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Abstract

We establish the existence of global weak solutions of the 2D incompressible Euler equation,
for a large class of non-smooth open sets.  These open sets are the complements (in a simply
connected domain) of a finite number of connected compact sets with positive capacity. Existence
of weak solutions with LP vorticity is deduced from an approximation argument, that relates to
the so-called I'-convergence of domains. Our results complete those obtained for convex domains
in [15], or for domains with asymptotically small holes [4 [I1]. Connection is made to the recent
papers [0l [7] on the Euler equation in the exterior of a Jordan arc.

1 Introduction

Our concern in this paper is the existence theory for the 2D incompressible Euler flow: for {2 an open
subset of R?, we consider the equations

{(9tu+u-Vu+Vp:0, t>0,z€0 (1.1)

divu=0, t>0,zeQ
endowed with an initial condition and an impermeability condition at the boundary 9€:
uli—o = u®,  u-nlaq = 0. (1.2)

As usual, u(t,z) = (uq(t,x1,x2),u2(t,z1,22)) and p = p(t,x1,x2) denote the velocity and pressure
fields, and the vorticity
curlu := Ojus — Oouy

plays a crucial role in their dynamics.

The well-posedness of system ([I)-(L2]) has been of course the matter of many works, starting
from the seminal paper of Wolibner on smooth data [I6]. In the case where the vorticity is only
assumed to be bounded, existence and uniqueness of a weak solution was established by Yudovich in
[I7]. We quote that the well-posedness result of Yudovich applies to smooth bounded domains, and to
unbounded ones under further decay assumptions. As regards smooth exterior domains, one can also
mention the articles of Kikuchi [5]. Since the work of Yudovich, the theory of weak solutions has been
considerably improved, accounting for vorticities that are only in L' N LP, or that are positive Radon
measures: we refer to the textbook [12] for extensive discussion and bibliography.

A common point in all above studies is that 9 is at least C1''. Roughly, the reason is the following:
due to the non-local character of the Euler equation, these works rely on global in space estimates of u in
terms of curl u. These estimates up to the boundary involve Biot and Savart type kernels, corresponding
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to operators such as VA~!. Unfortunately, such operators are known to behave badly in general non-
smooth domains. This explains why well-posedness results are dedicated to regular domains, with a
few exceptions.

Among those exceptions, one can mention the work [I5] of M. Taylor related to convex domains (2.
Indeed, it is well known that if 2 is convex, the solution v of the Dirichlet problem

Av=fin Q, vlsgg=0

belongs to H?(£2) when the source term f belongs to L?(Q2), no matter the regularity of the domain.
Pondering on this remark, Taylor was able to prove in [I5] the existence of global weak solutions in
bounded convex domains. Nevertheless, this interesting result still leaves aside many situations of
practical interest, notably flows around irregular obstacles.

This kind of situations has been partly studied in several recent papers, notably by the second
author: [6, [7]. Put together, these papers provide an asymptotic analysis of the Euler flow around
smooth obstacles, when these obstacles shrink to points (see [4, [I1]) or to Jordan arcs (see [6] [7]). In
all cases, a modified Euler flow in the whole plane is obtained at the limit: it is governed by the usual
transport equation of vorticity, but the Biot and Savart law includes an additional singular measure,
supported by the points or the arcs. We will provide more details on such results in due course. Let
us point out that they yield the existence of Yudovich like solutions of the Euler equation in some
singular domains, that is in the complement of lower dimensional smooth objects. Let us also stress
that theses results rely on various analytic techniques, notably conformal mapping. Our goal here is
to establish in a simpler way the existence of weak solutions for a large class of singular domains.

The first part of the paper is devoted to a large class of bounded open sets 2. We just assume that
Q) has a finite number of holes and that these holes have a positive capacity. They can be written as

Q=0 (uj;lci), keN (1.3)

with the following assumptions

(H1) (connectedness) i) is a bounded simply connected domain, C,...,C* are disjoint connected
compact subsets of €.

(H2) (capacity) For all i = 1..k, cap(C’) > 0, where cap denotes the Sobolev H'! capacity.

Reminders on the notion of capacity are provided in Section Pl In particular, our assumptions allow
to handle flows around obstacles of positive Lebesgue measure, as well as flows around Jordan arcs or
curves. They do not cover the case of point obstacles, which have zero capacity. Let us insist that no
regularity is assumed on 2: exotic geometries, such as the Koch snowflake, can be considered.

Within this setting, it is possible to establish the existence of global weak solutions of the Euler
equation with LP vorticity. More precisely, we consider initial data satisfying

u’ € L2(Q), curlu® € LP(Q), divu® =0, u’-n|gq =0, (1.4)

for some p €]1,00]. Note that, due to the irregularity of Q, the condition u® - n|sg = 0 has to be
understood in a weak sense: for any ¢ € C1(R?),

/uO-Vgpz—/divuogozo. (1.5)
Q Q

Let us stress that this set of initial data is large: we will show later that for any function w® € LP(£2),

there exists u® verifying (I4) and curlu® = w°.



Similarly to (LH), the weak form of the divergence free and tangency conditions on the Euler
solution u will read:

Vi € D ([0, +00); CL(R2) /W/Qu-w:o. (1.6)

Finally, the weak form of the momentum equation on v will read:

for all ¢ € D ([0, +00[x) with div ¢ = 0, / / (u-Op+ (u®u): Vo) = / u’ - (0,-). (1.7)
0 Q Q

Our first main theorem is

Theorem 1. Assume that Q is of type (L3), with (H1)-(H2). Let p € (1,00] and u® as in (L4). Then
there exists
u € L®RT;L3(Q)), with curlu € L®(RT; LP(Q))

which is a global weak solution of (LI))-(L2) in the sense of (L) and (LT).

In a few words, our existence theorem will follow from a compactness argument, performed on
smooth solutions u,, of the Euler equation in smooth approximate domains €2,. By approzimate, we
mean close to 2 in the Hausdorff topology. These approximate domains, to be built in Section 2], read

Qn = Qp \ (Uf=10_%>

for some smooth Jordan domains €2, and O!. A keypoint is the so-called T-convergence of €, to €.
All necessary prerequisites on Hausdorff or I'-convergence will be given in Section B2l The compactness
argument will be given in Section 3] (p = co) and Section [ (finite p).

The analysis of the first part at hand, we then turn to a class of exterior domains 2. We assume
that  is the exterior of a bounded hole with positive capacity. It reads

Q= R*\C (1.8)
with
(H1’) (connectedness) C is a connected compact set.

(H2’) (capacity) cap(C) > 0.

Let us point out that to work with square integrable velocities in exterior domains is too restrictive.
Therefore, we relax the condition (L4 on the initial data into

e I (), u’ —0as || = +oo, curlu’ € LP(Q), divu’ =0, u’-nlgg=0. (1.9)
We make the additional assumption that

curlu? is supported in a compact subset of R? (1.10)

We prove in Sections @l and [l the following result:

Theorem 2. Assume that Q is of type (LX), with (H1’)-(H2’). Let p € (2,00] and u® satisfying
(LA)-(CI0). Then, there exists

we LS (RY; L .(Q)), with curlu € L®(RT; L' N LP(Q))

which is a global weak solution of (LI))-(L2) in the sense of (L6l and ([IT).



Again, the weak solution u is obtained from the compactness of a sequence of smooth solutions u,
in the approximate domains €, := R2?\ O,. Our theorem improves the result in [6] [7] in two ways.
First, we treat more shapes than just C? Jordan arcs. Second, the convergence of €, to €2 is expressed
through the Hausdorff distance, which is more general and simple than the conditions in [7]. Therein,
one needs stringent convergence properties of the biholomorphisms that map ,, to the set {|z| > 1}.
In particular, to obtain the uniform convergence of the first derivatives requires the convergence of the
tangent angles of 0,,. We refer to [7] for detailed statements.

We point out that the limit dynamics in Theorem ] is expressed differently than in [6]. Indeed, in
this article, extensions u,, of u,, to the whole plane are considered, resulting in a modified Euler system
in the whole plane at the limit. This system is expressed in vorticity form, and reads

dw+u-Vw=0, w:=curlu — gydc, t>0, zecR? (1.11)

with an additional Dirac mass along the curve. The equivalence between ([LII]) and the standard
formulation (7)) of our theorem will be discussed in Section [@l In particular, it is proved in [6] that
the velocity blows up near the end-points like the inverse of the square root of the distance, which
belongs to L{’OC for p < 4. Here, we will obtain some uniform estimates of the velocity in L12OC (see
(£I2)-(#I6)) which are in agreement with the former estimates.

