeAl1-A3. Letp be zero or the maximum deterministic vectors,,b, € CV with bounded Euclidean
index such thatu, > 0 and 2 (b") + (1 + w,)/w, < 0. For norms, our purpose is to study the asymptotic behavior of

i =1,...,p, let p; be the unique solution of(6) such thab;II;b.. We shall show that this bilinear form is simply related

pi >0b. Then, . with b711;b, in the asymptotic regime.
AK (i) 44 2% ps Our starting point is to expre$411;b» as a Cauchy integral
. _ N . [33]. DenotingC; a positively oriented contour encompassing
fori=1,....p andEA— L. ’j“, YVhIle only the eigenvaluesx;, of ¥X* for £ = 1,...,j;, we
Ak (pr1)+1 — b. have

Let ¢ bet + 1 or the minimum index such that, < 0 and b*{ﬁibg

h(a™) + (14 wy)/wg > 0. Fori = gq,....t, let p; be the 1 X
unique solution of[{(6) such that; < a. Then, = —%7{ bi(EX" — 2zIN) b2 dz
C;
Asc(iyre % pi 1 1

=—— by (I P)”
om 1(In +P)

fori=g¢q,...,tandf=1,...,7;, while . )
X [XX* —2In+2P(In + P)7'] " (In 4+ P)"2b2 dz.

;\K(q) 2 a.

In the remainder of the article, the variables . .. ,w, and Using Woodbury’s matrix identity, we have

Way -+ W satisfying the condit_i(_)ns of Theordrh 1 will be said [XX* ~2In + 2P(Iy + P)—l] -1
to satisfy the separation condition 1

When X is standard Gaussian, applying Theofdm 1 shows = Q(2) = 2Q(2)U [ + 2Q(I, + Q)" 'U*Q(2)U]
after some simple derivations the following result: x QI + Q) 'U*Q(2)

Corollary 1: Consider the setting of Theorehh 1. Assume 5 g
additionally thatX is standard Gaussian. Lgtbe zero or the = Q(2) —2QEUH QL + Q)7 U7Q(2)
maximum index for whichw, > (/c andq bet + 1 or the and taking
minimum index such that, < —y/c. Then

1+ w; a1(2)" = 2b{(In + P) 2Q(2)U

Ax(iyre == pi = L+ wi+e— 7 d(2) = QL + Q) U*Q(2) Iy + P)"%by

forie{1,...p,q,...,t}, £=1,...,5; while we obtain

;\fK(p+1)+1 = (1+Ve)? biIL;by

Aic(g) =55 (1 — e)2 1
xig = (1= Vo) = —— ¢ by +P)EQ) Iy + P) by dz
Corollary[1 implies that, for; sufficiently far from zero 2m Je,

(either positive or negative) or, equivalently, fosufficiently T L a1(2) H(2) an(2) dz. 8)
small, the spectrum of.>* exhibitsj; eigenvalues outside the 2m Je,

supportS,. of the Martenko-Pastur law which all converge
to p;. For failure detection purposes, upon observation
3, we may then test the null hypothesizs = X (call it
hypothesis,) against the hypothesis = (Iy + P)2X
(call it hypothesisH,), depending on whether eigenvalues of 1 N K TT/ N —1A

¥¥* are found outsideS,,. Depending on the scenario, for 2m s a1 (2)"H (z) " az(2)d
small enough, it may be that a mere evaluation of the numbe(gle

By AssumptionA3 and Theoreni]l, with probability one for
Al largen, the first term on the right hand side is zero, while
the second is equal to

of eigenvalues outside the support suggests the numbererei is a deterministic positively oriented circle enclosing
only p; among the limits of the isolated eigenvalues specified

simultaneous failures in the sensor network. This is the ofs . X
by Theoreni L, therefore enclosing none of thej # i. Using

the two failure scenarios described in Secfion]ll-A and iBact , , X X e :
I=B] However, the information on the extreme eigenvalugs §€MMaLl in conjunction with the arlalyucity properties oéth
¥¥*, if sufficient for failure detection purposes, is usua”g,ntgfgrar;d, one ca?;hovillthat(z) H(z) aﬁ(z) Iconverges
not good enough to perform accurate failure localizatiot"'°'M yhto a1(2)"H(z)""az(z) on v in the almost sure
This is because different failure scenarios, charactertzg S€NS€. Where

different perturbation matrice#’, may exhibit very similar ar(2)* = zm(2)bi(Iy + P)" U

eigenvalues. Also, if the failure amplitude is a priori uokm, o .

then eigenvalues are in general irrelevant; see the apiplica az(z) = m(z)Q(I + Q)" U*(Iy + P)”2b,.



It results thath}I1;b, — T; = 0, where C. Second order behavior

1 Before studying the fluctuations Oficiivae, L =1,... s Jis
A *H -1 d .o . (.).Jr . .
T o0 »al(z) (2)" az(2)dz. when w; satisfies the separation condition, we first remind
. o _ S ~ for later use in our applicative framework the fluctuatioris o
Details can be found in [t’g] in a similar situation. Let us fln(j\x(i)ﬁ Whenwi doesnot Satisfy the Separation Condition, and

the expression of ;. Noticing that when X is a standard Gaussian matrix. For this, we have the
t 1 following theorem [[20], [[22], [[21].
H(z)"' = Z — 9) Theorem 3:Let X be standard Gaussian, therDik w; <
p 1+ 2m(2) Ther NG
where 0 e ;\K(i)+l —(1++/0)? - T
4
n=| 1, (1+ve)ive
0 and, if —y/c < w; <0,
we obtain Vi ;\K(i)+€ — (1 - o)? .
t 1 am?(2) el
=Y Lgb;mzn—jé i
= (1 +w) 2m J,, 1+ 2m(z) 55 for ¢ =1,...,7j;, asn — oo, whereT, is the complex Tracy-
t b TLbs 1 2m?(2) Widom distribution function[[19].
= Z e 7{ T dz The tools used to derive Theoré&in 3 are much different from
o e 2m o, SR+ em(z) those exploited here and will not be discussed. Similar to

