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We analyze the paraxial beam transformation upon reflection and refraction at a 
plane boundary. In contrast to the usual approach dealing with the beam angular 
spectrum, we apply the continuity conditions to explicit spatial representations of the 
electric and magnetic fields on both sides of the boundary. It is shown that the 
polarization-dependent distortions of the beam trajectory (in particular, the “longitudinal” 
Goos–Hänchen shift and the “lateral” Imbert–Fedorov shift of the beam center of gravity) 
are directly connected to the incident beam longitudinal component and appear due to its 
transformation at the boundary. 
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1. Introduction 
The Hall effect of light is a well known phenomenon demonstrating how the internal state of 

the light beam (polarization or inhomogeneous energy distribution) affects its trajectory (see, e.g., 
Refs. [1,2]). The most impressive and intensively studied manifestation is associated with lateral 
(out of the incidence plane) shifts of reflected and refracted beams occurring when a circularly 
polarized beam falls onto a plane boundary between two homogeneous media (Imbert – Fedorov 
shift) [3–10]. 

Its usual explanation is based on the incident beam representation as a superposition of partial 
plane waves. Each of them generates its own refracted and reflected (secondary) counterparts in 
accordance to the known Snell and Fresnel laws [11], so that every secondary plane wave changes 
the direction, amplitude and phase in respect to its prototype. Afterwards all the reflected (refracted) 
plane waves are put together to form the corresponding reflected (refracted) beam. Geometric 
phases, accepted by the circularly polarized secondary waves in compliance with their directions, 
lead to specific transformation of the output beam profile resulting in the Imbert–Fedorov shift 
[4,7–9]. Simultaneously, this shift warrants conservation of the beam angular momentum in the 
reflection or refraction process [1,4]. 

Such way of reasoning seems to be the most natural and almost automatically leads to the 
correct results. However, it looks rather formal. Operating in the Fourier space provides limited 
possibilities of employing pictorial arguments, based on the incident beam spatial structure, and role 
of the beam spatial parameters in the emergence and strength of the discussed effect remains 
obscure.  

Really, consider a monochromatic paraxial beam with the wave number  propagating along 
axis  in a homogeneous medium with the refraction index n . The electric and magnetic fields of 
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this beam can be represented as superpositions of two orthogonally polarized contributions denoted 
by subscripts X ,  [12]: Y
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where  are the slowly varying complex amplitudes that satisfy the parabolic equation 
of paraxial optics [13] 
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( , )x y∇ = ∂ ∂ ∂ ∂  is the transverse gradient. In actual fact, the paraxial field representation via Eqs. 
(1) and (2) goes back to the seminal work [14]. Let us focus on the longitudinal components of the 
field (1), 
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Within the frame of paraxial approximation, quantities (3) are small with respect to the transverse 
field, . The small parameter γ coincides with the angle of self-diffraction (beam 
divergence) [12–14]  
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0b  being the characteristic size of the transverse spatial inhomogeneity of functions ( ), ,Xu x y z , 

.  ( ), ,Yu x y z
Let the beam be uniformly polarized, 
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and, additionally, axially symmetric so that in polar coordinates  
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it is described by the azimuth-independent complex amplitude  
  ( ) ( ) ( ), , , , ,Xu x y z u x y z u r z≡ ≡ . (7) 
Let us inspect which features of the incident beam spatial structure are sensitive to the polarization 
state and how and whether can they affect the beam transformation at the plane boundary. In case of 
circular polarization ( iβ = ± ) the polarization helicity defined as [4] 
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equals to 1σ± = ± . Obviously, the transverse beam profile completely determined by function (7) is 
not related to the polarization; however, its longitudinal components following from (3) with 
account for (5) and (6), 
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explicitly contain the polarization-dependent vortex phase factor [16]. Of course, their meaning for 
the energy/momentum distribution of the beam as a whole is negligible: corresponding contribution 
proportional to 2 2 2~z zE H γ+  should be discarded in the first-order paraxial approximation 
[14,15]. But the very existence of the components (9), that explicitly change the forms with 
switching the circular polarization sign, qualitatively affirms that polarization affects the beam 
spatial characteristics [17,18]. In fact, the “vortex” longitudinal component is the only polarization-
dependent feature of the incident paraxial beam, and all the subsequent spin-sensitive effects, that 
may happen to the beam in the course of its propagation or transformations, inevitably “stem” from 
this longitudinal field. For example, relative magnitude of the -components can be substantially 
amplified and their vortex nature comes to light due to violation of the beam paraxiality (e.g., after 
the beam is tightly focused [1,15,19–21]). Likewise, here we intend to show that it is the 
longitudinal field (9) that underlies the polarization-dependent effects accompanying the beam 
refraction and reflection. 

