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Mottos:

“What lead me more or less directly to the special the-
ory of relativity was the conviction that the electromotive
force acting on a body in motion in a magnetic field was
nothing else but an electric field.” Letter to the Michelson
Commemorative Meeting of the Cleveland Physics Soci-
ety (1952), as quoted by R.S.Shankland, Am J Phys 32,
16 (1964), p35, republished in A P French, Special Rela-
tivity,

ISBN 0177710756
"One creates from nothing. If you try to create from

something you’re just changing something. So in order
to create something you first have to be able to create
nothing. " – Werner Erhar

“Rather than being restrictions on the behavior of mat-
ter, the laws of physics are restrictions on the behavior of
physicists.”–V.J. Stenger

Abstract

The free Fock space with corresponding - information
creation and anihilation operators - supplies a kind of ex-
tended language in which equations for n-point informa-
tion (n-pi) of classical and quantum physics are described.
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In this description the space and time are treated in a
similar manner and even different reference systems are
treated in a more democratic way. The information vac-
uum vectors in both the classical and quantum case are
introduced. Restrictions upon n-pi leading to complete
equations are derived.

The paper also draws attention to the fact that aver-
aging or smoothing of the original quantities (filtration) is
not only consistent with the experimental capabilities of
people, but it is also an important tool to understand the
reality.
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1 Introduction

Motto:

“A theory of everything (TOE) is a putative theory of
theoretical physics that fully explains and links together
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all known physical phenomena, and predicts the outcome
of any experiment that could be carried out in principle.”,
([17]).

In presented papar we would like to show that classical and quan-
tum physics in many ways implement - not in such an ambitious
maner - although perhaps more generally, the unification philoso-
phy which consists in acknowledging certain relationships between
concepts and entities previously treated in a separate way. By this
we mean that such relationships take place not only for these disci-
plines separately, but it takes place between them. Let me give you
one of a more formal definitions of unification taken from computer
science:

Given two input terms s and t, unification is the process which
attempts to find a substitution that structurally identifies s and t.
If such a substitutin exists, we call this substitution a unifier of s
and t. It is possible to exist infinitely many unifiers.

I give you a few examples of my understanding of the idea of
unification in which unifiers are given by the same equation or space
or notion and so on:

We know very well that a resignation from excess of information
called filtration is often associated with emerging in the sea of ele-
ments, atoms, agents, - constituting the system - some new, often
surprising phenomena as the emergence of certain structures, pat-
terns and so on. It also often corresponds to an only possible, global
characteristics of the system. It looks that giving up the unneces-
sary details, we obtain additional knowledge about the system. In
this case we are dealing in fact with a unification of the macro-
scopic and the microscopic description of the same discipline with
filters or projectors as unifiers . It is worth noting that the unifica-
tion of micro and macro description of the system is also carried out
here using the same linear equations, with appropriate additional
conditions.

Agreeing to the loss of information, classical and quantum physics
can be described in a linear manner with linear equations as unifiers.
It turns out that linear equations which can describe classical and
quantum systems can be considered in the free Fock space (FFS).
The Fock space is an algebraic system used in quantum mechanics
to describe quantum states with a variable or unknown number of
particles. It also appears that classical states with incomplete in-
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formation about initial and boundary conditions (systems with loss
of information) can and are described in linear way in such a space.
This means, for example, that the supperposition principle takes
place even for classical physics and that locally smoothed exact so-
lutions can be represented by means of supperpositions of nonlocally
smoothed solutions.

In FFS, classical and quantum systems which have the same ac-
tion integral (Lagrangian or Hamiltonian) can be described by n-
point information (n-pi) satisfying also identical equations. More-
over, the basic vector |0> of FFS can be modified in such a way,
|0 >→ |0 >info, that the operators appearing in the equations for
the generating vector |V> of n-pi, were right invertible operators,
see (8). This modification has an impact on n-pi only if there are
external forces acting on the system. Guided by the analogy with
quantum theories, we interpret vector |0 >info as a vector describing
the vacuum. Since the vector |0 >info does not satisfy any known
equation of classical or quantum physics, and because by means of
vector |0 >info can be build all the available local information about
the system, we assume that it describes the local information vac-
uum, see Eq.8. See also Werner Erhard’s statement from the initial
mottos.