Our global existence results will be proved through several steps. The special case p = oo will be
treated with full details in Section Bl (Theorem [Il) and Section @ (Theorem ]). The extension to finite
p will be sketched in Section

Let us finally insist that even for Yudovich type solutions (p = oc0), we only deal with global
existence, not uniqueness. The uniqueness problem in singular domains is a hard issue, that has been
so far only resolved in special cases: see [§].

2 Reminders

This section collects some geometric material needed for the rest of our study. The first paragraph
gives some basic knowledge of Hausdorff convergence. In the second paragraph, given some domain )
satisfying (3] and (H1), or (L)) and (H1’), we construct a “nice” sequence of open sets (£2,) that
converges to ) in the Hausdorff sense. Later on, we will use compactness properties for solutions of
the Euler equations in these approximate domains €2,. In the third paragraph, we remind some basic
facts about the Sobolev capacity, to be used later on with assumptions (H2) or (H2’). The notion of
I’-convergence of open sets, which plays a crucial role in the proof of our theorems, is discussed in the
fourth paragraph. Finally, we discuss the so-called kernel convergence of Caratheodory, to be used in
our treatment of exterior domains. Most of the material in this section is taken from the books [3], [13],
where the reader can find more details and proofs.

2.1 Hausdorff distance

We first introduce the Hausdorff distance for compact sets. Let K the set of all non-empty compact
sets of RN, N > 1. For K, Ky € K, we define

dp (K1, Ks) = max (p(K1, K2), p(K2, K1), p(K,K') := SUII;d(SE,K/)-
re

It is an easy exercise to show that dj defines a distance on K. Sequences that converge with respect
to this distance are said to converge in the Hausdorff sense. One has the following basic properties

Proposition 1. 1. A decreasing sequence of non-empty compact sets converges in the Hausdorff
sense to its intersection.



2. An increasing sequence of non-empty compact sets converges in the Hausdorff sense to the closure
of its union.

3. Inclusion is stable for convergence in the Hausdorff sense.

4. The Hausdorff convergence preserves connectedness. More generally, if (K )nen converges to K,
and K, has at most p connected components, K has at most p connected components.

A remarkable feature of the Hausdorff topology is given by the following

Proposition 2. Any bounded sequence of (IC,dr) has a convergent subsequence.

From the Hausdorff topology on I, one can define a Hausdorff topology on confined open sets, that
is on all open sets included in some big given compact. Thus, let B some compact domain in RY,
N > 1, and Op the set of all open sets included in B. The Hausdorff distance on Op is defined by:

dH(Ql,QQ) = dH(B\Ql,B\QQ)

the r.h.s refering to the Hausdorff distance for compact sets. Let us note that this distance does not
really depend on B: that is, for B C B’ two compact sets, and 1, Q5 in Op,

d(B'\ 1, B'\ Q) = dp(B\ Q1, B\ Q).

Proposition 3. 1. An increasing sequence of (confined) open sets converges in the Hausdorff sense
to its union.

2. A decreasing sequence of (confined) open sets converges in the Hausdorff sense to the interior of
its intersection.

3. Inclusion is stable for convergence in the Hausdorff sense.
4. Finite intersection is stable for convergence in the Hausdorff sense

5. Let (Q0,) a sequence that converges to ) in the Hausdorff sense. Let x € 0. There exists a
sequence () with x, € 0, that converges to x.

6. Let (2)nen a sequence in Op. There exists an open set Q € Op and a subsequence (S, )ken
that converges to € in the Hausdorff sense

Let us note that the Hausdorff convergence of open sets, contrary to the one of compact sets, does
not preserve connectedness. Let us finally point out the following result, to be used later on:

Proposition 4. If (Q,)nen converges in the Hausdorff sense to Q and K is a compact subset of Q,
then there exists ng such that Q, D K for n > nyg.

2.2 Approximation of domains verifying (H1) or (H1’)

The aim of this paragraph is to construct nice open sets {,,, that approximate in the Hausdorff topology
the open sets 2 described in the introduction. We state

Proposition 5. 1. Let Q of type (L3), satisfying (H1). Then, Q is the Hausdor{f limit of a sequence

Q, = Qn \ (UleO_ﬁb) where Qn and the Oib ’s are smooth Jordan domains, and such that Qn,

resp. O_fl, converges in the Hausdorff sense to Q, resp. CL.



2. Let Q of type ([L8)), satisfying (H1’). Then, Q is the Hausdorff limit of a sequence
Q, = R? \ O,
where Oy, is a smooth Jordan domain, whose closure converges in the Hausdorff sense to C.

Sketch of proof: Let U be a bounded simply connected domain. By the Riemann mapping theorem,
there exists a unique biholomorphism 7 : {|z| < 1} — Q satisfying 77(0) > 0. The sets U,, := T ({|2]| <
1 —1/n}) are smooth Jordan domains, with (U,,), resp. U, converging respectively to U and U. In
particular, applying this argument with U = Q yields the sequence (ﬁn) from the lemma. To conclude
the proof, it remains to show that any connected compact set C can be approximated in the Hausdorff
topology by the closure of a bounded simply connected domain. Clearly, C can be approximated by
the closure of a non-disjoint and finite union of open disks O = UD; (the fact that the union is not
disjoint comes from the connectedness of C). Then, to approximate O by a simply connected domain,
one makes slits in the disks, connecting the gaps left by the disks either to each other or to the outside.
Details are left to the reader. U

Besides the approximate domains €2,,, we need for later purposes to introduce Jordan curves “sep-
arating” the holes C'’s in (IL3]). One must take into account that one compact set C* can enclose some
of the other C7’s. The reader can think of the following example:

Q = B(0,3), C' =8B(0,1), C> = B(0,1/2), C* = 0B((0,2),1/2).

In particular, one cannot find a closed curve enclosing C' and not C?. We define separating curves as
follows. For any closed curve J, let Cyy(J) the unbounded connected component of R? \ J. Let

E; := {j = 1.k, j#1i, ¢’ C (bounded connected components of R? \Cz)} (2.1)

(for the above example, E1 = {2} and Fy = E3 = (). We set

Definition 1. Let J!, ..., J* C Q some disjoint smooth closed curves. J*, ..., J*

if they satisfy : for alli=1...k

are separating curves

e J encloses C', i.e. C' C R%\ Cyuy(J?).
e J' does not enclose C for all j ¢ E;, i.e. CI C Cy(J)),Vj ¢ E;.

2.3 Capacity
Let £E C RY, N > 1. The capacity of E (with respect to the Sobolev space H'(RY)) is defined by
cap(F) = inf{HvH?{l(RN), v >1 a.e. in a neighborhood of E},

with the convention that cap(E) = +oo when the set at the r.h.s. is empty. The capacity is not a
measure, but has similar good properties:

Proposition 6. 1. AC B = cap(A) < cap(B).

2. Let (Kp)nen a decreasing sequence of compact sets, with K = NK,,. Then,
cap(K) = lim cap(K,).

3. Let (Ep)nen an increasing sequence of sets, with E = UE,,. Then,
cap(F) = lim cap(E,).



4. (Strong subadditivity) For all sets A and B, one has

cap(AU B) 4+ cap(AN B) < cap(A) + cap(B).

If D is a bounded open set of RV, one can also define a capacity relatively to D: for E C D,
capp(E) := inf{HVUH%Q(D), v € HY(D), v>1 ae. in a neighborhood of E} ,

with the same convention as before. It is clear from this definition and the Poincaré inequality that
cap(E) < Ccapp(E).

For nice sets E in R, the capacity of E can be thought very roughly as some n — 1 dimensional
Hausdorff measure of its boundary. More precisely:

Proposition 7. 1. For all compact set K included in a bounded open set D,
cap(K) = cap(0K).

2. If E C RN is contained in a manifold of dimension N — 2, then cap(E) = 0.

3. If E C RN contains a piece of some smooth hypersurface (manifold of dimension N-1), then
cap(E) > 0.

The last result concerns Hg (). When Q is a smooth open set, Hg () can be defined as the set of
function in H'(R?) which are equal to zero almost everywhere in R?\ . But this result does not hold
for general open sets ). To generalize such a characterization, the notion of capacity is appropriate.

Proposition 8. Let D and 2 be open sets such that 2 C D. Then
(u € H&(Q)) = <u € H}(D) and u =0 quasi everywhere in D \ Q),

which means that uw = 0 except on a set with zero capacity.

2.4 TI'-convergence of open sets
Let D be a bounded open set. Let (2,)nen be a sequence of open sets included in D. One says that
(Qn)nen D-converges to Q C D if for any f € H-(D), the sequence of solutions u,, € HZ(Q,) of
—Aup, = f in Qp, uylsq, =0.
converges in H} (D) to the solution u € H(Q) of
—Au=f in Q, wul|sgo=0.