From the discussion prior to Theordh 1, it is clear that tH24], TheoreniB will be used to derive tests to decide on the
denominator of the integrand has a zero in the inteliiofy;) presence of elgen_values outglde the suppqrt of the Maggenk
of the disk delineated by, only when? = i, and then this P:?\stu_r law. For failure detecuo.n purposes in sensor nésyor
zero is simple due to the fact that(z) = (zm(z))’ never this will be used to declare a failure prior to diagnose thdtfa

vanishes orR \ [a, b]. Applying the residue theorern [33] andT_hen’ to diagnosg a failure, se(_:on(_j order statistics of bth
observing from[(B) that /(1 + w;) = (1 + h(p;))/h(p;), we eigenvalue and eigenspace projections when the separation
obtain the following limits. property arises are needed. This is the aim of the remainder

Theorem 2:AssumeA1-A3. Giveni < ¢, assume thaw; ©Of the section. _ .
satisfies the separation condition. ligte CV andb, € CV We now turn to the second order analysis of the eigenspec-

be two sequences of increasing size deterministic vectiths w'UM 0f X% whenw; satisfies the separation condition, and
bounded Euclidean norms. Then when X is only assumed to satis#1-A3. We first need the

following additional assumption:

b1Lby — (ib7TIiby == 0 A4 ForallzeC)\ [a,b],
were m(ps)(1 + b)) VN (a@) =m(=) =0
G = R (pi) ' asn — oo.
In particular, we find after some derivations: In practice, this assumption means that the fluctuationbef t
Corollary 2: Under the assumptions of Theoréin 2, fét SPectral measure of X* are negligible with respect to those
be standard Gaussian. Then of the A, andb}I1;b2, which will show to be of ordet/N. This
L, assumption is satisfied by most of the random matrix models of
biTl;by — 1_70“’1;11,»{111.(,2 2500, practical importance in our context, providedV (N/n—c) —
Cw; 0. The classical illustrating example in this regard consern

This result is consistent with [25] derived in the real Gaarss he standard Gaussian case. Denotenby(z) the Stieltjes
case for eigenvalues with unit multiplicity. transform [(#) wherec is replaced withN/n, and let,
Theorem# and Corollariyl 4 provide an interesting chara’® Marcenko-Pastur law associated 1V‘_’Whn(z)' For any
terization of the eigenspaces Bfthrough limiting projections # € C\[a, ], the functionf(z) = (x—z)~" is analytic outside
in the large dimensional setting. In the context of localia € Support ofr, for n sufficiently large. As a conseguence,
in large sensor networks, it is therefore possible to deiadt Theorem 1.1 of[[34] shows that' N (a(z) — m,(z)) — 0.
diagnose one or multiple failures by comparing eigenspafgsuming in addition thay/N (N/n—c) — 0, itis not difficult
projection patterns associated with each failure typeciBegy, 10 show from [#) that/N (m,,(z) — m(z)) — 08
an appropriate diagnosis consists in determining the mostor practical purposes, we shall also assume:
likely failure type among all hypothetical failures, givéme A5  Eachw;, 1 <1 <t, satisfies the separation condition.
extreme eigenvalues and associated eigenspace progeofion

: - b 3, .
¥¥*. To this end though, not only first order limits but also It is useful to note that yvhen the_: convergence rate}_\fgzih is s_lower _than
VN, our analysis remains true if we replage(z) with a finite horizon

.Second order behaviour need be. characterized premsety. ﬁéterministic equivalenf [35]. [36]. For simplicity, weveachosen not to enter
is the target of the following section. into these details here.



The main result of this section is the following theorem. of the eigenvalues of” are all equal to one. In this case,

Theorem 4:AssumeAl-A5. Fori=1,...,t, let M, ; and M, ,; are independent Gaussian variables and we
(= immediately have the following corollary:
Vin = \/NUi (Hi - <iIN) Ui Corollary 3: Assume the setting of Theordrh 4. Assume in
and A addition thatj; = 1 for all . Then
AK (i) +1 — Pi ((
‘/’i,n7 LZ,n)),L: r = N(O, R)
Li7n _ \/N . . 1,...,
i with
K(i)+j5: — Pi .
D(p1)R(p1)D(p1)
Forp e R\ [a, b], let R
h(p)A+h(p))h" (p) h(p)(1+h(p)) «
D(p) = [ it T ] D(p)R(p:)D(py)
Q) 0 After some calculus, in the standard Gaussian case, we
and further have:
Corollary 4: Under the assumptions of Corolldry 3,Xf is
m’(p) —m(p)? m"(p)/2 — m(p)m’(p)] , .
(p) [m//(p)/2 “m(pym () m®(p) /6 —m!(p)? aﬁgargdard Gaussian matrix, thBp; ) R(p;)D(p:)* = C(p:),

wherem®) is the third derivative ofn. Consider the matrices 2 (14ws)? (14wi)? (1wi)?e?

G; x11/2 I M ; C(p) A (ctwi)2(w2—c) (Cg(c;—wi)z + 1) —(wi_‘_g)z(_;i

— . . . . > T wi)’c c(14w; wi—c¢
] = (@eoreoDEy o 1) [ e BN

where My 1, M1, ..., M1y, Ma, are independent GUE ma-  Due to its simple expression, Corollafy 4 is particularly