1.1 Free Fock space. Operators that create and annihilate
(local) information

Motto:

“Information is whatever constrains our beliefs.” ([14],
[27]; page 63).

Free, or, full, or supper - Fock space (FFS) are synonyms used to
describes space of vectors

|V >=
∑

n=1

ˆ

dx̃(n)V (x̃(n))η̂
⋆(x̃1)...η̂

⋆(x̃n)|0 >+ V0|0 > (1)

in which classical and quantum physics are described. In fact, we
mean the classical physics with varies averaging and smoothing op-
erations also called filtrations - like moving averages.

We use here the following denotations: V (x̃(n))- components of
the vector |V> - are n-point functions ((n-pfs), that we will call
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n-point information (n-pi)), [3]. They descibe some local properties
of a considered classical or quantum system. n-pi (n-pf) V (x̃(n))
may be related to the averages or expectation values of products of
fields as well as matrices at points x̃(n). They depend on n vectors
x̃i; i = 1, ..., n with space-time and other components to reduce the
number of additional indices: x̃i ∈ S a set. We will assume that all
components of the vectors x̃i are discrete quantities. In this way,
we consider discrete and discretized continuous physical systems. In
fact, we could assume that vectors x̃i are matrices and this would al-
low their multiplication and methods of non commutative geometry
could be applied but now it would lead to premature complications.

η̂⋆(x̃) are operators in FFS (not in S) indexed by values of the
vector x̃ ∈ S, and |0> - a vector with 0-pi component - V0. In
total, in FFS, the products η̂⋆(x̃1)...η̂

⋆(x̃n) of operators acting on
the vector |0 >, η̂⋆(x̃1)...η̂

⋆(x̃n)|0 >, create independent base that
becomes the orthonormal base when we assume Cuntz (co)relations

η̂(x̃)η̂⋆(ỹ) = δ(x̃− ỹ) · Î (2)

where operator η̂⋆(ỹ) is adjoint operator to η̂(ỹ), Î- the unit operator
and δ- the Dirac’s or rather Kronecker’s delta. For Fock spaces in
which other relations are used, see, e.g., [25]. We must also assume
that the following equalities are satisfied:

η̂(x̃)|0 >= 0, < 0|η̂⋆(x̃) = 0 (3)

for all values of x̃.
By analogy to similar terms in QFT, we will call corresponding

operators as (local) information creating (η̂⋆(x̃)) and (local) infor-
mation annihilating (η̂(x̃)) operators at the point x̃. Local infor-
mation created at the points x̃1, ..., x̃n is described by the function
V (x̃(n)). We can say that the operator η̂⋆(x̃) is related in some way
to a measurement at the “point” x̃. The vector |0> whose struc-
ture, at accepted assumtions, we do not need to know, describes the
local information vacuum. In fact it may contain some aggregated
(nonlocal information).

In other words, n-pfs V , for n=1.2...., describe properties of the
system which are related in some way to points x̃(n) ≡ (x̃1, ..., x̃n)
like moving averages or averages of products of the unique “field”
ϕ[x̃1;α] · · · ϕ[x̃n;α] , see [1], [3], with respect to initial and bound-
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ary conditions represented here by the symbol α. For this rea-
son, the n-pfs V are denoted in Statistical Field Theory (SFT) as
< ϕ(x̃1) . . . ϕ(x̃n) > ,or, in Quantum Field Theory (QFT), where
fields are operator-valued functions, as < Ψ|ϕ̂(x̃1) . . . ϕ̂(x̃n)|Ψ > and
are called expectation values of products ϕ̂(x̃1) . . . ϕ̂(x̃n).

Use yet vectors (1) instead of linear functional series, ([2]; App.A),
to generate these n-pi, more closely resembles the canonical formu-
lation of classical and quantum theories. In addition, we avoid as-
sumptions about the formalities of the generating functional series.