In this definition, H}(Q2) and H}(€2,) are seen as subsets of H}(D), through extension by zero. In
a dual way, H~1(D) is seen as a subset of H~1(€,,) and H~'(Q). As for the Hausdorff convergence of
open sets, the definition of I'-convergence does not depend on the choice of the confining set D.

The notion of T'-convergence is extensively discussed in [3]. The basic example of I'-convergence is
given by increasing sequences:

Proposition 9. If (Q,)nen is an increasing sequence in D, it T'-converges to Q = UQ,. More
generally, if (n)nen is included in Q and converges to Q in the Hausdorff sense, then it I'-converges
to Q.



In general, Hausdorff converging sequences are not I'-converging. We refer to [3] for counterex-
amples, with domains §2,, that have more and more holes as n goes to infinity. This kind of coun-
terexamples, reminiscent of homogenization problems, is the only one in dimension 2, as proved by
Sverak:

Proposition 10. Let (Q,)n,en be a sequence of open sets in R?, included in D. Assume that the
number of connected components of D \ €, is bounded uniformly in n. If (Qy)nen converges in the
Hausdorff sense to €, it I'-converges to 2.

This result will be a crucial ingredient of the next sections.

One can characterize the I'-convergence in terms of the Mosco-convergence of Hg () to H} ().
Namely:

Proposition 11. (Q,)nen '-converges to Q if and only if the following two conditions are satisfied:
1. For all u € HL(R), there exists a sequence (up)nen with u, in H(Qy,) that converges to u.
2. For any sequence (up)nen with w, in H} (), weakly converging to u in HE (D), u € H}(Q).

One can also characterize I'-convergence with capacity, see [3l Proposition 3.5.5 page 114].

2.5 Convergence of biholomorphisms in exterior domains

Through the identification of R? with C, complex analysis is a great tool for the study of two-
dimensional ideal flows in exterior domains. The proof of Theorem [l will require some results on
conformal mapping that we now explain.

Let Q of type (L)), satisfying (H1’)-(H2’). We denote D := {|z| < 1} the open unit disk, €, :=
R?\ O, the approximate exterior domain given by Proposition B, and A := {|z| > 1} the exterior
of the closed unit disk. From the Riemann mapping theorem, it is easily seen that there is a unique
biholomorphism

Tn: Qu—= A, with T,(c0) =00, T, () > 0.

We remind that the last two conditions mean
To(z) ~ Apz, |z| ~ 400, for some A, > 0.

Like in [4, 6] [7], a key point will be to control 7,, when O,, tends to C. Therefore, we will rely on the
notion of kernel convergence introduced by Caratheodory in 1912, see [I3] p28] (we remind that the
word domain refers to a connected open set):

Definition 2. Let (F,) be a sequence of domains, with 0 € F,, for all n. Its kernel F (with respect
to 0) is the set consisting of O together with all points w € C that satisfy: there exists a domain H
including 0 and w such that H C F,, for all n large enough.

If F is the kernel of any subsequence of (F,,), we say that (F,) converges to F' in the kernel sense.

This type of geometric convergence is related to the famous Caratheodory theorem, see [I3] Theorem
1.8, p29]:

Proposition 12. Let (f,) be a sequence of biholomorphisms from D to F,, := f,(D), with f,(0) =0,
11(0) > 0. Then, f, converges locally uniformly in D if and only if (F),) converges to its kernel F' and
if F' £ C. Moreover, the limit function maps D onto F.

From the Caratheodory theorem, it is possible to deduce the following property, which will be
crucial in our proof of Theorem



Proposition 13. Let II be the unbounded connected component of 2. There is a unique biholomorphism
T from 11 to A, satisfying T (oc0) = oo, T'(c0) > 0. Moreover, one has the following convergence
properties:

i) 7,71 converges uniformly locally to T~ in A.
i) 7, (resp. T,) converges uniformly locally to T (resp. to T') in IL.
iii) |7,| converges uniformly locally to 1 in 0\ II.

Proof of the proposition: Let us first point out that, because of Hausdorff convergence and Proposition
M, any compact of 2 is included in €, for n large enough. Thus, the local convergence properties stated
in ii) and iii) make sense.

Up to a change of coordinates, we can always assume that 0 € 9Q C C. By Proposition [3 there
exists x, € 082, converging to 0. Then, if we introduce the domains

P, = (Qn_xi)u{oo} - {% z—i—xneQn}U{O},

and
1

- o = {% zEH}U{O},

it follows easily from (H1’), Proposition Bland Proposition @l that F, converges to F' in the kernel sense.
Note that by the choice of (z,,), the F,’s do not include co.

F

Hence, by the Caratheodory theorem, the sequence of biholomorphisms (f,,) defined by

1

fa: D fo(D) = Fu,  fu(2) = T 1/2) —an

converges uniformly locally in D to some function f from D onto F. By the Weierstrass convergence
theorem, f is holomorphic over D. Moreover, by a standard application of the Rouché formula, as f, is
one-to-one for all n, so is f. Going on with standard arguments, f is the unique biholomorphism that

1
maps D to F and that satisfies f(0) = 0, f/(0) > 0. Back to 7, !, this yields i) with T—1(z) := /7
z

Actually, one has clearly uniform convergence of 7, ! to 7T—! in As := {|z| > 1+ 6} for all 6 > 0.
Then, by the Weierstrass theorem, the sequence of derivatives (7, !)" converges locally uniformly to
(771"

As regards ii), let 29 € I1, and J,, := 7, 1({#/, |2’ — T (20)| = 0}). By i), for 6 > 0 small enough and
n large enough, J, is a closed curve that encloses 2y and is contained in II. For all z in a small enough
neighborhood of 2y, we can then write the Cauchy formula:

1 771(5) 1 5, — 1N/ ¢t /
) = o /Jn -z $T /{5IT(ZO>|=5} To'(€) -2 )&

where the last equality comes from the change of variable & = 7,-1(¢’). Thanks to i), we may let n
go to infinity to obtain the convergence of 7, to 7T uniformly in a neighborhood of zy. Again, the
convergence of derivatives follows from the Weierstrass theorem. This ends the proof of ii).

To obtain iii), we argue by contradiction. We assume a contrario that there exists a § > 0 and
a sequence z, located in a given closed ball B of Q \ II such that |7,(z,)| > 1+ d. Up to extract a
subsequence, we can assume that z, — z € B. By the uniform convergence of 7,7 ! in As (see above)

we have z € T~(As) C II. Thus, we reach a contradiction, which proves iii).
U



3 Theorem [I] for p = oo

This section is devoted to the proof of Theorem [I in the case p = co.  Our starting point is the
approximation of €2 by smooth domains

Q= Qp \ (Uleo_fz)a

given in Proposition B, 1). We also need to approximate the initial data u’, to generate some strong
Euler solution in ©,,. We proceed as follows. Let w® := curlu’. By truncation and convolution, there
exists some sequence w) € C(Q) such that

w? = W weakly in LP(Q), [|w¥zr < [|°|lze, VP € [1,00].

As ()nen converges to € in the Hausdorff sense, it follows from Proposition @ that w) € C°(£,,)
for ny large enough. Hence, up to extract a subsequence from (£2,,),en one can assume

wd e C*(Q,), VYneN.
To build up a velocity field u2 from w?, we still need to specify the circulation around each obstacle.
Let J1, ..., J* be separating curves, as in Definition [l Up to consider large enough indices n, we can
always assume that
Oy C Cyup(J) for all i = 1.k, OL CCuw(J) () Cuwl(F) (] Cun(F)"
{-77 ZéE } {j, ZEE }
By standard results related to the Hodge-De Rham theorem, there exists a unique field u! € C>°(9Q,,)
satisfying
curlul = ¥, divul =0, 4 nlsq, =0, / ul - Tds = / u - rds,

where 7 denotes the unit tangent vector rotating counterclockwise. Let us remind that u° satisfies

([C4) with p = oo, so that it belongs to VVl ! for all finite ¢, and so that the integrals at the r.h.s. are
well-defined.

