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LINEAR ALGEBRA AND BOOTSTRAP PERCOLATION

JÓZSEF BALOGH, BÉLA BOLLOBÁS, ROBERT MORRIS, AND OLIVER RIORDAN

Abstract. In H-bootstrap percolation, a set A ⊂ [n] of initially ‘infected’ vertices
spreads by infecting vertices which are the only uninfected vertex in an edge of the
hypergraph H ⊂ P(n). A particular case of this is the H-bootstrap process, in
which H encodes copies of H in a graph G. We find the minimum size of a set A
that leads to complete infection when G is a power of a complete graph and H is
a hypercube. The proof uses linear algebra, a technique that is new in bootstrap
percolation, although standard in the study of weakly saturated graphs, which are
equivalent to (edge) H-bootstrap percolation on a complete graph.

1. Introduction

Given a hypergraph H ⊂ P(n), the H-bootstrap process is defined as follows. Let
A ⊂ V (H) be a set of initially ‘infected’ vertices, and, at each time step, infect a
vertex u if it lies in an edge of H in which all vertices other than u are already
infected. To be precise, set A0 = A, and, for each t > 0, set

At+1 := At ∪
{

u : ∃S ∈ H with S \ At = {u}
}

.

Let [A]H =
⋃

tAt, and say that A percolates (or H-percolates) if [A]H = V (H).
A large family of models of this type was introduced in [9]. Given graphs G and H ,

we obtain the H-bootstrap process on G by setting H = {V (H ′) : H ′ ⊂ G and H ′ ∼=
H}. The H- and H-bootstrap processes can be seen as special cases of the ‘cellular
automata’ introduced by von Neumann (see [16]) after a suggestion of Ulam [17], and
generalize several previously studied models. For example, if G is a (finite) square
grid and H = C4, then we obtain the so-called ‘Froböse process’ (see [12] or [13]).

A fundamental question about bootstrap-type models is the following: given a
hypergraph H (or a pair (G,H)), how large is the smallest percolating set in the
H-bootstrap process? We define

m(H) := min
{

|A| : A ⊂ V (H), [A]H = V (H)
}

.

Fix 2 6 r 6 d, let Kd
n denote the graph with vertex set [n]d = {0, . . . , n − 1}d in

which uv is an edge if u and v differ in exactly one coordinate. Set

K(n, d, t, r) :=
{

S ⊂ [n]d : Kd
n[S] = Kr

t

}

,
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that is, the collection of induced copies of Kr
t in Kd

n. Note that Kr
2 = Qr, the

r-dimensional hypercube.
Our main aim is to determine m

(

K(n, d, 2, r)
)

precisely for every n ∈ N and every

d > r > 2. We shall also consider the grid P d
n with vertex set [n]d, in which two

vertices are adjacent if they differ by 1 in one coordinate, and agree in all others.
(This graph is usually denoted [n]d, but here this notation would cause confusion.)
The corresponding hypergraph is

P(n, d, t, r) :=
{

S ⊂ [n]d : P d
n [S] = P r

t

}

.

Note that P(n, d, t, r) ⊂ K(n, d, t, r). The following result is our main theorem.

Theorem 1. For every n > 2 and d > r > 2, we have

m
(

K(n, d, 2, r)
)

= m
(

P(n, d, 2, r)
)

=

r−1
∑

t=0

(

d

t

)

(

n− 1
)t
.

We remark that the sum in the theorem is simply the number of vectors in [n]d

having at most r − 1 non-zero coordinates.
We shall also prove the following generalization of the case r = d of Theorem 1.

Theorem 2. For every n > t > 2 and d > 2 we have

m
(

K(n, d, t, d)
)

= m
(

P(n, d, t, d)
)

= nd −
(

n+ 1− t
)d
.

Note that the formula above is simply the number of vectors in [n]d in which at
least one coordinate takes one of the values {0, 1, 2, . . . , t− 2}.

The first extremal result related to bootstrap percolation was proved by Bol-
lobás [8], and phrased in the language of ‘weakly saturated graphs’. This is the
natural edge version of the H-bootstrap percolation we have just defined (infect an
edge if it is the last uninfected edge of a copy of H), with G complete. The main aim
of [8] was to pose a conjecture concerning the extremal number when H = Kk and
G = Kn. This conjecture was proved by Alon [1], Frankl [11] and Kalai [15], using
linear algebraic methods. We shall use the main lemma of [1] to prove Theorem 2.

The H-bootstrap process is named after a closely related model, known as r-
neighbour bootstrap percolation, which was introduced in 1979 by Chalupa, Leath
and Reich [10] as a model of disordered magnetic systems. In this process, a vertex of
a graph G becomes infected when it has at least r infected neighbours; we remark that
this is similar to H-bootstrap percolation with H a star, except that a given copy of
H can only be responsible for infecting its central vertex. The r-neighbour bootstrap
process has been extensively studied by mathematicians and statistical physicists
(see [2, 6, 14], for example, and the references therein). For further background see
Bollobás [9].