We can say that that a main objective of work is a better under-
standing of the linear equations for the n-pi V described in a vector
form in FFS as:

Â|V >= |Φ > (4)

where we will assume that the source vector |Φ > creates (local)
information about the system described by the vector |V>. From
Eq.8 results that the vector |Φ > is proportional to the vacuum
vector |0 >. This is not a surprising result because the isolated
system can be treated as if it was contained in a vacuum. In a
more detailed way we could say that the vacuum, which is described
by the global (agregated) information related to the system, see
(8), is simultaneously responsible for local information about the
system. Naturally, in this way of thinking - the Mach philosophy is
manifested!

The work, in some sense, extends or rather trims the previous
author’s papers like [2], [3], although it may be read independently.

2 Restrictions on n-point information (n-point functions)

leading to complete equations

We would like to make the process of averaging or smoothing (filtra-
tions) to be independent of the choice of points. This is expressed
by the equalities:

< ϕk(x̃1)ϕ(x̃k+1) · · · ϕ(x̃n) >=

< ϕ(x̃1) · · · ϕ(x̃k)ϕ(x̃k+1) · · · ϕ(x̃n) > |x̃1=...=x̃k
(5)

which mean that when in the n-point information (n-pi) we substi-
tute field ϕ[x̃1;α] by ϕk[x̃1;α] we should get the same result as if
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we replaced in the (k+n)-pi - k first variables by x̃1. In this way,
you can get equations for n-pi which do not depend explicitly on
the choice of averaging or smoothing. The same remark applies to a
theory with a more general nonlinear terms leading to the n-pi like
< N [x̃1;ϕ]ϕ(x̃2) · · ·ϕ(x̃n) >with local functional N expanded in the
Volterra power series, [6]. The problem arises when the theory has
nonanalitic nonlinearities, although using the functional calculus,
you can make some progress, [3]. Another important restrictions
imposed on n-pi (correlation functions) are nonnegative conditions:

< ϕ(x̃) . . . ϕ(x̃) >=< ϕk(x̃) >≥ 0 (6)

where the equality represents the case ϕ = 0. In fact, for the corre-
lation functions, we postulate more general conditions:

< ϕ(x̃1) . . . ϕ(x̃n) >≥ 0, if {ϕ(x̃1;α) . . . ϕ(x̃n;α)} ≥ 0, for all α
(7)

where αrepresents initial and boundary conditions, for Eq.12, under
which the chosen averaging or smoothing process is taken. In the
case of points (x̃1, ..., x̃n) among which you can not find a pair of
points which are not "close", like in the case (6), the conditions (7)
should almost always be satisfied. Derogate from these conditions
is evidenced by the large oscillations of the small "distances”.

It is important that restrictions like (5) lead to complete equa-
tions for n-pi generated by the generating vector |V >. In fact this
is achieved through escape to infinity: the infinite set of equations
for an infinite amount of n-pi. Hence, the closure problem arises
considered in many papers, among others in the papers of the au-
thor:

[1, 2, 3].

3 Equations for n-pi of classical physics with (local) in-

formation vacuum. Quantum Mach’s principle?

Motto:

"I love talking about nothing. It is the only thing I
know anything about." – Oscar Wilde.
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“Apart from the omniscience there is nothing else.” –Z.
Jacyna-Onyszkiewicz

We postulate the following equations for the n-pi < ϕ(x̃1) · · · (x̃n) >
which by means of the generating vector |V> can be described in
the following way:

(L̂+ λN̂ + Ĝ)|V >= P̂0|V > +λP̂0N̂ |V >≡ |0 >info (8)

with linear operators acting in FFS:

L̂ =
´

η̂⋆(x̃)L[x̃; η̂]dx̃+ |0 >< 0| =
´

η̂⋆(x̃)L(x̃, ỹ)η̂(ỹ)dx̃dỹ + P̂0 (9)

N̂ =

ˆ

η̂⋆(z̃)N [z̃; η̂]dz̃ + P̂0N̂ (10)

and

Ĝ =

ˆ

η̂⋆(x̃)G(x̃) (11)

The above operators L̂, N̂ , Ĝ, are expressed by operators η̂⋆, η̂ which
satisfy the Cuntz (co)relations (2).