We take (u)) as our sequence of initial data. We shall postpone the convergence of u? to u® to the
end of the section. We consider for all n the unique smooth solution w, of the Euler equation in €,
such that

_ _ .0
Uy, * n|39n = 0, un|t:0 = Uy,

Again, from classical results related to the Hodge-De Rham theorem, the divergence-free smooth fields
u,, satisfy in €,

k
un(t,x) = VS () + Y al () V(@) (3.1)
i=1
where 9! satisfies the Dirichlet problem
Ai/)g = wy, = curlu, in Q,, 1/)2|agn =0 (3.2)

whereas 1!, i = 1...k are harmonic functions satisfying

A ) oYl ot A
Ay, = 0 in Q, 6—7_”’6971 = 0, /8031 8nn = —0;j, w;‘aﬁn =0, (3.3)
where ¢;; is the Kronecker symbol and n denotes the unit vector pointing outside €2,,. Note that al,
i =1...k only depends on time (the formula will be given in Proposition [I4]).

We refer to [5] and [II] for all details. The key point in proving Theorem [] is to obtain some
compactness on u,, through the study of the 1% ’s.
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3.1 Study of the harmonic part

We first focus on the harmonic part of w,, that is the sum at the r.h.s. of ([B.I). Note that the
harmonic functions ¢!, ¢« = 1...k are defined up to an additive constant. We fix this constant by
imposing

Yl =0 on 9,

We then introduce the auxiliary harmonic functions ¢!, i = 1...k, that satisfy
Agy =0, dllog =0, Wlpos =0 j=1...k (3.4)

Clearly, one can decompose each 1% on the qﬁ%’s:
U= Yl ¢l (3.5)
j=1

Our ambition in this section is to prove the convergence of the (ﬁ%’s, the ci{j 's and the a!’s as n goes
to infinity.

For all i = 1...k and € > 0, we denote C*¢ := {x, d(z,C’) < ¢} the e-neighborhood of C*. Let
x"¢ € C(R?) smooth functions satisfying

Xi’a =1 on C%, Xi’e =0 on R?\ Ch%.
By Assumptions (H1)-(H2), there exists € > 0 and ng = ng(¢) such that
x"$ =1 on O_ﬁb, X" =0 on O_%, j#i, x* =0 on 0, for all n > no.
For brevity, we drop the upperscript . We notice that the function ®! := ¢! — x* satisfies
AD! = —Ax' in Q,, ®!|sq, =0.

Let D some big open ball containing all the €2,,’s. We can use Proposition as (Q, )nen converges to
Q) in the Hausdorff sense and the complement in D of §2,, has at most k£ + 1 connected components for
all n, (Q)nen [-converges to 2. We deduce that ®¢ converges in H}(D) to the solution ®' € H}(Q)
of

AD' = —AY' in Q, ®|pg =0.

Setting ¢’ := ®' + x!, we have for i = 1...k the convergence of ¢, to ¢’ strongly in Hg (D).

Let us now turn to the convergence of the constants 7. We take the normal derivative at both
sides of (8.3) and integrate along 00;", for m € {1,... k}. We obtain thanks to (B3] and (B4)):

k

j k
~Oim = D / O 3 ds [ Vel vy
= pom On = O

Introducing the k x k identity matrix Id, this last line reads:
—Id = C, P,, with C, = (cjgj)1<ij<k, P, = (/ v¢g-v¢g> .
T On 1<i,j<k

Our goal is to show the convergence of C,: it is therefore enough to prove the convergence of P, to
an invertible matrix P. But from the previous step, that is the convergence of ¢!, to ¢' in H&(D), we

know that P, converges to
Pi= (/ w"-v(pj) .
D 1<i,j<k

11



The matrix P is selfadjoint and nonnegative: namely, for any vector A € R¥,

k
PA-)\ = / VY Xio'
D=1

Thus, to prove the invertibility of P, it is enough to show that the ¢"’s are linearly independant.
Assume a contrario that

g A ¢ =0 almost everywhere, for some non-zero vector A.

Up to reindex the functions, one can assume that A; 7 0. We remind that the functions Pl = ¢ —
belong to Hg(Q) (see above). Thus, there exists a sequence of functions ®;, in CZ°(Q2) converging to
% in H} (), i =1..k. We set ¢!, := ® + x*, and introduce

k
1 :
Un = <§ :Aﬂpn) — 0 in HJ(D).

i=1

Clearly, v, = 1 on a neighborhood of C'. It follows that
[ 170 = cappic?),
D

and letting n go to infinity leads to cap,(C') = 0. This contradicts Assumption (H3).
Eventually, we obtain that P is invertible, which yields a uniform bound on the i ’s, and their

convergence (up to subsequences) to some limit constants ¢’. From the above lines and from relation
J

B3), we deduce that (¢),)nen converges (up to a subsequence) to ¥ := Zcm ¢" in H}(D), for all

j=1
i=1,...,k

To completely control the harmonic part of the velocity wu,,, it remains to show convergence of the
time dependent functions of,, ¢ =1...kin (BJ). We shall use the following proposition, to be found

in [I1]:

Proposition 14. For alli=1...k, of = fﬂn ¢ wp dr + fao% Uy - T dS.

By Kelvin’s theorem, the circulation of u, on each O} is constant in time so that

ol :/ qﬁﬁlwndm—i—/ ’ug-Tds.
Qn d0i,

With the notations of Subsection Z2 we introduce for all i = 1...k the region A% included between J*
and OO :
Al = Qn () Can(T) () Cun(F).

JEE;

We also introduce: A := Q" Cyup(J)N

/ u%-Tds:/
Ji A

ol :/ quLwndx—i—/ uO-Tds—/ wgdx—Z/ ul - T ds. (3.6)
n Ji Al Ji

JEE;

ek, Cu(J7). Then we compute

wgdx—l—/ao. u%-Tds—i-Z/J.ug-Tds.
i 5, )

i
n

It follows that

12



Moreover, we remind that the vorticity w,, obeys the transport equation
Oywy, + Uy - Vwy, =0
so that the LP norms are conserved:
lwn(ts ) zr @) = llonllr@n) < @llr@), 1<p < oo (3.7)

We now extend wy, by 0 outside €, for all n, so that the sequence (wy,),,cy is bounded in L*(RT x D).
Up to an extraction, we deduce that

wy, — w weakly * in L(RT x D). (3.8)

One has easily that
w=0 outside Q. (3.9)

From this convergence and (B3.8]), we infer that of, converges weakly* in L>°(R") to

ol = /(biwdx +/ uO-Tds—/lAindx—Z/ u® - Tds
D Jt D Ji

JEE;
= /(biwdx +/ uO-Tds—/ wodx—Z/ u® - 7 ds.
Q Ji Al jem '

Unfortunately, we cannot establish rightaway strong convergence of (o). We need some uniform
L>®L? bounds on u,, to be obtained in the section below.

3.2 Study of the rotational part

A simple energy estimate on ([B.2]) yields
IVt M2 < lwon(t Mz @ullont 2@y, ven.

Extending ¥ by zero outside ©,, we can see it as an element of H&(D). By applying the Poincaré
inequality on D, we end up with

[n (s Mz my = lont Mm@ < Cllwnlt, )z, < ¢

uniformly in ¢,n, in particular for ¢+ = 0. Combining this bound on 2 (0, -) with the estimates on !,
and o (0), we obtain that u0 is uniformly bounded in L?. Then, the conservation of energy implies
that

lun(®)l 1200, = lluplliz@,) < C, Vi,
that is a uniform L L2 estimate on wu,,.

On one hand, this estimate implies the strong convergence of o, (and completes the analysis of
the harmonic part). Indeed, we compute

(b)) = /Q ¢, Opwn dz = —/Q o div (upwy,) dr = /Q Vo - Upwy, d.

Using the uniform L? bounds on V¢!, and u,, we infer that o, is uniformly bounded in W1>°(R™)
which means that the converges holds strongly in CP (RT).

13



On the other hand, this estimate allows a control of the time derivatives of /0. Indeed, we observe
that 910 satisfies

A(atwg) = Own = —div (upwy) in Qp, 8#/’2‘8!% =0.
Using the uniform L®°L? and L> bounds on u,, and w, respectively, we get similarly

From these bounds and standard compactness lemma [14], there exists ¥/ € WH(R*; H}(D)) such
that up to a subsequence:

Y0 — ¥ weakly* in WL°(RT; H} (D)) and strongly in C°(0,T; L*(D)), VT > 0.
From the weak convergence of 10 and w,, we infer that
AYO(t,) = w(t,-) in D'(Q), for almost every ¢ (3.10)

using again that any compact subset of €2 is included in €2, for n large enough.

As Q,, I'-converges to €2, we can use Proposition [T} 9 (¢t,-) has for every ¢ a subsequence that
converges weakly in Hg (D) to a limit in H}(2). Thus, for every ¢, 9%(¢,-) belongs to H{ ().