trices such thaf/, ; and M, ; are bothj; x j; matriced] Let handy to use in the context of failure diagnosis when hypo-
L; be theR’:-valued vector of eigenvalues @f; arranged in thetical failures are characterized by distinct valuessgfas
decreasing order. Thén will be shown in Sectiofi V.
_ BN RSy In Figure[1, the histogram of a simulation &6 000 re-
((Viim, Lin))im = (G La))is - (10) alizations of the projectioV; ,, = V/N(|@ju1|? — (1), with
Remark 1:To be more preciséV; ., L; ,) can be castinto v, = U; € CV, 4 af = TI, of unit rank, andX standard
anR’: tJi-valued random vector after rearranging the real ar@aussian, is depicted against the asymptotic Gaussian law
imaginary parts of the elements &f,, and taking into account derived in Corollary[}4, forc = 1/8, r = 1, N/n = 1/8,
the Hermitian symmetry constraint. Hence, the convergenceN = 256 and w; successively equal té@ and 0.5. In this
law specified by{(1l0) acts on the space of probability measusstenario,,/N/n ~ 0.35. Forw; = 1, the simulation shows a
on R7+3%+ 457 rather accurate fit between asymptotic theory and simulatio
TheorenT ¥ provides a very general expression of the joiRbrw; = 0.5, the Gaussian approximation is much less accu-
limiting fluctuations of both eigenvalues and eigenspae prate. This is due to the value = 0.5, which is rather close to
jections. It is particularly interesting to note that thectlua- ,/N/n ~ 0.35. The valueN = 256 is here insufficient for the
tions of (Vi », L;,») are asymptotically independent acrass large dimensional behaviour of the fluctuations|@fu,|? to
The theoretical is an interesting new result to the field afrise. This behaviour will have important consequencethier
large dimensional random matrix theory, although it might bquestion of diagnosing failures which are difficult to olhser
difficult to use in practice since one needs to derive explici  The remainder of this section is devoted to the proof of
the joint density of(G;, L;)!_,. Nonetheless, Theorelh 4 carTheoreni#. We start with the following lemma, which deals
be immediately put to practice in two scenarios. The firstith the asymptotic behavior of thg, ,,. This lemma will be
scenario corresponds to the case where only the fluctuatipnsved in AppendiX A-A.
of the eigenspace projection vectdf; ,,)!_, is of interest. In Lemma 2:AssumeAl-A5. Let
this gas_e,(Gi);?:l is a correlated Gauss_igan random vari_ablef.. B h(pi)(1 + h(p))h" (p:)
Reminding that)M; ; can be seen as aR: -valued Gaussian Vimn =VN 7 (p:)?
vector with entries of zero mean and unit variang@,-);?:% b0 (1 - hio: pi
can then be seen as a random Gaussian vect@/in- -+ —MU;‘(Q’(M) — m/(pi)I)Ui) .
with entries (52 ; — 1) to j2 of zero mean and variance h(pi)
[D(pi)R(pi)D(pi)*];;, for eachi € {1,...,t} with jo = 0. Then for anyi € {1,...,t},
The second scenario of interest, which is discussed atliéngt ~ b
the following, corresponds to the case where the multiisi Vin = Vim — 0.

Ui (Q(pi) —m(p:) 1)U

4We remind that matrices from the Gaussian unitary ensentlé3UE We now consider the i30|ate_d extreme ei_genvalues- In order
matrices, are random Hermitian matrices with independeandard real to study the asymptotic behavior of these eigenvalues, @t sh

Gaussian diagonal entries and independent standard co@plessian upper- adapt to our situation the approach of [26] Foe 1 "
diagonal entries [37]. : yee by

51t is clear that ifA5 is not fulfilled, Theorenf 4 generalizes by letting thecoNsider real numbersl(i) > 1/1(@) > I2(Z) > Y2 (l) e
index i in (I0) span only the subsét, ...,p,q,...,t}. --- > y;,(i). Since the separation condition is satisfied by



00 Histogram of VN (|afu1]|? = ¢1) process
Sl GaussiariN (0, C(p1)1,1) | Xn('r) —
[N/ det H (pi + 2/ V) = (TT(1 = Be/ 8
04i
t
? 1r ’ 8 x det (\/NﬁiPiUf(Q(Pi) —m(p:i))Ui + Bz'h'(ﬂz‘)ﬂ” -
[ 1=
e whereS; = w; /(1 + w;). Then
P
0.5 | (Xn(‘rl)aaXn(xp)) —0
i for every finite sequencery, ... ,:cg).
Let B be a rectangle aR7:++i7 . The real and imaginary
0 ‘mwazﬂ’ﬁ ‘”l]ﬂ | parts of the elements of th¥ ,, defined in Theorerill4 can
-1.5 -1 —-0.5 0 0.5 1 1.5 be stacked into &Jit+ii-valued vectorV;, when taking
Centered-scaled projectidi?us |2 into account the Hermitian symmetry constraint. A vedigr
05 with the same size can be constructed similarly fréin,
. I I I

D8 Histogram of VN[5  — 1) defined in Lemma&l2. LeL,, be theR"-valued vectorL,, =

Gaussiam(o,C(pl)ll,ll) ' [L],,...,L{,]" (see Theoreril4) and lét be the rectangle

04| - ‘| of R” determined by the left hand side &f{11), so that this
I event is written[L,, € C]. Let L,, be the vector obtained by

arranging the eigenvalues of the matrices

0.3 - :
7 p’L *
g Tin = =55~ VNU(Q(pi) — m(pi) DU
S h (pz)
e el | | fori=1,...,t, similarly to the elements af,,. From Lemma

@, Lemmd3B, and the discussion preceding Lerhima 3, we have
PV, €B,L,€C]-P[V,€B,L,€C] =0

asn — oo, for arbitrary rectangle® and arbitrary rectangles
| HI] | C specified at the left hand side ¢f{11). Observe that
0 o o o

—4 -2 0 2 4 Vi U (Q(pi) — m(pi) 1)U
Vi,n | _ \/N D ;) ® I *1 4 4 %
Centered-scaled projectigti}u|? [ } (Dip:) J U Q' (pi) —m'(pi)I)U;

0.1 -

Ti,n
In order to terminate the proof of Theoréin 4, we shall make
Fig. 1. Empirical and theoretical distribution of the fluations ofu; with  yse of the following lemma, that we state in a slightly more
r =1, X has i.i.d. zero mean variandg'n entries,N/n = 1/8, N = 256 eneral form than needed here
andw; = 1 (top) orw; = 0.5 (bottom). 9 ’

Lemma 4:AssumeAl-Ad. Let fi,..., fy andgy,...,g; be
real functions analytical on a neighborhood[afb]. Let S,
be thet-uple of random matrices

assumption for each=1,...,¢, the equatiordet ﬁ(m) =0 .
hasr roots outsidela, b] with probability one for alln large. ¢ _ (m [Ui*fi(XX*)Ui = ([ fi(N)dr (V) IjiD .
Therefore, we have the equivalence relation U gi(XX*)Ui — ([ g:(Ndn(N) I, | ) ._,
Fori=1,...,t, define the covariance matrices
.’L‘Z>\/N5\l — pPi) > 1), i — sdm
( o(@) (Agciyre = pi) > ye(i) Ri:/([i—}idﬂ'] [(fi = [ fdn) (gi—fgidﬂ')]) dr.
=1,...,t, £=1,...,7 T
! rm o] ) Then S,, converges in distribution towards
& i t
L ; . : R o1, { 1]) 12
<NﬁdetH(pz—+Mf§Zv)) detH(pﬁwaz)) <0, (( ' '“) Moi]) ey (2
where the matriceéM1 1, M2 1, ..., M, M2 ) are indepen-
i=1,...,t, (=1, ,jl) (11) dent GUE matrices such thaf, ; and M, ; have dimensions
Ji X Ji-