z

2. General calculations 
The standard scheme of the beam transformation at a plane interface is illustrated by Fig. 1 

following to Ref. [22]. Plane N separates two homogeneous half-spaces with refraction indices  
and . The incident (I), reflected (R) and refracted (T) beams propagate along axes 
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( , ,j I R T= ); with each interacting beam, its own coordinate frame is associated, all origins 
coinciding, axes jx  lie in the plane of incidence, axis jy y≡  is common and belongs to the 
boundary plane. In their own frames, the beams are described by Eqs. (1) and (2) with refraction 
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Fig. 1. Geometric conditions for the beam transformation at a plane boundary. Complex 
amplitudes of the incident, reflected and refracted beams are defined in reference planes 
PI, PR and PT respectively; rI , rR and rT are the transverse coordinates of an arbitrary 
point r of the boundary measured in “own” frames associated with the incident, reflected 
and refracted beams. Further explanations see in text. 
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Relations between the three beams follow from the continuity conditions for the tangential 
components of the electric and magnetic fields – in fact, we operate in the usual way that gives the 
known Fresnel coefficients [11] but apply it to transversely confined paraxial beams rather than to 
plane waves. This requires some modifications of the known scheme; the main one is that any 
paraxial beam is naturally described only in its own cross section. Such reference cross sections are 
formed by planes  defined by equations jP 0jz = ; these planes are orthogonal to axes , and axis 

 is their common intersection (Fig. 1). All the reference planes are not real cross sections of the 
corresponding beams: e.g., the incident beam does not exist in the part of plane  above the 
boundary but it is suitable to characterize the incident beam by the complex amplitude distribution 
which would take place in plane  if the whole half-space 

jz
y

IP

IP 0Iz <  were a homogeneous medium 
with refraction index . Similarly, the reflected and refracted complex amplitude distributions in 
the reference planes  and  form the initial conditions for the corresponding beams that are 
supposed to propagate in continuous homogeneous media with indices  and 
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In Tn 1.  
Our task is to link the complex amplitude distribution of the incident beam 
( ) ( ), ,, ,0 ,I I

X Y I X Y Iu x y u x y≡ , defined in the reference plane , with functions 1P

( ) ( ), ,, ,0 ,R R
X Y R X Y Ru x y u x y≡  and ( ) ( ), ,, ,0 ,T T

X Y T X Y Tu x y u x y≡  that characterize the secondary beams 
in their associated reference planes  and . It should be noted that boundary conditions at the 
interface N cannot be immediately applied to these functions: at the boundary, the complex 
amplitudes differ from their values in the reference planes with 
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0jz = . To find the beam fields in 
points where  slightly differs from zero, one should employ Eq. (2) due to which, in the first 
order in 

jz
γ  (first paraxial approximation), 
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( ,j j )x y∇ = ∂ ∂ ∂ ∂ . For every beam involved, plane N is an oblique cross section for which 

  tanj jz x jθ= . (12) 
Now we are in a position to write down the necessary tangential components of the electric and 

magnetic vectors. In accordance with (1) and (11), (12), components orthogonal to the incidence 
plane are associated with the -oriented field vectors: y
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This representation is quite similar to its counterpart known in the case of plane-wave incidence 
[11]. However, the in-plane field components include contributions owing to the longitudinal field 
(3), and this is the main difference from the usual case: 
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where 
 

1 Such a choice of reference planes is convenient in calculations and makes no trouble for interpretations because any of 
the three beams can only be observed at a certain distance from the boundary, where it is situated entirely within the 
corresponding homogeneous medium. 
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Formally, Eqs. (17) and (18) must have contained the complex amplitude derivatives taken at points 
of the boundary, i.e. with corrections for the propagation distances between the reference plane and 
the boundary, see Eq. (11). However, the “longitudinal” terms of (15) and (16) ‘per se’ are of the 
first order of smallness due to  in denominators, so the second terms of (11) would provide the 
second-order corrections and are thus neglected in the derivatives of (17) and (18). 
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Then, expressions (13) – (18) should be substituted into the usual continuity conditions [11] 
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1) and the x-coordinates in different terms of (13) – (18) are linked by equations 
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In the “differential” terms of (17), (18), substitution (21), if necessary, should be made after the 
differentiation with respect to the “own” jx  is performed. 

After substitution of expressions (13) – (16) into (19), (20), we obtain a complete set of 
conditions determining the vector beam transformation at a plane boundary. They can be solved by 
successive approximations. First, in view of Eqs. (10) and (21), all the exponential multipliers in 
(13) – (16) appear to be identical and may be omitted. Then, approximate solution to Eqs. (19), (20) 
is sought in the form 
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of the order γ  associated with the beams’ transformation on passages between the reference planes 
and the boundary (second terms in (11)) and with the longitudinal field contributions (second terms 
in brackets of (15), (16)). For the zero-order terms one easily obtains obvious relations 
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are the usual Fresnel transmission and reflection coefficients [11]. Note that in Eqs. (23), (24) 
arguments Ix , Rx  and Tx  are connected by Eqs. (21).  