Finally, let us prove the strong convergence of 99 to ¢¥ in L(0, T; H}(D)) for all T > 0. Therefore,
we go back to the equation ([3:2)). We compute:

/OT/D|V¢2|2:/OT/W|V¢2|2Z—/OT/annzZ)QL:—/OT/Dwnwg%_/OT/wao

As we know from the previous paragraph that ¢°(¢,-) belongs to H}(f2) for every ¢, we can perform
an energy estimate on (B.J0) as well. We get

[ fwor= [ fror=—[ feo—] [
/OT/D!V%(“? N /OT/D’VwO\Q

which together with the weak convergence in W1°°(0,T; H} (D)) yields the strong convergence of 12
to ¢° in L2(0,T; H}(D)) for all T > 0.

Hence,

3.3 Conclusion of the proof

We can now conclude the proof of Theorem [l Let (uy,)nen be the sequence of Euler solutions in 2,
associated to the initial data u0. Each field u, has the Hodge decomposition (B1]). Through obvious
extension of ¥, m = 0...k, it can be seen as an element of L>(R*; L?(D)). By the results of the
previous subsections, it converges strongly in L?((0,T) x D) and weakly* in L>=°(R*; L?(D)), T > 0,

to the field .

u(t,z) = V5Ot x) + Y o (VY ().
i=1
Note that 1° belongs to L>(R™; H}(9)) whereas for i = 1,...,k, o' belongs to C°(R*") and 1
belongs to H} (). Moreover, by construction, one has curlu = Ay’ = w € LR x Q) as well as
the divergence-free and tangency conditions, ¢f (LG]).
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An important remark is that all the reasoning we have made so far also applies to the initial data
(without the difficulties linked to time dependence). In particular, it can be seen that the sequence (u2)

converges strongly in L?(£2) (up to a subsequence). Moreover, its limit @° has a Hodge decomposition,
k .
i(a) = VO0) + Yo%V (a),
i=1

with 900 € Hg(Q), AY®? = w® and o* := [, ¢'w dx + [0’ -7ds — [ w0 de =Y ey [;;u° - 7ds.

In particular, it satisfies
curl@® = W0, W= W, =1k,
Ji Jt

as well as the divergence-free and tangency conditions (L3]). It follows that the difference u S
curl-free, divergence free, with zero circulation around each C' and a tangency condition. By a slight
modification of the argument used in [4, Proposition 2.1], it follows that 4 — u® = 0. In particular,
u? converges to u" strongly in L?. As a byproduct, we obtain the existence of a Hodge decomposition

for data u" satisfying (4] in the irregular domain €.

004

Finally, let ¢ € D ([0, +00[x£2), with div ¢ = 0. For n large enough, the support of ¢ is included
in ,, so that:

[ [ a0+ 90 : Vo) = [ -0,

By the strong L? convergence of u,, to u, and of u) to u, it follows that u satisfies the weak form of
the Euler equation (LT]).

4 Theorem 2 for p = oo

Similarly to the previous section, we first introduce a sequence of domains 2,, := R\ O,,, see Proposition
B, 2). We introduce a sequence (w?) such that w? € C(2,) N C*(Q) for all n,

wi = W= curlu®  weakly in LP(Q)  with [[w|ze < ||w°||z» for all p € [1, 0],

and such that for py > 0 large enough, w® = 0 outside B(0, pg) for all n (see(9)-(LI0)).

To build up an appropriate initial velocity u) in €, := R?\ O,, from the vorticity, we need to
specify the value of the circulation somewhere. Let J be a smooth closed Jordan curve in ) such that
C is included in the bounded component of R?\ .J. For any n, we consider as an initial velocity u the
unique vector field in €2,, which verifies

divud =0, curlul =l  ulls0, -n =0, /ug cTds = / u’ - 7ds and lim ul(z) = 0.
J J |z[—o0

Note that the quantity [ 7 u? - 7ds is well-defined because u° belongs to VVllo’g (Q) for all finite q. As
), is smooth, 1 generates a unique global strong solution of the Euler equation (see e.g. [5]). The
transport equation governing the vorticity implies that the LP norms are conserved:

lwn(t, Mlzr(@n) = llwnllzr < llw’llze, 1< p < +oo. (4.1)

As in the previous part, the Hodge-decomposition will be useful to obtain estimates on the velocity:

un(t,z) = VOt x) + an(t)VEie,(z) (4.2)
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where 1/ satisfies for any ¢ the Dirichlet problem

1
AYY = w, in Q, Ylan, =0, ¥O(z) = O(W as T — 00, (4.3)

whereas 1, is the harmonic function satisfying

o obn, On _
A, = 0 in £, ?bgn = 0, /aon B 1, ¢p(z) = O(In|z|) as z — occ. (4.4)

The function a,(t) is the sum of the circulation of the velocity around O,, and the mass of the vorticity
fQ wn(t,). By the Kelvin’s circulation theorem and the transport nature of the vorticity equation,
we infer that these two quantities are conserved, hence

an(t)Ean:/ u%-Tds—i—/ wﬁ:/ ug-Tds—/ w2+/ wl (4.5)
90, n aJ n n

where A,, 1= Q, \ Cyup(J) (see Subsection 2.2]), hence

ap — a = /u0-7d5+/ Wb (4.6)
J Cub(J)

4.1 Poincaré inequality in exterior domains

Thanks to the properties in ([43]), we integrate by parts to obtain:

vag H%Q(Qn) < HwnHL2(Qn) nguLQ(Qnﬂsuppwn) : (47)

In the case of a bounded domain, we used the Poincaré inequality on a domain D containing all the
Q,’s. The idea here is to establish a similar inequality, thanks to the I'-convergence of O,, to C with
cap C > 0.

Lemma 1. Let p be a positive such that TI¢ C B(0,p). As Q is of type (L8, with (H1’)-(H2’), then
there exists C, > 0 and N,, depending only on p, such that

el L2 (nnB0,0) < CollVOllL2(@unB0,p): V¢ € C° (), ¥n > N,,.

Proof. Let us assume that the conclusion is false, which means that for any k£ € N, if we choose C, = k
and N, = max(k,n,_1), then there exist n > N, and ¢}, € C°(£,, ) such that

ekl L2 (@, nB0.0) > FIIVeRllL2 (0, nB(0,0)-

Dividing ¢y by ||80kHL2(anmB(0,p)), we can consider that HSDkHLQ(anmB(O,p)) = 1, which implies that
IV orll L2(Q,,NB(0,p)) tends to zero as k tends to infinity. Therefore, extracting a subsequence if neces-
sary, we have that

@R — @ weakly in H'(B(0, p)) and ¢y — ¢ strongly in L*(B(0, p)).

It follows that ¢ is a non zero contant, because ||¢||r2(p(0,0)) = 1 and Vi — 0 weakly in L*(B(0, p)).
We introduce a cutoff function x which is equal to zero in B(0, p)¢, and equal to 1 in some neigh-

borhoods of O,,’s and C. Then,
xpr belongs to HY (B(0,p) \ Oy), (4.8)

and
Xeor = xp weakly in Hg(B(0, p)). (4.9)
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However, the sequence (B(0,p) \ O,) converges to B(0, p) \ C in the Hausdorff sense and as O, is
connected for all n, Proposition [I0] implies:

B(0,p) \ O, T-converges to B(0, p) \ C.

Combining (@), [@J) and Proposition [T we obtain that x¢ belongs to H{(B(0,p) \ C).

Next, Proposition [ implies that xy¢ = 0 quasi everywhere in C. This is in contradiction with
cap(C) > 0 and the fact that x¢ is equal to a non zero constant in C. The conclusion of the proof
follows. O

We want to apply the previous lemma to ([£71]), but we remark that an important issue is to control
the size of the support of w, independently of n. As w, is transported by u,, we will prove that the
velocity is uniformly bounded far from the domains O,,.

4.2 Uniform estimates of the velocity far from the boundaries.

The advantage of working outside one simply connected domain is the explicit formula of ¥ and 1,
in terms of biholomorphisms. We shall use the notations and results of Subsection With such
notations, we have

1,0 L orr / Tn(x) = Tn(y) Tn(x) — Ta(y)" \*
=—D - 4.1

Vi) =5 DT | (T T T T ) 00 6w

and To(a)
Lt D T () 2 4.11
VA un(ta) = 5= DT () (@.11)
with the notation z* = ﬁ (see e.g. [4, [7] for an introduction to the Biot-Savart law in exterior

domains).

Lemma 2. Let Ry large enough so that TI° C B(0, Ry). Then, there exists Co = C(||w°| 11, [|w®| Lo, Ro)

such that
1 T(x)—T(y) T(x) = T(y)* \*
Fult @) = %DTT@)/H(’T(%) i~ T(y)*‘2> wnlt,y) dy (4.12)

verifies
[ fn(ts )| oo (e x B(0,R0)e) < Co, V1.