. . o _ . The proof is provided in Append{x’AJC.
This equivalence leads us to study the limits of the finite Appving this lemma with with f;(\) = 1/(A — pi) and
dimensional distributions of th&‘-valued random Process ;. (\) = 1/(\— p;)?, R; takes the valug(p;) provided in the

. ~ t
N7:/2 det H (p; +x/\/N)] in the parameterc. This is statement of Theorefd 4. It results that
given by the following lemma, proved in Appendix A-B. ([Vl nDt ([GiDt
’ =

Lemma 3:AssumeAl-A5. Define theR’-valued random Tinl|),_, Kil),_,



where the convergence takes place on the space of propabiifc. We will therefore assume in the following that ; > /¢
measures ofR2Ui++i7) This completes the proof of The-is verified for allk. That is, we assume thaly £ N/n < ¢,
orem[4. wherec, is defined as

IV. APPLICATION ey Sinf{wp,, 1<k <K}

In this section, we provide a general framework for local This condition allows for a theoretically almost sure error
failure detection and diagnosis in large sensor networksh s detection, asV, n — co. We then rely on Theorehi 3 to design
as the examples proposed in Secfidn Il, based on the resaltsappropriate hypothesis test. Our test consists in negect
of Section[Tll. This framework is a two-step approach fohypothesisHj if the probability in favor of#(, is sufficiently
successively (i) detecting failures within a given maxiypal low. That is, for a given acceptabfalse alarm ratenE the
acceptable false alarm rate and (ii) upon positive detecticstatistical test is defined as

diagnosing the failures with high probability. Simulatsoare 9
then run to validate the proposed algorithms. 1S (To)~ (1 —n) (13)
We recall that we assume a numbérof failure scenarios Fo

indexed byl < k < K. Scenariok is characterized by the

A/ . .
population covariance matriky + P,. We additionally denote where; is given by

Py=0 for co_nvenience. We considgr precisely the detection N A\ — (14 /en)?
and localization to be made for failure models of the type Al = N3 a1
S = (In+P)3X,1 < k < K, with P, = Y% | wp,Up Uy, (14 en)sey

_ te o . NXjr,i . - N
of rankry = 3,5, jk,i, WhereUy; € CT9%+ andwy1 > g is, the test verifies whethey, exceeds some threshold

G > Wﬁk\ﬁ Od> w?ézkﬂh > " E w’“vthk' a_n(iX s;qtandar(;j Iabove which the probability foi, is less tham.
aussian. We denoi@, the null hypothesis for the mode If the matricesP, are now all non-positive definite then,

lez X ande{,?dtChe hyploth(is;(s forta :‘)anure of ty!f For tr|1|e tsymmetricglly, we need to sety such that the smallest
allureé scenariav, we aiso taxey 10 be zero or the Smalles eigenvalue\y of XX* is visible on the left-hand side ..

!ndexz" such thatuy,; > /¢, andgy, to bet, +1 or the largest ., is, we takeV, n to be such thaty < c_, with c_ defined
indexi such thatwy ; < —+/c.

Remark 2:This model (and in particular the models ofas
Section1[-A and Sectiof 1I-B) may be extended by introduc-
ing deterministic linear time correlation to the observas
S1,.-.,8,. That is, we can write = (I + Pk)%XT% for
some time-correlation matriX. In this scenarioX 7' X * being N f}g (1)~ (1 = 1) (14)
unitarily invariant for X Gaussian, the localization scheme N fo 2 "
proposed extends naturally to this scenario, as long as the
eigenvalue distribution of’ converges weakly to a compactlywhere X is defined as
supported distribution a& grows large and thaft' has asymp-

c_ éinf{wﬁytk, 1§/€§K}.

The decision test is in that case given by

totically no eigenvalue outside this support. However, site Vo A N3 Av — (1= \/CN)Q'
similar to the Tracy-Widom fluctuations in Theorém 3 does N —(1- \/@)%CJ%V

not exist yet for the fluctuations of the extreme eigenvalues
in the modelXTX*. As such, although failure localization The above test is particularly suited to the model of Section

is possible from Theorer 4, no failure detection test is yBtBlin which the matricesP; are non-positive definite when
available for such a modgl. ur = 0 anday, = —1 for all k, corresponding to a sudden

drop of a zero mean random parametéi) to zero.
. . When the matricesP, have both positive and negative
A. Detection algorithm . N .

eigenvalues, then a deterministic choice has to be made by

As stated in the intrOdUCtion, the detection phase relies tHe experimenter_ In the most genera| Setting’ to ensure a
eXiSting results, and more SpeCificaIIy on the fluctuatiohs fhlse alarm rate lower than, one has to choose two scalars
the largest eigenvalues given by TheorEm 3. The detectign,), b(n) € R U {—o0, o0} such that
algorithms proposed here parallel that introduced’in [24] i
the context of collaborative signal sensing. The objedsvi® P ({;\’1 > a(n)} U {;\’N > b(n)}) <. (15)
decide between hypothesi§, and its complementar§(,.