For calculation of the corrections ( ), ,j
X Y ju x yδ  of Eq. (22), results of zero approximation (23), 

(24) are substituted into the terms of (13) – (16) that are proportional to . Then, after simple but 
tedious algebra, involving relations (23) – (26), (21) and the derivative correspondences  
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one arrives at the final results which, in view of their importance, are presented in explicit form: 
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arguments Ix , Rx  and Tx  are still related by Eqs. (21). 
Eqs. (27) – (31) represent a vector generalization of the scalar formulae obtained before 

[22,23]. The vector nature of the optical field manifests itself by the fact that Eqs. (27), (28) 
determining , contain not only the in-plane incident field  but also derivatives of the 
orthogonal component , and Eqs. (29), (30) for  contain contributions of . Interestingly, 
these “vector” modifications involve derivatives with respect to the “off-plane” coordinate . 
Without them, Eqs. (27) – (30) can be reduced to relations derived in Refs. [22,23] for a boundary 
with diffraction grating if the grating period tends to infinity (“smooth” interface). Indeed, due to 
relations  
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the terms of Eqs. (27) – (30), proportional to derivatives with respect to Ix , can be expressed via the 
angular derivatives of the corresponding transformation coefficients, as is suggested by the angular-
spectrum-based reasoning [4,22]2. Importantly, no special requirements were imposed so far 
relating the real or complex values of  and , and expressions (23) – (31), though presented In Tn
                                                 
2 In Refs. [22,23] the plane wave transformation at the boundary is characterized by “amplitude efficiencies” 

( ) ( ),cos cosI T T I In n T Iτ θ θ θ ⊥= θ  rather than by the “pure” transmission coefficients ( ), IT θ⊥ ; this results 

in additional summands in the expression of Id dτ θ  as compared to , IdT dθ⊥ , which apparently caused additional 
terms with x -derivatives in formulae for the secondary beam deformations of [22,23]. 



formally for a dielectric interface, are applicable in cases where one or both contacting media are 
conductive. 

The reflected/refracted beam spatial configuration described by Eqs. (23), (24) and (27) – (30) 
completely coincides with what follows from the traditional approach based on the plane-wave 
expansion [4,9] in the first order in γ . However, the presented way of reasoning discloses some 
new important aspects of the beam transformation. Note that all terms with first derivatives in (27) 
– (30) appear due to the longitudinal component of the incident field. It is important to emphasize 
that the longitudinal component of the incident beam contributes to formation of the transverse 
components of the reflected and refracted beams. Therefore, while in the incident field the small 
corrections of the order γ  were orthogonal to the “main” transverse field and did not disturb the 
beam energy distribution in the first paraxial order (see notes below Eq. (9)), in the secondary 
(reflected/refracted) beams, the first-order perturbation “penetrates” into the transverse components 
and can cause quite perceptible distortions of their spatial profile. The terms of Eqs. (27) – (30) 
proportional to Ix∂ ∂  describe distortions “oriented” parallel to the incidence plane; generally, they 
are responsible for the “in-plane” beam shift known as the Goos–Hänchen shift [4,9,10], the best 
observable in conditions of the total reflection. The “out-of-plane” Imbert–Fedorov shift [3,4], 
orthogonal to the incidence plane, is associated with terms containing y∂ ∂ . Our present 
consideration shows that both effects can be treated as immediate consequences of the non-
transversality of the incident beam field and directly originate from its longitudinal component. 

3. The secondary beam shift 
To demonstrate equivalence of the presented approach and the previously developed models 

[3–9], let us determine the lateral shift of the refracted beam described by Eqs. (23), (27), (29). In 
general, the center of gravity coordinates for the j-th beam are defined as 
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(integration over the whole beam cross section is implied). Terms ,
0
R Tx  correspond to the Goos – 

Hänchen shift; the center of gravity displacements orthogonal to the incidence plane (Imbert – 
Fedorov shifts) are associated with ,

0
R Ty  Hence, in application to the refracted beam, we have 

  
( )
( )

2 2

0 2 2

T T
X Y T

T

T T
X Y T

y u u dx dy
y

u u dx dy

+
=

+

∫
∫

( )
( )

2 22 2

2 22 2

I I
X Y I

I I
X Y I

y T u T u dx dy

T u T u dx dy

⊥

⊥

+
≈

+

∫
∫

 