Eq.8 results immediately from the following dicrete version of
original integro-differential equation, for the field ϕ:

L[x̃;ϕ] + λN [x̃;ϕ] +G(x̃) = 0 (12)

which we apply to one (first) general solution appearing in the n-
pi< ϕ(x̃1) . . . ϕ(x̃n) > and from (2) - (3). Here L and N are given
linear and nonlinear functionals and G a given function. Equations
(12) describe the subtle (fine graining) structure of the system un-
der consideration. However, Eq.8 describes the averaged (coarse
grained) or smooth characteristics. In both these equations - space
and time variables - are treated in a similar way and this feature of
description can be considered as the space-time unification. A uni-
fier in this case is the definition of n-pi (use of multi-time or rather
multi-point information). Other approach to the space-time vari-
ables, with the time variable t distinguished, is presented in Sec.4.3.
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We assume that

L[x̃;< ϕ(•)ϕ(x̃2) . . . ϕ(x̃n) >] =< L[x̃;ϕ(•)]ϕ(x̃2) . . . ϕ(x̃n) >
(13)

In fact, this equality can be regarded as a restriction on the linear
operator (fuctional) L and/or averaging (smoothing) process <...>.
Now, with the help of Cuntz relations (2) and Eq.12 it is easy to see
that Eq.8takes place.

A small modification of the r.h.s. of Eq.8, compared with similar
equations given in almost all previous works, is connected with a
demand of right invertability of the operators L̂ and N̂ what force
us to add terms P̂0and λP̂0N̂ to corresponding operators, see (9)
and (10). Without such modifications we can only look for a right
inverse operation satisfying, e.g., equation

N̂N̂−1
R = Î − P̂0 (14)

which in not literally a right inverse operation satisfying equation:

N̂N̂−1
R = Î (15)

And just this last equality leads to the emergence in the right-hand
side of Eq.(8) - the vector |0 >ph. The amazing thing is that vector
|0 >info∼ |0 >, called the local information vacuum vector have to

be used only for Ĝ 6= 0 (operator describing external field in which
the system is immersed). In order not to confuse this vector with
the vector describing the quantum vacuum, we replaced the notation
used in previous work ([3]): |0 >ph⇒ |0 >info.

Since this possibility was caused by the transition from the de-
tailed (fine-grained) to the less detailed (coarse-grained) description,
we can talk about the (local) information vacuum vector as the phe-
nomenon of emergence. The above observations also give us some
insight into the human intellectual condition: If something is hard
to imagine (no theory, no subconscious assumptions), we treat it
like a vacuum!

For Ĝ = 0, we get all perturbation formulas for n-pi, for n=1,2,...,
from projected Eq.8:

(Î − P̂0)(L̂+ λN̂)|V >= 0 (16)
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in which vector |0 >info∼ |0 >is absent - what we treat as an ad-
ditional indication to treat this vector as a vacuum (describing vac-
uum).

In order to deepen our knowledge about vacuum, see [24], and
for a conceptual development of the vacuum in physics, see, e.g., [5].

By introducing projectors P̂n projecting on the consecutive terms
of the expansion (1), see (24), we can express the projection prop-
erties of operators (9) - (11) as follows:

P̂nL̂ = L̂P̂n (17)

(diagonal operator), where n=0,1,2,...,

P̂nN̂ =
∑

n<m

P̂nN̂P̂m (18)

(upper triangular), where n=0,1,2,..., and

P̂nĜ = ĜP̂n−1 (19)

(lower triangular operator), where n=1,2,.... The operator values

function N̂ can be a polynomial functional or a more general Volterra
functional power series depending on the vector variable z̃ and the
operator variables η̂(ỹ) indexed by the vector variable ỹ. The oper-

ator N̂

N̂ =
´

dz̃η̂⋆(z̃)N [z̃; η̂] + P̂0N̂ =
∑

m

´

dz̃dỹ(m)N(z̃; ỹ(m))η̂
⋆(z̃)η̂(ỹ1) · · · η̂(ỹm) + P̂0N̂ (20)

where m+1-pfs N(z̃; ỹ(m)) describe usually nonlinear interaction among
constituens of the system.