First assume that al’, only have non-negative eigenvaluesThe choice ot(7), b(n) depends primarily on the structure of
From Theoreni]1, the largest eigenvalilﬁ of ¥X* tends to P, and will impact the correct detection rate for fixed false
the right edge of the suppo#ft. of the MarCenko-Pastur law alarm rates.
for all largen under3,, while \; is found away from this  Following the work of [38], in which the asymptotic inde-
edge undetH, if the largest eigenvalue;, ; of P, exceeds pendence of the fluctuations of the largest and the smallest

GAlternatively, awhitening procedure may be used prior itufa detection  7We recall that the false alarm rate is the probability of el F(o under
using X’ = T~ 2 as the random matrix under study, férinvertible. true hypothesisHy.
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eigenvalues of GUE matrices is proved, it is natural to coand

jecture that the same result holds for the eigenvalfuieand ;\Kk(i)+1 — Pkyi
An underXHy. In this case,[(15) would become asymptotically Lk 2 VN :
T(a(n))T2(b(n)) > 1 — 1. A (i) +gi  Phi

Note that we need here to specify the indexatien{ (p, gx)
since we do not assumfb for any k.
From Theoreni 4, this probability can be approximated for
) 5, 1 ({1-7m o f}g large n, which provides immediately a maximum likelihood
mm{b_ A, (T2) (Tz(b)) —A }:}co test for the most asymptotically likelyH(; hypothesis. In
) the particular case where the, ; all have multiplicity one,
In particular, forb = oo, T3(b) = 1 and then the test reducesyccording to Corollaryl4, ad’, n grow large, the vectors in

For any fixedb, taking b(n) = b, the hypothesis test now
becomes

to the test[(1B) are asymptotically independent and Gauséian.
<, Ho . therefore substitute the te§t {16) by the following tesidiag
}% (Te)™ (1 =n) to the estimatok defined as
which is the same test as proposed [inl (13). Taking instead k= astay H F (Vi LEn): Clor.a) (17)
a(n) = —oo, we obtain the tesf(14). €L (Proar)

For rather symmetrical distributions of the eigenvalugs where f(z;Q), z € C™, Q € C™*™, is the m-variate real
of P, around zero, it may be interesting to #€)) = a(n), normal density of zero mean and covariadtat pointz, and
in which case C(py;) is defined similarly as in Corollafyl 4, with; replaced

B by wy,;. Taking a log-likelihood notation, this is explicitly
b(n) = (7o)~ (V=)

. . .. . iﬂ: argmin Z [(‘/zkn? i,Mn )C(pkﬂ) (‘/1 nva )
In this setting, the decision test is now S e L )

< () (V).

Ho

+logdet C(pg,i) + 2log(2)] .

max{;\’N,;\'l} I
In the general case wherey; has multiplicity j;;, as

cussed previously, it is simpler to restrict the detecti
t to the eigenspace projectioﬁ‘s}fﬂn)iez(%qk) only. In
this case, denotin = (V¥ p,V2VE, ) € Rl with
vk p € Riri the vector of the diagonal entries &f", and
vk o€ RU.i—ix.4) the vector of the real and i imaginary parts

i,n,U
of the upper-diagonal entries dvl;n we obtain the test
In this section, we wish to detect all possible failure esent

1 _ _
from a set of failures indexed by € {1,...,K}. The k—argmln Z [W(‘/z’]fn)-r‘/i]fn

In the following section, we assume that the procedure {)EF
failure detection was achieved successfully and that we a
now interested in localizing the failures.

B. Localization algorithm

index set{1,..., K} may gather all events accountlng for hes i€L (proqr) pr.i)ln

a single, as weII as multiple, local failures. Similar to the 2 .2 }
w + Jie,i log([C (pr,i + Jji,.i log(2m)].

previous sections, we denoi®,; = 1 + wg; + c——=* * ki Ik, g([C (o)1) Ji..i log( (1)8)

and Gy = — “ii we define the mappint;, to be such

1+cw,;:1’ Remark 3:We discuss below the advantages of the de-
that Ky (i) = jrka1 + ... + jri—1 if 1 < 7 < s, and tection tests proposed in Sectibn IV-A and the localization
Ki()) =N = (i + -+ k) if sk +1 <0 <t Finally, algorithms [IV)£(8) compared to the optimum maximum
we denotelly; any projector on the subspace generated likelihood approach, as well as the extension to more ekbor
the eigenvaluesuc, ()41 - - > A%, (i) i - scenarios:

Based on the fact that differedt,’s have in general very , the detection algorithms proposed in Section IV-A are
distinct eigenspaces (and sometimes very different e@env  very versatile, as they adapt to multiple failure scenar-

ues), we then propose the following subspace localizaéet t ios showing small rank perturbations in the population
which decides on the hypothesl§. for which k* is given covariance, and provide a theoretical expression of the
by minimum ratiocy = N/n necessary for detectability.
. i « unlike the traditional maximume-likelihood approach
k"= arg ThaX gk ((Vi,n’ i) €L (pran) ) (16) which tests the joint distribution af for all hypotheses
1 < k < K, and therefore leads to calculus of the
with gx the true density of the vectoV’,, Lf,) ... order of at leasiV? for eachk, the proposed localization
Lor,q) = {1,..., Pk, qr, - .., }, S the se 0 mdexegc algorithm [17) is based on a test requiring for each
such thatl(py, gx) is non-empty, and where calculus complexity of order;,, wherer, < N.

A . « we may decide not to consider the joint fluctuations
Vim = VNU; (Hk.,i—Ck.,ink,i) Uk,i of all eigenvalues found outsidé,, but only some
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of them. This leads to an asymptotically less efficient, (3.31) (4.25) (4.29) (441 (2.82)

)

although much faster, algorithm, whe£épy, gx) in (I7) g 0.80 —Q 0.77 Q 0.84 0.96

is replaced byL(p’,q¢’) for givenp’ < pi, ¢ < g, for

all k. For N not too large, it is in fact preferable to con- 078 0.92 081 078 085 0.96 082 0.99 0.99

sider only a few eigenvalues and eigenspace projections d %5» %ﬁ

simultaneously, due to convergence speed limitations. 091 083 095 096
« the entriesL’, of the vector(V¥  L¥ ) may also be (2.36) (4.50) ) (

discarded, especially in scenarios where eigenvalues of , .

e ate very similar for each hypothesis,. This may 582 Netor ol - 10 snsors. The corelatenl() () petwesn

again increase the convergence speed of the asymptfitances are shown in parentheses.
approximation for not-too-largév, while it is expected
to perform worse for largev.