In r-neighbour bootstrap percolation, one is mainly interested in estimating the
critical threshold in the random setting: if the initially infected set A is formed by
selecting vertices independently with probability p, for which p is it likely that even-
tually all vertices are infected? In the study of this probabilistic question, extremal
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results turn out to be important (see [4] or [13], for example). One of our main mo-
tivations in this work is to approach the following tantalizing open problem, which is
our main stumbling block in attacking the probabilistic question on the hypercube.
Let m(G, r) denote the minimum size of a percolating set in r-neighbour bootstrap
percolation on G. In [3], Balogh and Bollobás made the following conjecture.

Conjecture 1. Let r > 3 be fixed. Then

m(Qd, r) =

(

1

r
+ o(1)

)(

d

r − 1

)

as d → ∞.

The upper bound in Conjecture 1 follows by taking a Steiner system at level r,
together with all of level r − 2. Amazingly, we know of no super-linear lower bound.
In the case r = 2 the situation is simpler, and m(P d

n , 2) is known exactly for all n
and d (see [3] or [4]). At the other end of the range, Pete (see [7]) observed that
m(P d

n , d) = nd−1. However, for fixed 2 < r < d, m(P d
n , r) is known only up to a

constant factor that depends on d.
Finally, we remark that the random questions are also interesting in theH-bootstrap

model, and that some of the basic problems (in the ‘edge version’) are solved in [5]
by the first three authors. As the reader might guess, however, there are still many
more open problems than theorems.

The rest of this note is arranged as follows. In Section 2 we prove Theorem 1, and
in Section 3 we prove Theorem 2.

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following observation.

Lemma 3. Let H be an arbitrary hypergraph. Suppose that we can find a vector

space W spanned by vectors {fv : v ∈ V (H)} such that, for every edge S ∈ H, the set

{fu : u ∈ S} is linearly dependent. Then

m(H) > dimW.

Proof. Once one thinks of the statement, the proof is essentially immediate. Indeed,
suppose that A ⊂ V (H) percolates in the H-process. Then we can order the vertices
v1, . . . , vr in V (H) \ A so that each vi is in an edge of H in Ai = A ∪ {vj : j 6 i}.
Let Wi be the span of the vectors {fv : v ∈ Ai}. The dependency condition implies
that vi ∈ Wi−1, so Wi = Wi−1 and hence W0 = Wr. By assumption, Ar = V (H), so
Wr = W . Since W0 is spanned by |A| vectors, we have |A| > dimW . �

To prove Theorem 1, we must find the right vectors.

Proof of Theorem 1. Fix n ∈ N and d > r > 2, and set K = K(n, d, 2, r) and P =
P(n, d, 2, r). Given v ∈ [n]d, let σ(v) denote the number of non-zero coordinates of v,
and let L6t = {v : σ(v) 6 t} be the union of the first t + 1 ‘layers’ of Kd

n. Note that
Theorem 1 asserts exactly that m(K) = m(P) = |L6r−1|.
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Suppose that the set of initially infected vertices is exactly L6r−1. Then every
vertex v is eventually infected in the P-process. Indeed, writing |v| for the sum of
the coordinates of v, for v /∈ L6r−1 we can use any r non-zero coordinates of v to
construct a copy H of Qr in P d

n with v as the ‘top’ vertex, i.e., with |u| < |v| for all
other vertices u of H . It follows by induction on |v| that all v are infected eventually.
Hence, since P ⊂ K,

m(K) 6 m(P) 6 |L6r−1|. (1)

For the lower bound let W be a (real) vector space with basis {ev : v ∈ L6r−1},
so dimW = |L6r−1|. For v ∈ [n]d and T ⊂ {1, 2, . . . , d} with |T | = r − 1, let vT
be the vector (u1, . . . , ud) with ui = vi if i ∈ T and ui = 0 otherwise. Thus vT is
the ‘downwards’ projection of v onto a certain (r − 1)-dimensional face of [n]d, and
vT ∈ L6r−1.

For each v ∈ [n]d, define a vector fv by

fv :=
∑

|T |=r−1

evT ∈ W, (2)

where the sum is over all T ⊂ {1, 2, . . . , d} with |T | = r − 1.
The vectors {fv : v ∈ L6r−1} and the ev are related in a ‘triangular’ way: if

σ(v) = t 6 r − 1, then the
(

d−t

r−1−t

)

> 0 terms in which T contains all of the non-zero
coordinates of v each contribute ev to the sum in (2), while all other terms are of the
form ew with σ(w) < σ(v). Writing span(·) for the linear span of a set of vectors, it
follows by induction on t that

span({fv : v ∈ L6t}) = span({ev : v ∈ L6t})

for t = 0, 1, . . . , r − 1. In particular, the vectors {fv : v ∈ L6t−1} span W .
Let d(u, v) denote the Hamming distance between u and v (i.e., the number of

coordinates in which they differ). If S ∈ K and u ∈ S, then we claim that
∑

v∈S

(−1)d(u,v)fv = 0. (3)

To see this, recall that Kd
n[S] is a copy H of Qr, and let T ⊂ [d] with |T | = r − 1.