Moreover, for any compact K outside B(0, Ry), there exists Ni such that

1.0
t <2 1, > N,
HV ¥n( ’x)“LOO(R+><K) Co+1, ¥n o

Proof. Let Ry < Ry such that TI° € B(0, Ry). We decompose the integral {@IZ) into three parts:

= DTG (T(x) = TW)*
hen) = T[S
(T(@) - T()* (T(@) - T))*
+/Bw o T T 04 = [ Gy

= %DTT(x)(Zl + Ty + T3).
By the definition of 7 (see Proposition [[3]), there exists some (S, B) € R} x C such that:
~ 1
T(2) :ﬁz+ﬁ+0(;) as z — 00.
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Then there exists Cy such that || D7 | z(p(o,re)) < C1- If the boundary 9II is rough, we recall
that such an inequality does not hold in L°°(II) (see for instance [I0]). This remark underlines the
importance of Ry.

As 7T is continuous and one-to-one, there exists § > 0 such that

dist (T(@B(o, Ro)): T (B0, Ro))>2 5.

Then |T(z) — T (y)| > ¢ for any = € B(0, Ry)° and y € 11N B(0, ]:20). Hence, for any x € B(0, Ry)¢, we
have

1 WO 11
miss [ el < 2
IINB(0,Ro)

»410

where we have used (£]]).
As [T (y)*| <1 < |T(y)|, we also have |T(xz) — T (y)*| > 6 for any x € B(0,Ry)°. Therefore, we
obtain

1 0
T3] < / wnltyy)dy < Jeler
5 Iy 5

Concerning the last part Zs, we introduce z = 7 (z) and

g(t,n) = wy(t, T~ (n))| det DT} (n )’17(3 (0,R0)° ¢y (1)

Changing variables n = 7 (y), we compute

7 =/R (—7?7)'29(75 n) dn.

2 |z —
Changing variables back, we obtain that
lg(t, M e g2y = llwn (M 21 (30, 20)e) < N2
Using the behavior at infinity of 7!, we infer that there exists Cy such that
|det DT ()| < Ca, ¥n € T(B(0, R)°),

hence
lg(t, )l oo r2) < Callwn(t, )|l < Collw®|| Lo

This last argument explains why we split the integral into several parts: we cannot prove that det D7 !
is bounded up to the boundary, in particular when its boundary is rough. Using a classical estimate
for the Biot-Savart kernel in R?, we write

1/2 1 2 1/2 1/2
[Za] < Callg(t, )| iigey ot )12 ey < Cov/Calle® 122 w12,

where C3 is a umversal constant.
Putting Cp : (2”w I Cs3v/C Hw0||1/2H O||1/2> we have established the first inequality:

| fr(t; )|l oo R+ x B(0,R0)e) < Co, V1.

We treat now V90, Let K be a compact set in B(0, Ry)¢. Let K a compact set satisfying

K C K C B(0,Ry)°, and dist (T(BK); T(@R’))z s.
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One can take for instance K = {Ry < |z| < Ry} for Ry large enough. Again, we decompose the integral
(£I0) into three parts:

1,0 1 T (o (%(x)—ﬁl(y))Lw
Vi) = S pTl @[ ety

(Tal@) — Tuly))* ()~ T,
+ Rt y)dy‘/gn T () — Tuly)”
(

= —DmT(x) T+ T+ Ts).

By the uniform convergence of D7, to DT in K (see Proposition [[3]), for any £; > 0 there exists
N7 such that
DTl (k) < C1 + €1, Yn > Ny

By the uniform convergence of 7, to 7 in K, there exists No > 0 such that
dist (n(af(); 7;(0}())2 §/2, ¥n > No.

Then |T,,(z) — Tn(y)| > 6/2 for any z € K and y € Q,, \ K. Hence, for any = € K, we have

<G [ ety < 2 2elur >

As [T, (y)*| <1 < |T,(y)|, we also have [T, (z) — T,(y)*| > §/2 for any = € K. Therefore, we obtain

2/l

2
A R
5 Ja, )
Concerning the last part Jo, we introduce z = T, (x) and

gu(t,m) = wn(t, T, ()] det DT ()L e ().

Changing variables n = 7, (y), we compute

Jo :/R (_7?7)‘2%(’5 n) dn.

2 |z —
Changing variables back, we obtain that
lgn(t, M 12y = llwn ()l 2 (R) S [

Using the uniform convergence of D7,' to DT ~! in a compact big enough (such that 7, (K) C D),
for any 3 > 0 there exists N3 such that

|det DT, ()] < Co + €3, Vi € To(K), ¥n > N3

hence
g (t, )l oo m2) < (Ca + €3)[wn(t, )L < (Ca +€3)]jw’|| Lo

Finnaly, we use the classical estimate for the Biot-Savart kernel in R?:
1/2 1/2 1/2 L2
5] < Csllgn(t, )| i ey l9n(t: )1 2 2y < C3v/Ca + |40
Choosing well €1 and €3, we find Ng = max(Ny, N2, N3) such that
) <20,+1, ¥n>N
H Yt o) LR+ xK) ot " o

which ends the proof. O
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The reason why we divide the proof in two parts is to obtain a constant Cjy independent of the
compact set K. Although Ng depends on K, the independence of Cy with respect to K will be crucial
for the uniform estimate of the vorticity support. The harmonic part is easier to estimate.

Lemma 3. Let Ry a positive number such that 1I° C B(0, Ry). Then, there exists Co = C(Ry) such
that

W(w) = % In |7 ()| (4.13)
verifies

[vtu@)| <G

L>(B(0,Rp)¢)

Moreover, for any compact K outside B(0, Ry), there exists Nk such that

Hviwn(x)HLw(K) <20y +1, Vn > Ng.

Proof. The first part comes from the behavior of 7 at infinity:
~ 1
T(2) :ﬁz+ﬁ+0(;) as z — 00.

The second point is a direct consequence of the uniform convergence of 7, in K (see Proposition

[I3). O
4.3 Support of the vorticity and H' estimates
Let po such that U,suppw? Usuppw® UTI® C B(0, po).

Co = Co([|w’[|z1, [« ]| o<, po)

the constant of Lemmata 2 and Bl Let C' := (2Cp + 1)(2 + |a|), where o was defined in (£6]). We fix a
time 7' > 0 and we introduce
K :=B(0,po + CT) \ B(0, po).

Together with ([@2)-(L0), Lemmata [2] and B provide some N such that
lunll oot x 7y < €, ¥n > Nr.
As wy, is transported by u,, we can conclude that
supp wy,(t,-) € B(0, po + Ct), Vt € [0,T], Vn > Nr.

Finally we can complete the estimate of || V)| 12(q,) Let pr := po + CT, then Lemma [l implies
that there exist C),, and N, such that

[emll 220 nsuppen) < CorlI VU L2(00nB0.pr))» VE € [0,T], ¥n > max(N,,., Nr).
Combining with (7)) and ({@I]), we obtain: Vt € [0,7T], Vn > max(N,,, Nr):
vag”L2(Qn) < CPT”wnHL2(Qn) = CpTHWOHL2- (4.14)
Using again Lemma [Ilon any compact K of R?, we conclude that there exist C and Ng such that
10l 2(@0nr) < CrlIVERllz@,) < CrCpplle®ll2, ¥t € [0,T], ¥n > max(N,,, Np,Ng),  (4.15)

where Cx depends on the diameter of K. We recall that ¥ is not square integrable at infinity (see
#3)), but [@IH) will be sufficient to obtain local convergence.
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We end this subsection with a L12OC estimate of V14, up to the boundary. Let Ry > 0 and x be a
cutoff function equal to 1 in B(0, Ry) and to 0 outside B(0, Ry + 1). Then, x, verifies

A(xty) = @p :=2Vx -V, + ¥, Ax in Q,NB(0,Ry+1), x¥, = 0 on 9Q, UIB(0,Ry+1).