So far, we have performed failure detection under tHge fluctuations of this random variable. From Theoriem 4,
important assumption that the failure scenarios form areliec the fluctuations of/N (juji|* — ¢x) depend onwy but not
set {1,...,K}. This assumes in particular that the failur@®n ux. From the expression of, it is immediate that the
amplitudes are known prior to detection and localization. fluctuations of VN (¢ — () also depend onu;, only. But
the next section, we use Corolldry 4 to improve this approagiicews is estimated byb, irrespective of the failure indek,

in the particularly simple example of Sectibn 1I-B, when théhe diagnosis test leads to finding the most likely argument
failure amplitude is a priori unknown. k' among K variables with same Gaussian statistics. This

therefore simplifies the estimatéf of the most likely index
k to the following minimum-distance estimator

(4.12) (4.43 3.71)

C. Extension to unknown failure amplitude

In this section, we assume the scenario where the eigen- k' =arg min ‘|u;ﬂ|2 - C’
vectors of the perturbation matrik, are independent of the ke{l, K}

amplitude of the failure parameters, in the sense that agghan In the next section, we provide simulation results for singl
in magnitude of the failure of typ& does not affect the failure localization for the detection and localizatiogafithm
eigenspaces af;;. This is for instance the case of the singleassuming the failure amplitude known or unknown, applied to
failure scenario of Sectioh 1B, for which we recall thathe scenarios of Sectidn TItA and Section 1I-B, respecyivel
P, expresses a$y, = ﬂkR*%Heke,’;H*R*% with G, the

failure parameter. We now assungg unknown, which is a p_ Simulations

more realistic assumption than assuming it perfectly knawn In this section, we focus on the application of the algorghm

advance. We glso suppose.t@éthas ii.d. G:_:\ussmn entnes.designecl in SectiofSTVA afid I¥8 for single node failure in
Based on a simple extension of the algorithm presented . scenario of Sectioi THA and single parameter change in
Section[IV-B to unknownu;,, we provide hereafter a secon gep 9

localization alaorithm he scenario of Sectidn IIB.
alg to . 1) Node failure in the scenario of Sectibn II-ur first
For notational convenience, we assutfe = wyuuj, for

A application example relates to the sensor network model
eachk and thatw; > \/*E unlfn_own. We_ then Qenotﬁe the — HO + ow of Section(A for N = 10 nodes,p = N,
largest eigenvalue of¥* and its associated eigenvector.

Yy
2 _ L ] X )
Obviously, sincevy is not known, neither ig;. Therefore, and o - 20 dB*' ThIQS is depicted in Figuré]2, where
L the entries of HH* + o°Iy are presented. We also take
we cannot proceed here to localization based on the fluctug-

N . . . .
. : . < : . =>"." . (HH")k, which is a natural assumption to avoid
tions of \. Instead, we will use\ precisely as an estimate of ok 2z Jri . mp .

. . . : . < that a mere energy detector 9(¥) provide a simpler solution
pr, which we know is consistent with growindy, n. From ),

assumed larger thafl + +/2)2, we want to derive an estimateto our problem. This failure amplitude is assumed known
w of wy, (k is the effective failure index). This is obtained fromby the experimenter. In practical scenarios, this may arise

. . i . : If a sensor starts returning time delayed data, supposedly
an inversion of the relatiorl(7). Precisely, we obtain uncorrelated with real-time data but with same variance. We

NN }\/ . 2 assume a single failure scenario. In this context, it appear
B 2( (1+e)) + A —(+e) de that, for all k, wy1 > 0, wr2 < 0 and wg; is much
if A > (1+.,/)? and larger than|ws»|. It is therefore more interesting only to
consider the largest eigenvalue BE* to detect and locate
w2 1(5\ —(1+4¢) - l\/(j\ —(1+4¢)2—4c an hypothetical node failure. Under these conditions, the
2 2 theoretical threshold fary = N/n (if N, n were large) i9.8
if A< (1-+/0c)> with the worst-case failure corresponding to a failure ofl@o
From this estimate, we then obtain an estimatef ¢, as 10. We therefore carry out00000 Monte Carlo simulations
follows Ly of node 10 failures forn varying from8 to 140 and under
(= l—cw _ false alarm rates varying fron0—2 to 10~*. This is depicted
1+ cw? in Figure[3, where it can be observed that,fioe 8, detection

A natural object to consider for the failure localization isnd localization are barely possible, although it is clearl
now |u}|? — ¢. To provide a diagnosis test, we need to derivthe starting point where detection becomes feasible. For no
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- 08| - 08|
2 9
g 07f g 07|
g o6 S 06|
5 05[ 5 05|
g s - »- CDR, FAR= 10~* B o4 ¢ - >~ CDR, FAR= 107"
3 ' —%— CLR, FAR= 10* 3 ' —%— CLR, FAR= 10~*
‘g 0.3 - ®- CDR, FAR= 1072 [] ‘g 0.3 - ®- CDR, FAR= 1073 []
5 02 —e— CLR, FAR= 1073 || S 02 —e—CLR, FAR= 1073 ||
© - 2~ CDR, FAR= 10~2 © - 2~ CDR, FAR= 10~2
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Fig. 3. Correct detection (CDR) and localization (CLR) safer different Fig. 4. Correct detection (CDR) and localization (CLR) safer different
levels of false alarm rates (FAR) and different values:pfor nodel0 failure  levels of false alarm rates (FAR) and different valuesnpffor worst case
in the sensor network of Figuké 2. The minimal theoretiedbr observability node failure in al00-node sensor network. The minimal theoretiealfor

isn = 8. observability isn = 85.
1
too largen, while detection rates increase, we observe that 09l - |
localization capabilities are still unsatisfying. Thisnginly £ /,
due to the inappropriate fit of the large dimensional model s 081 y 2 |
with N = 10 and with the eigenvectors corresponding to 8 0.7} / -
N . N
the extreme eigenvalues af>* being too loosely correlated T o6l . |
to their associated population eigenvectors. Larger glue 8 4
. . . . c y
of n show much better performance with miss localization & 05| y -
probability going to zero as — oo. In particular, about % 04| J - ®- CDR, FAR= T
five times the ration/N is required for localization to be = . 7 ®— CLR FAR=10 .
.. . . . . | / - —_— = — - |
very efficient. In this case, the large dimensional model for @ v 77 CLR2, FAR= 10
) X : : 5 o2l /g -2~ CDR, FAR= 1072
the fluctuations of the eigenvalues and eigenvectors is mores : Y.
7 4 —-— CLR, FAR= 102
adapted. 0.14° ]
. . 1~ ->--CLR-2, FAR= 1072
The same conditions are simulated for a system With= = | | | | : : : :
100 nodes in which each node has eight neighbors and with 40 60 80 100 120 140 160 180 200
correlation values of the same order of magnitude as in Eigur n

[2. The detectability threshold faW/n is here0.85 and we
still consider the worst case failure scenario. This is dﬂd Fig. 5. Correct detection (CDR) and localization rates fiffecent levels
] . ] of false alarm rates (FAR) and different values f for sudden change
In Flgure@,, where _One can see that smaller ran& unde_r of parameter10 in the Scenario of Sectiofi I[iB. Comparison is made
the threshold than in the cagé = 10 are demanded for high between localization assuming, known (CLR) and localization assuming
detectability and localization ability to appear. B, unknown (CLR2). The minimal theoreticah for observability isn = 22.