Then at least one edge of H involves changing a coordinate i /∈ T . Group the vertices
of H into pairs {v, v′} differing only in the ith coordinate. Then d(v, v′) = 1 and
vT = v′T , and it follows that

∑

v∈T

(−1)d(u,v)evT = 0.

Summing over T gives (3). Lemma 3 now implies that m(K) > dimW = |L6r−1|.
Together with (1) this completes the proof of the theorem. �

Let us remark that the special case d = r = 2 of Theorem 1 can be proved much
more simply. Recall that K(n, 2, 2, 2) and P(n, 2, 2, 2) encode the induced copies of
C4 in Kd

n and P d
n respectively.
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Proposition 4. m
(

K(n, 2, 2, 2)
)

= m
(

P(n, 2, 2, 2)
)

= 2n− 1.

The second equality, giving the minimum size of a percolating set in the Froböse
model, is well known (see [13] for example).

Proof. Let n > 2, and set K = K(n, 2, 2, 2) and P = P(n, 2, 2, 2). The set {(x, y) :
min{x, y} = 0} P-percolates, and P ⊂ K. Thus m(K) 6 m(P) 6 2n− 1.

Suppose that A ⊂ [n]2 K-percolates. Associate to each vertex (x, y) ∈ [n]2 an edge
of the complete bipartite graph Kn,n in the obvious way, and note that K-percolation
is equivalent to C4-edge percolation in Kn,n. (This is because the line graph of C4

is also C4.) If the edges corresponding to A edge-percolate in Kn,n, then they must
form a connected subgraph of Kn,n. So |A| > 2n− 1, and hence m(K) > 2n− 1. �

3. Proof of Theorem 2

In this section we shall prove Theorem 2 using of the following result of Alon [1],
which was proved using methods from exterior algebra.

Theorem 5. Let d ∈ N, let r1, . . . , rd ∈ N and s1, . . . , sd ∈ N, and let X1, . . . , Xd be

disjoint sets. Suppose there exist sets Aij ⊂ Xi and Bij ⊂ Xi for each 1 6 i 6 d and

1 6 j 6 h, with |Aij| 6 ri and |Bij | 6 si, such that

(a)
(

⋃

iAij

)

∩
(

⋃

i Bij

)

= ∅ for 1 6 j 6 h.

(b)
(

⋃

iAij

)

∩
(

⋃

i Biℓ

)

6= ∅ for 1 6 j < ℓ 6 h.

Then

h 6

d
∏

i=1

(

ri + si
ri

)

.

Proof of Theorem 2. Fix n > t > 2 and d > 2, and set K = K(n, d, t, d) and P =
P(n, d, t, d). For v ∈ [n]d and t ∈ N, let σt−1(v) denote the number of co-ordinates of
v which are at least t− 1.

For the upper bound, let A =
{

v ∈ [n]d : σt−1(v) < d
}

, and note that |A| =

nd − (n + 1 − t)d. Let A ⊂ B ( [n]d, and let v ∈ [n]d \ B be chosen in order to
minimize |v|. Then the (induced) copy Hv of P

d
t with co-ordinates {vj − t+1, . . . , vj}

in direction j is contained in B ∪ {v}, and so v lies in the closure of B under the
P-process. It follows that A percolates under the P-process, and so, since P ⊂ K,

m(K) 6 m(P) 6 nd − (n+ 1− t)d. (4)

For the lower bound, let A ⊂ [n]d, and suppose that A K-percolates. Then there is
at least one ordering v(1), . . . , v(h) of the h = nd−|A| vertices outside A such that, for
every 1 6 j 6 h, there exists a copy Hj of K

d
t in Kd

n[A∪{v(1), . . . , v(j)}] with v(j) ∈
Hj. (This is simply the order in which the vertices are infected, which is not uniquely
defined.) Let X1, . . . , Xd be disjoint sets of size n, and let Xi = {ui1, . . . , uin}.

For 1 6 i 6 d and 1 6 j 6 h, the ith coordinates of the vertices of Hj take exactly
t distinct values. Let Aij be the set of all uik where k is not one of these values, so
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Aij ⊂ Xi and |Aij | = n − t. Let Bij = {uik} where k is the ith coordinate of v(j).
Since v(j) is a vertex of Hj , we see that uik /∈ Aij , so for all i and j the sets Aij and
Bij are disjoint.

We claim that the conditions of Theorem 5 are satisfied by the Aij and Bij, with
ri = n− t and si = 1 for all i. We have already verified all conditions apart from (b),
so suppose that 1 6 j < ℓ 6 h. Then by the definition of our order, v(ℓ) /∈ Hj. In
other words, there is some coordinate i such that v(ℓ)i is not one of the values of the
ith coordinate taken by Hj . Equivalently, there is some i such that Biℓ ⊂ Aij, giving
Aij ∩Biℓ 6= ∅, as required.

Theorem 5 now gives

nd − |A| = h 6
(

n+ 1− t
)d
,

so |A| > nd − (n+ 1− t)d, completing the proof. �
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