We have similar relation for the operator

L̂ =
´

dz̃η̂⋆(z̃)L[z̃; η̂] + P̂0 =
´

η̂⋆(x̃)L(x̃, ỹ)η̂(ỹ)dx̃dỹ + P̂0 (21)

As we said, the operator N̂ is related to a nonlinear part of the
strong (not averaged) formulation of theory (the original differential

equations, (12) ). An extension of the operator N̂ is described by

the operator P̂0N̂ which we propose to choose as follows:
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P̂0N̂ =
∑

m

P̂0

ˆ

dz̃dỹ(m)N0(z̃; ỹ(m))η̂(ỹ2) · · · η̂(ỹm) (22)

with undetermined functions N0(z̃; ỹ(m)). This choice of the operator

N̂ is dictated by the demand (15) to be a right invertible operatore.
Further constraints on this operator may be derived from requests
to computation convergence and its simplicity.

The operator Ĝ describes a source term with a function G(x̃)
correponding to the external forces, for example. It is symtomatic
that diagonal and upper triangular operators, L̂, N̂ , describe an in-
teraction or self-interaction of the constituents of the system and
that lower triangular operator, Ĝ, describes an interaction with the
external world.

As we will see in the Sec.4, the quantum properties of systems are
also describe by the lower traingular operators. Does this mean that
the quantum properties of systems are the result of their interaction
with the rest of the world? In other words we would have here kind
of quantum Mach’s principle claiming that "Local physical laws are
determined by the large-scale structure of the universe."

The simplest diagonal operator is the unit operator

Î = |0 >< 0|+

ˆ

η̂⋆(x̃)η̂(x̃)dx̃ (23)

Other diagonal operators are the projectors used in formulas (17) -
(19) and constructed by means of the kind of tensor product of bra
and ket vectors (outer products):

P̂n =
´

η̂⋆(x̃1) · · · η̂
⋆(x̃n)|0 >< 0|η̂(x̃n) · · · η̂(x̃1)dx̃(n) =

´

η̂⋆(x̃1) · · · η̂
⋆(x̃n)

(

Î −
´

η̂⋆(x̃)η̂(x̃)dx̃
)

η̂(x̃n) · · · η̂(x̃1)dx̃(n) (24)

for n=0,1,2,..., where P̂0 = |0 >< 0|.
The simplest upper trangular, local operator of the type (20) is

the local operator

N̂1 =

ˆ

dx̃η̂⋆(x̃) · η̂2(x̃) + P̂0

ˆ

dx̃η̂(x̃) (25)

through which, by the exponentiation, one can build other type of
local operators

11



N̂n = N̂n
1 =

ˆ

dx̃η̂⋆(x̃) · η̂n+1(x̃) + ... (26)

and further

N̂ ≡ N̂loc =
∑

n

λnN̂n = f(N̂1) + ... (27)

Projectors (24) form a complete set of orthogonal projectors:

∑

n=0

P̂n = Î , and P̂mP̂n = P̂nδmn (28)

We can say that projections P̂n|V >, for n=1,2,..., provide n-point
information about the local nature of the system but the projection
P̂0|V >provides rather global, agregated information.

4 Comparison with quantum field theory (QFT) and a

few loose remarks

4.1 Wightman functions and operations of averaging and
smooting

In the case of a system representing the Universe, or for isolated
systems, the r.hs. of Eq.8 can be interpreted as a vacuum, see [3]
and the end of Sec.1.1. From the foregoing discussion results that
the (classical) vacuum contains the global information about the
Universe. Like in Quantum Field Theory (QFT) a non-trivial struc-
ture of the vacuum (|0 >ph 6= |0 >) arises only through the nonlinear
theory. On the other hand, the vacuum in QFT is defined as a state
of minimum energy and is described by a corresponding eigenvector
|Ψ0 > of the Hamilton operator. So these two vectors can differ
from one another because they belong to different languages, but
the physical meaning can be the same if we realize that the lack
of instruments that provide local information about the system is
equivalent to the absence of any material bodies, which may corre-
spond to a vacuum. We can illustrate the the above correspondence
as follows:

|0 >info⇐⇒ {vacuum} ⇐⇒ |Ψ0 > (29)

12



In QFT identical equations as (8) take place, for vacuum ex-
pectation values of products of the field operator ϕ̂(x̃) (Wightman
functions):

< Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 > (30)

where the field operator ϕ̂(x̃) satisfies exactly the same equations as
the field ϕ :