2) Sudden unknown parameter changdge:this section, we

consider the parameter change scenario of Sefion II-B. We . . .
still consider E[)he network of ?:igur’é] 2 and = —20 dB éctio 1V-C performs only slightly worse than the alganith

as above. We now consider a sudden change of param&%?ecno'm for largen, a_nd 'ghat it even performs_ better for
8(10) with B1o — 2, being the worst case scenario for failurgmalln. This last observation is explained by the inadequacy

identification if 8, = 2 for all k. We depict the performance of.mc the theoretical value of;; for too small values ofn. It

the failure detection and localization algorithms and carep Is therefore |n§erest|ng to see that, for pra_ct|cal p“rp"““?
the settings wherg;, is known or unknown in advance to theabsence of prior knowledge on th.e_amplltude of the faﬂgre
experimenter. In the former scenario, we apply the loctitina does_ not severely reduce the efficiency of the localization
algorithm of Sectio IV-B based on the joint fluctuations O?Igonthm.

the extreme eigenvalues and eigenspace projections, while

the latter, we apply the localization algorithm of Sec{ihd V. CONCLUSION

where a prior step of eigenvalue inference is performedreefo In this article, a characterization of the joint fluctuasonf

the study of the fluctuations of the eigenspace projectiohs. the extreme eigenvalues and corresponding eigenspa@eproj
results are presented in Figure 5. tions of a certain class of random matrices is provided. This

It appears from FigurE]5 that the suboptimal algorithm afharacterization was used to perform fast and computdljona
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reasonable detection and localization of multiple faiduie Guided by this observation, we write

large sensor networks through a general hypothesis testing

framework. The main practical outcomes of this article listfi 1, , —

in a characterization of the minimum number of observations
necessary to ensure failure detectability in large nete/arkd
second in the design of flexible but simple algorithms that ca
be adapted to multiple types of failure scenarios condisten
with the small rank perturbation random matrix model. We
also extend the detection and diagnosis approach to sosnari
where the amplitudes of the hypothetical failures are not a
priori known. Practical simulations suggest that the psmub
algorithms allow for high failure detection and localizamti
performance even for networks of small sizes, although for
those much more observations than theoretically predited

-/ o e

JF

2m

(Ai(2) H(z) M Aa(2)

—Al(z)*H(z)_lAg(z)) dz (a.s.,n large

71

— A1(2)")H(2) ' Ay(2) dz
)" (Az(2) — Aa(2)) dz

2) T E(2)H (2) "t Ay (2) dz

\/_
T om
JE
2—

ARG
w f A

in general demanded.

APPENDIXA
PROOFS OF RESULTS OSECTION[II]

A. Proof of Lemm&l2

We shall assume without loss of generality that 1. In
Section 1[l-B2, we saw that

-~

Ay (z)*H

Ul*ﬁlUl = — (Z)_lzzl\g(z)dz

™ 71

with probability one, where
Ay (2)* = 2Uf(In + P)"2Q(2)U

= WUTQ(Z)U

and

= QI + Q)UQ(2)(Iy + P)"2 Uy
= (14 w) Y20, + Q) U Q(2)Uy

Az(2)

(take b, andb, as any two columns of/; in (8)). Similarly,

ar, = %yf Ay(2)" H(2) " Ao (2)d=
Y1

where

Ay (2)* = zm(2)Us (I + P)"Y2U
zm(z) ‘
= Trw 0
Ag(z) = m(2)QUI +Q)~'U*(I + P)~ Y20,
_wim(z) [
S (T+w)32 0]
Fixing z € 1, we have

H(z)™' = H(z)™' = H(z) ' E(2)H(2) 7" + O(| B(2)|*)

=Zl+Z2+Z3+E

whereé contains all the higher order terms that appear when
we develop the integrand at the right hand side of the first
equality.

In what follows, we successively study each of the terms
at the right hand side of this equation. Recallibh (9), thente
Z1 writes

VN

5= m(2) UF(Q(z) — m(2))Us

2 Ut wn) (L wn)fwr +2m(z)

The denominator has one simple zerdlir (v ). With prob-

ability one, the numerator has no zero Int(y;). Using
the residue theorem and the identity + w;)~! = (1 +
h(p1))/h(p1), we obtain
1+ h(p1)
Zl - h/(pl) \/_Ul( ( ) m(pl)I)Ul
Similarly, the termZ, writes
1+h
Zy =21 =— L+ hip1) VNUT(Q(p1) — m(p1) U1
CW(p1)
Turning to Z3, we have
7o~ YN [ _ml=)’ Ui Q) —m(z))Uh
271 Joy (14 w1) (1 + wi)/wr + 2m(2))”

which shows that we have a pole with degee@ Int(vq).
Write the integrand a&/(z)/g(z) and recall that the residue of
a meromorphic functiorf(z) associated with a degr@epole
at zo is lim.—,., d ((z — 20)%f(2)) /dz. After some simple
calculations, this results in

g = Glp)g"(p1)  G'p1)
2T g (m)3 7 (p1)?
_ 1+h(p1) (h(p)h"(p1)
= W) ( W (or)? 2)

x VNU; (Q(p1) — m(p1)I)Uy

h{p)(1 + h(p1)) “(0y
W (p1)? \/NUl (Q"(p1)
We now show briefly that the last terfhin the expression
of V1, converges to zero in probability. A more detailed
argument is given in_[29]. Recall th&t accounts for all the
higher order terms that show up when we expand the integrand

- m'(pl)I)Ul.