Note that the connectedness of 952, allows to impose a Dirichlet condition on ,. This Dirichlet
condition can also be read on the formula ¥, = 5= In|7,(z)|, as 7, maps 0%, to B(0,1). Therefore,
by a classical energy estimate and Poincaré inequality applied in B(0, Ry + 1), we obtain that:

HV(X%)H%%Q,L) < |1@nll 2@ IX¥nll L2 ,0B(0,R0+1)) < Croll@nll L2 IV (X¥n) |l L2(02,0) -

Using that v, and V1), converge uniformly to ¢ and Vi in B(0, Ry + 1) \ B(0, Rp) (see Proposition
[@3)), we get that ||y 12(q,) is uniformly bounded. This yields the existence of a constant C, depending
only on Ry, such that

IVYnllr2@.nBo,re) < €, Vn. (4.16)
4.4 Conclusion of the proof

The proof follows the one for bounded domains, taking care of integrability at infinity. We fix T" > 0
and a compact K in (2. We denote
D := K UB(0,pr),

with pr defined in the previous subsection.

a) Compactness of the rotational part.
We deduce from (£I4) and [@I5) that

vt mpy < Crx VEe€[0,T], ¥n > Ng.
As regards time derivatives, we observe that 910 satisfies
A0) = Own = —div (upwy) in Qn, 90 |oa, = 0.

Using the uniform L>°([0, T, L2(B(0, pr))) bound of u,, (see ({EI4) and ([EI6)) and the L> bounds on
Wy, We get

18s5 (6, M rpy < C, V€ [0,T), ¥n > N.

From these bounds and standard compactness lemma, there exists ¢ € WH°(0,T; H' (D)) such that
up to a subsequence:

Y0 — 0 weakly* in W1°°(0,7; H' (D)) and strongly in C°(0,T; L*(D)).

We now extend w,, by 0 outside €2,, for all n, so that the sequence (wn)neN is bounded in L®(R™*; L'n
L>(R?)). Up to another extraction, we deduce that

wp — w weakly *in L®°(RT; L' N L>®(R?)). (4.17)
From the weak convergence of 1)) and w,,, we infer that
AYO(t,-) = w(t,-)in D'(QN D), for almost every t (4.18)

using again that any compact subset of 2 is included in €2, for n large enough.

Now, we use Proposition [0} as (€2, N B(0, pr))nen converges to 2N B(0, pr) in the Hausdorff sense
and as the complement in a large closed ball B of €, N B(0, pr) has at most 2 connected components
for all n, (2, N B(0, pr))nen T-converges to QN B(0, pr). Let x be a cutoff function equal to 1 in a
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neighborhood of the O,’s, and to 0 outside B(0,pr). By Proposition [ x%°(t,-) has for every ¢ a
subsequence that converges weakly in H}(B(0, pr)) to a limit in H}(Q2 N B(0, pr)). Thus, for every
t €10,7], xv°(t,-) belongs to H (2N B(0, pr)).

Finally, let us prove the strong convergence of ¥ to ¢" in L2(0,T; H'(D)) for all T > 0. Therefore,
we go back to the equation [@3). As |[Vy0|[40| = O(1/]z|®), we can integrate by part:

[ fuvaef e[ fote [ fot o[ [

As we know from the previous paragraph that y1/°(¢,-) belongs to HZ(Q N B(0, pr)) for every t, we
can perform an energy estimate on (I8 as well. We get

[ Lo o= [ fo=- ] o
//’W’n %//\w()

which together with the weak convergence in W1°(0,T; H'(D)) yields the strong convergence of )
to ¥ in L?(0,T; H'(K)).

Hence,

b) Compactness of the harmonic part.

By the convergence results on (7;,) (see Proposition [[J), we obtain directly that 1, = 5= In|T;(z)|
converges uniformly to 1, resp. to 0, in any compact subset K of II (the unbounded connected
component of ), resp. of Q \ II (the bounded connected components of ). As 1), — 1 is harmonic,
local uniform convergence implies Hﬁ)c convergence by the mean-value theorem.

¢) Limit equation.
We can now conclude the proof of Theorem [2 Let (uy,)nen be the sequence of Euler solutions in
(2, associated to the initial data ug. Each field w, has the Hodge decomposition ([€.2)). By diagonal

extraction, it converges strongly in LE (R x Q) and weakly* in LS (RT; L2 (Q)) to the field
VOt z) + aVii(z), if z €11,
u(t,x) = Lo .
V=i (t, x), if x € Q\ 1L

Note that V+4° belongs to LS (R*; L2(Q2)) (see (EI4)) whereas V19 is only locally square integrable.
It follows that u € L (RT; L2 (€2)). From this explicit form, we deduce that u is divergence free,
tangent to the boundary7 with a conserved circulation along the closed curve J. Moreover, inside €2,

one has
curlu = AY® = we LR L N L®(Q)).
The uniform estimate of the support of w, means that w is also compactly supported.

Finally, let ¢ € D ([0, + V(Q)). For n large enough, the support of ¢ is included in ,, so that:

/ /u Ot (1, @ 1) V) = [ b (0,

By the strong L1OC convergence of u, to u, and also the strong L1OC convergence of u? to u" (see the
previous section for details), it follows that wu satisfies the weak form of the Euler equation (L7]).

Let us emphasize that this convergence in L2  does not hold for the situation studied in [4] (one
small obstacle shrinking to a point), or in [II] (bounded domain with several holes, one of them
shrinking to a point). In such situations, the limit velocity is the sum of a smooth part and a harmonic

part 21 /|z|?, so it does not even belong to L2 .
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5 Initial vorticity in L”

We complete in this section the proof of Theorems[Iland 2] by passing from L°° vorticity to LP vorticity.

5.1 Theorem [ for p > 1

Let p > 1, u” satisfying (L4). Let w® := curlu®. We introduce a sequence of smooth functions (w?),ex
such that w? — w strongly in LP(Q). We remind that we have established in Section M that there is
for each n and each real k-uplet ¢!,...,cF a unique ud € L?(Q) satisfying

n’

curlugzwo /ug-T:ci, Vi=1,...,k
Ji

together with the divergence-free and tangency conditions. We choose here ¢! := | Ji u? - 7, which is

well-defined, as ug belongs to I/Vli’f (©). We then denote by u,, a weak solution constructed in Section
@ We denote w,, := curlu,,.

Approaching u, as in Section ] by a sequence of smooth solutions u, y of Euler in Qy, we notice

by B) that:

. 0
lwnll oo (zr(0)) < 1}{&1?0f\\wn7NHLoo(Lp(QN)) < Nwpllzr @) < Cp. (5.1)
Then we have, up to a subsequence, the weak * convergence of w,, to some w in L>®(R™; LP(Q)).

Moreover, we proved that the velocity can be written as

k
un(t,x) = VS (tx) + > ol () Vi (x)
=1

where

Y0 € L®(RY; HL(Q)) and A2 (t,-) = wy(t,-) in D'(Q), for almost every t;

J
Pt = Zcm¢i foralli=1,...,k;
j=1
afl:/qﬁiwndx +/ uO-Tds—/ wgdx—Z/ u® - 7ds, (5.2)
Q Ji At g JJI
JjEE;

with ‘ B ' ‘

o' € Hy(Q), A¢" =0 in Q, ¢'[se; = di; in a weak sense, see Section [
and

—1

C= (Ci’j)gi,jgN == (/Q Vo' V¢j>

Note that ¢?, ' and C do not depend on k.

1<i,j<N

By the energy estimate, we obtain that ||V2(t, -)H%Q(Q) < wn (2, -)||H_1(Q)||1/)g(t, & (@), which
implies by (5.I) and the Poincaré inequality on a big ball D that ¥ is bounded in L (R™; H}(Q2)).
Also by (G1)), the sequences (o, ),en are bounded in L>(RT).

Therefore, we can write u, = V+, with ¢, bounded in L>®(R*; H'(Q)). By this estimate, we
extract a subsequence such that u, — u weakly* in L (R*; L2(2)), which implies that u verifies the
divergence-free and tangency conditions (LG)).
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The last step consists in obtaining strong compactness of (u,,) in C° ([0, T7; L ()), as it allows
to pass to the limit in the momentum equation (7). Thanks to (51J), the sequences (curl (xu,)) and
(div (xun)) are bounded in L> (R*, L%(R?)), ¢ := min(2,p), for any x € C2°(Q2). It follows that
Xty is bounded in L (R, W14(R?)). In other words (uy) is bounded in L™ (R*; W14(Q')) for any

Q' € Q. Moreover, the time derivative
Oy, = —div (u, @ uy) — Vpy,
is bounded uniformly in the space H, 2(£)'), that is the dual space of
H2(QY) == {p=limy, in HX(Q), ¢, CX(Q), dive, =0}

From Aubin-Lions compactness lemma, see [I4], (u,) is strongly compact in C°([0,T]; L?(£Y')), for all
t >0, all Q' € Q. This ends the proof.