  
( ) ( ) ( ) ( ){ }

( )2 22 2

I T I T I T I T
X X X X Y Y Y Y I

I I
X Y I

y T u u u u T u u u u dx dy

T u T u dx dy

δ δ δ δ
∗ ∗ ∗ ∗

⊥

⊥

⎡ ⎤ ⎡+ + +⎢ ⎥ ⎢⎣ ⎦ ⎣+
+

∫

∫

⎤
⎥⎦  (34) 

(asterisk, as usual, denotes the complex conjugate, and both media are supposed dielectric so that 
transmission coefficients (25), (26) are real). If the incident beam possesses circular symmetry (e.g., 
is Gaussian), the first summand in the right-hand side of (34) vanishes, while in the second 
summand (second line of (34)), only terms containing derivatives with respect to y  can give non-
zero contributions. Consequently, expression in figure brackets of (34) may be replaced by 
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This expression includes only parameters of the incident beam profile and we may omit the super- 
and subscripts “ I ” in further analysis. Now suppose the incident beam to be homogeneously 
polarized; together with assumed circular symmetry this means that Eqs. (5) and (7) are true. If, 
additionally, the complex amplitude function ( ),u x y  is real (e.g., the beam waist plane coincides 
with the reference plane , Fig. 1), denominator of Eq. (34) acquires the form IP

( )22 2 2T T u dxβ ⊥+ ∫ dy  and expression in figure brackets of (35) reduces to 
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After this is substituted into (34), the whole numerator of (34) can be transformed by using the 
integral relation 
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For the reflected beam, lateral shift can be found similarly, 
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With the help of relations (10), (25), (26) and (31), one can make sure that these results are 
identical to more familiar relations obtained via the known theory of the spin Hall effects; e.g., by 
means of the easily verified equality ( )tan 2cotI IC T T R Rθ θ⊥ ⊥ = − + ⊥ , Eqs. (36) and (37) can be 
reduced to Eq. (58) of Ref. [4]. 

The angular Goos – Hänchen and Imbert – Fedorov shifts [3,4] can be found by a similar 
procedure which, instead of (33), starts with expression for the mean tilt of the secondary beam 
trajectory [15,22,27] 
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4. Conclusion 
We have considered transformation of a paraxial beam upon reflection and/or refraction at a 

plane boundary between two homogeneous media. In contrast to the usual approaches based on the 
field representation via the plane-wave spectrum (in the momentum space) [3–10], our 
consideration relies upon the real-space arguments. It starts with representation of a vector paraxial 
beam via complex amplitudes of orthogonally polarized components, valid in the first order of 
paraxial approximation (first order in the divergence angle γ ). The main feature of this 
representation is explicit presence of the longitudinal field component. Analysis of the beam 
transformation at the boundary is performed by direct generalization of the usual procedure 
developed for plane waves and commonly used for obtaining the Fresnel laws for the refraction and 
reflection coefficients [11]. Deviations from the geometric picture of the beam transformation are 



considered as immediate consequences of the first-order corrections to the incident beam spatial 
structure. In particular, it is the longitudinal electric and magnetic fields of the incident beam that 
give rise to such known post-geometric effects as the polarization-dependent Goos – Hänchen and 
Imbert – Fedorov shifts. Especially, the Imbert – Fedorov shift of the beam center of gravity can be 
treated as a manifestation of the polarization-sensitive vortex structure of the incident beam 
longitudinal component. In the course of reflection or refraction, this vortex structure partly 
“penetrates” into transverse components of the reflected and refracted beams and causes the 
observable spin-dependent distortion of their spatial profiles. This reveals relationship between the 
Imbert – Fedorov shift at a plane boundary and the lateral shift of a focal spot [17] – another spin 
Hall effect manifestation that also appears due to the longitudinal field modification caused by 
switching the sign of circular polarization. In both phenomena, the longitudinal field of the initial 
paraxial beam appears as a crucial element of the mechanism by which the spin-orbit interaction is 
realized. In conjunction with the decisive role that the longitudinal component plays in the spin-to-
orbit angular momentum conversion upon the light beam focusing [19–21] or scattering [24], this 
leads to suggestion of the special importance of the longitudinal field in other spin-orbit phenomena 
involving paraxial beams, which should be clarified in further research. 

The “real-space” approach to the beam transformation at a plane boundary appears to be 
completely equivalent to the usual plane-wave-spectrum method of analysis. However, the 
presented way of operation, essentially based on pictorial geometric arguments, may be useful in 
some methodical aspects. Its final results (Eqs. (27) – (30) with known auxiliary relations (23) and 
(24)) are valid for arbitrary paraxial beam and describe, from the common point of view, not only 
spin-dependent effects but also the beam transformations owing to its internal spatial structure (e.g., 
orbital Hall effect [15,25,26]). We hope the method of this paper will be useful in further studies of 
the optical spin Hall phenomena, including elucidation of the role and manifestation of the internal 
energy flows [15]. 
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