14

A H 'A, — A,H-'A,. Let us focus on one of these termsand

namely
N
N ey
71

2m
X (ﬁ(z)_l —H(z) '+ H(z)_lE(z)H(z)_l) Ay (z)dz

and show that it converges in probability to zero. The other

terms can be treated similarly. First, we can show that
|H(z)"" = H(z)™' + H(z) ' E(2)H(2) || < K[| B(2)|]?
on~; where K is some constant. Now we write
E(2) = 2Q(I, + Q)7'U*(Q(2) — a(2))U

+2(a(z) = m(2)QIL + Q)
= F1(2) + Ea(2).

Noticing thatA, (z) and Az (z) are bounded ony, and writing

z = p1 + Rexp(2urd) on ~, the result is shown if we show

that

1
VR [1B o+ R S0 o)
0
for i = 1,2. Lemmall shows thaE| E;(z)||> < K’/n on
~v1 where the constank” is independent ot. By Markov's
inequality, [I9) is true fori = 1. Convergence for = 2
is obtained from AssumptiorA4 in conjunction with the
analyticity of a(z) — m(z), as shown in[[29].

Taking the sum?; + Z5 + Z3, we obtain the desired result.

B. Proof of Lemm&l3
Set: = 1 and write

1|8
UL +60) 1_{13 BJ.

Lety, = p1 +x/vVN. Write U = [Ul 171] and

ﬁ(y ): Ijl +BlgnUfQ(yn)Ul ﬁlynUfQAgyn)ﬁl _
ynBlUfQ(yn)Ul IT*jl + ynBlUfQ(yn)Ul

— ‘IE:Ill —5[12

Hj  Haz

Let us study
N# det H (y,) = det(Ha) det(VNHy, — VNHyHy! Hay).
By Lemmald,
R (1= B2/P1)1j,
Hayp =%
(1 - /Bt/ﬂl)ljt

hence

det ﬁgg £> H(l — ﬂ[/ﬂl)j[.

£>1

By the same lemma,

E [\/Nla(XX*)E[a—s,b-i—a]||ﬁ12|‘2:| < K/\/N

E | Lo(xx-)efa—epre) | Ha1ll| < K'/VN
where K and K’ are some constants, hence
det(VNHyy — VN H1oHyy Hoy) — det(VNHyy ) — 0.
Let us study this last term. We write
VNHi1 = VNB1yaU; (Q(yn) — a(yn) In)Us

+ VNB1(yna(yn) — pra(pr)) 1),

+VNBi(pralpr) — prm(pr))L;
=71+ 24y + Zs.

Writing
Qyn) — Qp1) = Qyn)(Q(p1) ™" = Qyn) " Q(p1)
= N""22Q(yn)Q(p)
we have
Z1 — VNB1yn Ut (Q(p1) — alp1) ) Uy
= 21ya U7 (Q(yn)Q(p1) — N7 (tr Q(y)Q(p1)))U:
)
by Lemmal. FromA4, we further have
Zy — VNBip U3 (Q(p1) — m(py) 1)Uy — 0.
Turning to the second term, we can show usigthat

yna(yn) B PlOé(Pl) a.s.

25
Again by A4, Zs; 2 0. This results in

Nj1/2 det f’:’(pl + x/\/ﬁ) — (H(l - Bé/ﬁl)je)

£>1
x det (VNBip1UF (Q(p1) = mlp) UL + Byah! () )

o

Zo = Bz Braz(prm(p1))’.

The same argument far> 1 leads to the result.

C. Proof of Lemmé&l4

Recall thatX X* admits the spectral factorizatioki X *
WAW™* whereW and A = diag(\,...,A\y) are indepen-
dent, and wheré&V’ is Haar distributed on the group of x N
unitary matrices.

From Assumptiord4 and the analyticity off;, we can show
as in [34] that

N
1
VN (N 3 Ai0w) - / ﬁ(A)dw(A)) =0
hence the lemma is shown if we show the result on
t
U fi(XXU; — (£ S0, fiw)) I,
ﬁn: \/N 1f( ) ];/Z/Jq\;lf(k) J .
Ul gi(XX*)U; — ~ > ohe1 9i(Ak) ) 1, i

Let Z be aN x r random matrix with independe@N(0, 1)
elements, chosen independently /of Write Z = [Z; ... Z;]




where the blocks’, have the same dimensions asthe Then [2]

S,, is equal in distribution to
3
\/NX [3]
37 b
(2;2:)7'2Z;  fi(A) — #Iji Zi(ZrZ;)1/?
@222 (a8 - =L 2222

=1 [
]

(7]

By the law of large numbersy—*Z: Z; == I;,, hence it will
be enough to show the result on

_ _qu* (fi(A) = N~Ltr fi(A) Jl) Dt
"TUN\LZ (00 - N g (N) 2 ) "
t
_ XN: fiw) = =) (e - (0]
(/\ ) tr(]]%\](A) Zi kzzk .71 i—1
o
where we have writterZ? = [z;1...2; n]. Write ¢;, =

filk) = N71tr f;(A) and d;x = gi(M\) — N~ 1trgz(A)
Up to an element rearrangemest, can be rewritten as the 11
R2(i++3?)-valued vector

mxlbeell, @

where for everyi =1, ...,¢, the N vectorsy; ;, are valued in
. We shall show that th|s sum converges in law to a Ga

sian R20Ui++5)-valued random vector whose covarianc
matrix is equal to the covariance matrix ¢f [12) rearranged
similarly to S,,.

We observe that the summands[ofl(20) are centered and arl,\
independent conditionally td. Observe also that for every
k, vectors(v; )!_, are independent and that the elements &
each of these vectors are decorrelated. BaseA2and A3,
we have

1

[13]

4]

[17]

1 & Ci
_ E i i,k
N; e [d

,Hﬁ_l oo B 1)
|

which coincides with the covariance matrix 6f(12) after th&1l
rearrangement.

Furthermore, thanks tcA3,
Lyapunov condition

it is easy to see that the[22]
1 N c
_ ik
e 208 [ [

I

t
Ci ki k

[19]
d),

2% diag (I, ®R)

i=1

i=1 [20]

2427
A

[23]
2%
[24]

is valid for anyn > 0, hence[(2D) satisfies the conditions of
the central limit theorem, which proves the lemma. [25]

[26]
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