5.2 Theorem [2] for p > 2

To go from p = oo to p > 2, one follows the lines of the bounded case. Let us remark that for
solutions in Theorem [, we have that a,(t) = a, = fCub(J) wd + fJ u® - 7 which tends easily to
o 0 0

o= fCub(J)w + [;u’ -7

Then, it is sufficient to prove the convergence of the rotational part. In order to obtain an estimate
in L? of V42 independent of n (see (@I4])), we need to control uniformly the size of the support of w,.
Therefore, we want to prove Lemma 2] with ||wy||rr instead of |jwy||re. Such an extension is possible
for p > 2 (see e.g. the technics used in [7, Lemma 3.5]). More precisely, we assume p > 2 in the
unbounded domain in order to obtain an L estimate of the velocity far from the boundaries, and a
uniform control of the size of the support of w,.

We conclude by the same compactness argument as above.

6 Final remarks

6.1 Domain continuity for Euler

Theorems [Il and ] yield existence of global weak solutions in singular domains. However, their proof
yields more, namely some domain continuity for the Euler equation. It shows that solutions of Euler
in

Q, = ﬁn \ <Uf:10_7il>, resp. €, = RQ\O_n

converge to solutions of Euler in
Q:=Q\ (Uf:1Ci>, resp. Q := R?\C.
We discuss here some consequences of this convergence result.

Rugosity. A typical problem in rugosity theory is the following: let €2 be a smooth domain with a
rough wall y = 0. Let Q. be obtained from € by a boundary perturbation of the form y = ¢® cos(z/¢)
( > 0 fixed). What is the asymptotic behaviour of the flow in Q. as ¢ — 0 7 In the case of
viscous flows, it has been shown that there is a drastic effect of the rugosity at the limit, see [2] [I].
In the opposite direction, one can deduce from our analysis that such effect does not hold for ideal
incompressible flows: the solution u. of the Euler equations on 2. converges to the solution u of the
Euler equations on €.
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Trapping of a flow. The complements of the domains €2,, and €2 that we consider have the same
number of connected components. Thus, the domain continuity that we show does not extend to the
fusion of two obstacles as in Figure 1. In such a case, we do not pretend that w, solution in €2, (see
Figure 1) converges to u solution in €. Actually, we guess that it does not hold because of the Kelvin’s
circulation theorem.

CRICNICe

Figure 1: fusion of two obstacles.

However, an example that we can include in our analysis is an obstacle O,, which closes on itself
(see Figure 2). In this picture, although ,, as a unique connected component, (2 has several connected
components. Here, C is a Jordan curve, and it is an example of a compact set obtain as a Hausdorff
limit, but not as a decreasing sequence of smooth simply connected domains. In such a setting, the
present work still shows that u,, solution in €2, (see Figure 2) converges to u solution in €.

Figure 2: O,, tends to C in the Hausdorff sense.

6.2 The case of the Jordan arc

In this subsection, we pay special attention to the case of a smooth Jordan arc C. We shall denote 0y
and 0o the endpoints of the arc. As mentioned earlier, this geometry has already been investigated
by the second author in [6]. In this article, the existence of Yudovitch type solutions is established
through an approximation by regular domains €).. The corresponding regular solutions u. and their
curl w. are then truncated smoothly over a size € around the obstacle. The resulting truncations .
and @, defined over the whole of R?, are shown to converge in appropriate topologies to the solutions
u, @ of the system
divi=0, ¢t>0, zeR?

dw+u-Vo=0, t>0, zeR? (6.1)
@ = curla — gzde, t>0, zeR?
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(plus a circulation condition). This is an Euler like equation, modified by a Dirac mass along the
arc. The density function gg is given explicitly in terms of @ and C. Moreover, it is shown that it
is equal to the jump of the tangential component of the velocity across the arc. We refer to [6] for
all necessary details. Our point in this section is to link this formulation in the whole space to the
classical formulation of the Euler equation in €, see (L1)-(L3).

More precisely, let u be the solution of (L)-(LH) built in Section @ and w := curlu. We want to
show that extending u and w by 0 yields a solution of (G1J) in R2. Therefore, we first notice that these
extensions (still defined by u and w) satisfy

u € Lig.(RY; Lipo(R?)),  w € LY(RT; LY(R?) N L' (R?)).
It follows easily from the estimates (@I4)-(ZI06), and B.7)-(B8). Then, we remark that u = V0 +
aV=+ is clearly divergence free over the whole of R2.

We now turn to the transport equation for the vorticity. Taking ¢ = V14 in (7)), with some )
compactly supported in ]0, +00[x {2, we first obtain

Ow~+u-Vw=0, in |0,4o00[x (6.2)
in the distributional sense. Let now

¢ € D ([0, +00[x (R*\ {01,02}))

be a scalar test function. We want to prove that

/ Dpw + / Ve (wu) = / 2(0,) ", (6.3)
R+ JR2 R+ JR2 R2

meaning that the transport equation is satisfied over R?\ {01, 02}. We introduce a curvilinear coordinate
s €]0, S[ and a transverse coordinate r € [—R, R], so that in a neighborhood of C \ {01,02}, one has
x = J(s) + rn(s), n a normal vector field. In view of (G.2]), we can assume with no loss of generality
that ¢ is compactly supported in this neighborhood. We then consider a truncation function that
reads

@E(ta 'I) = QD(t, 'I)(l - X(T’/&))
where y € C°(R), x = 1 near 0. One can use @, as a test function in ([G.2]). Hence, to prove (G3)), it
remains to prove that

/ atsoxsw/ Vlexe) )—/ 00, ) e =0, as e 0, e()i=x(r/e).
R+ JR2 R2

The only difficult term is
[ [ v .
R+ JR2

We remind that the streamfunction 7 = " 4 a1} associated to u satisfies An = w in Q, and that it is
constant at C by the impermeability condition. As w is bounded, it follows from elliptic regularity that
n has W?2P regularity for all finite p on each side of C, away from the endpoints 01,05. In particular,
one has

lullwrr) < Cp (6.4)

over the support K. of pVx.. Denoting u,(x) := u(z) - n(s) the “normal” component of u, one has

Ll < C [ NG/ o)l < c/ ool g,

cawp @@ [ C'\/ / de\/ ] Pt
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where the last bound comes from the Hardy inequality, applied on each side of C to u, (which vanishes
at C by the impermeability condition). It follows from (6.4]) that I. vanishes to zero with e, as expected.

Thus, to establish the transport equation for the vorticity on the whole plane, it remains to handle
the neighborhood of the endpoints 01,05, say 0;. This time, we introduce the truncation

Xe(T) =X <

As before, one is left with showing that

L= [ [ 90w

goes to zero with e. But this time, as V. is uniformly bounded in L?, one has the simple inequality

xr—0

1> with x € C(R?), x = 1 near 0.

1| < ClIVXell lwullp2x,) < Cllwullpzk.)

where K. is the support of x.. The r.h.s. goes to zero by Lebesgue dominated convergence theorem,
and yields the result.

Eventually, we have to establish the third line of (6.1]), which expresses w in terms of u and a Dirac
mass along the arc. Again, we notice that the streamfunction 1 has W?P regularity for all finite p
on each side of the arc, away from its endpoints. This implies that the velocity u has a trace from
each side of the arc, denoted by ur. These traces belong to I/Vli;l/ PP(int(C)) for any finite p. By
the impermeability condition, only the tangential component of these traces is non-zero. Let now
¢ € C(R%\ {01,02}) a scalar test function. Testing this function with the relation w = curlu (that

clearly holds in the strong sense in R?\ C), and integrating by parts on each side of the arc, we end

up with
— 1
/wso——/ u-V ¢+/[u71s0,
R2 R2 C

almost surely in ¢, where [u;] denotes the jump of the tangential component: if n is the normal going
from side + to side —, [u,] := (uy —u_)-nt. The last equation can be written

w = curlu — g,dcin R?\ {01,0,}
in the sense of distributions, where g, (s) := [u;](s) (s the curvilinear coordinate).

The last step is to go from R?\ {01,02} to R?. Therefore, we introduce again truncation functions
near the endpoints: say

Xe(®) ==X (

As before, the point is to show that

2
/ W PXe, / u - VLQSXEa and /[UT]SDXE
R2 R C

all go to zero with €. The only annoying quantity is the third one: it requires a control on the jump
function [u;] up to the endpoint 01. Therefore, we use results related to elliptic equations in polygons,
see [10]. Indeed, up to a smooth change of variable, the Laplace equation for n in R?\ C turns into a
divergence form elliptic equation in the exterior of a slit. In particular, it follows from the results in
[10] that v = V17 decomposes into u; + ug, where u; behaves like 1/|z — OZ-|1/2 near the endpoint 0;,
and uy has VV&’?(RQ \ C) regularity for all p < 2. This allows to conclude that [,[u,]¢x. goes to zero
with e. This concludes the proof.

x—0

1) with x € C2°(R?), x =1 near 0.
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