L[x̃; ϕ̂] + λN [x̃; ϕ̂] +G(x̃) = 0 (31)

see (12).
In this case however, n − pfs ≡ n − pi are not permutationally

symmetric because

[ϕ̂(x̃1), ϕ̂(x̃2)] 6= 0 (32)

for almost all x̃1and x̃2. Nevertheless, the generating vector

|V >=
∑

n=1

´

dx̃(n) < Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 > η̂⋆(x̃1)...η̂
⋆(x̃n)|0 >

+V0|0 > (33)

generating (local) n-pi < Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 >satisfies identical
Eq.8 like in the case of classical, permutational symmetric n-pi <
ϕ(x̃1) . . . ϕ(x̃n) >. This could be interpreted as the real unification
of classical and quantum physics with identical form of Eq.8 as an
unifier, if the same method of solving this equation could be applied
in both cases. It is not inconceivable that this last sentence is a
certain understanding of the definition of unification stated in the
Introduction.

The fact that equations are identical in the cases of classical and
quantum theory - leads us to the question: Is it possible a classical
“averaging”, which would lead to non-symmetric n-pi? The answer
is - yes. but ... Let us consider the non-symmetric n-pi:

< ϕ(x̃1) . . . ϕ(x̃n) >=

ˆ

dα(n)ϕ[x̃1;α1] · · · ϕ[x̃n;αn]W [α(n)] (34)

where W [α(n)] = W [α1, ..., αn] , is a non-symmetric probability den-
sity or a smearing functional by means of which n-pi are defined.
Here αi, i=1,...,n represent “n” initial or/and boundary conditions
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or symmetry parameters of the same system described in classical
case by the field ϕ and in quantum case by the operator ϕ̂. For
non-symmetric W we get non-symmetric n-pi < ϕ(x̃1) . . . ϕ(x̃n) >.
It can not be excluded that there is a W , for which there is

< ϕ(x̃1) . . . ϕ(x̃n) >=< Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 > (35)

but the situation becomes more complicated. Instead of one ensem-
ble, common for any n, we have n, and, it is possible, that these
ensemble are different for each n. Canonical case

W = δ[α1 − α2]...δ[α1 − αn]W [α1] (36)

corresponds to symmetric n-pi which have nothing in commence
with quantum n-pi < Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 >. In the latter case we
should rather expect the formulas:

< Ψ0|ϕ̂(x̃1)...ϕ̂(x̃n)|Ψ0 >=

ˆ

dα̂ϕ̂[x̃1; α̂] · · · ϕ̂[x̃n; α̂]ŴΨ0
[α̂] (37)

for n=1, 2,... in which ϕ̂[x̃1; α̂]···ϕ̂[x̃n; α̂] means product of operators.

4.2 Green’s functions and nonsingular operators L̂

Green’s functions are another collection of n-pi used in QFT, which
are less mathematically correct but they are more convenient in the
computation and interpretation, [6], [7]. These properties are due
mainly to their direct relation to the condition of causality and uni-
tarity and the fact that they are, in contrast to the Wightman’s
functions, permutation symmetrical, [6], [7]. The equation for the
generating vector |V> for the Green’s functions G(x̃(n)) can be sim-
ilarilly written as (8)

(L̂+ λN̂ + Ĉ)|V >= P̂0L̂|V > +λP̂0N̂ |V >≡ |0 >info (38)

with vector |0 >info defined as in Eq.8. The operators L̂, N̂ have
the same projective properties as in classical case and the operator
Ĉ, resulting from the canonical commutation relations, is again the
lower triangular operator with the following projection properties:

P̂nĈ = ĈP̂n−2 (39)
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for n=2,3,...and its projections are equal to zero for n ∈ {0, 1},
see [10], Sec.7. From mathematical point of view Eq.38 expresses
the fact that |V >is a characteristic vector (functional) of complex
probability density functional or, more colloquially, it is a functional
Fourier transform of a certain functional (exponential function of
the action integral multiplied by the purely imaginary number i:
(exp{iS[α]})), [6], [7].

The Green’s functions G(x̃(n)) can be obtained from the Wight-
man functions (30) by means of permutations of their arguments
and preservation only these functions with time-orderings. To get
complete Eq.38, we have to use in addition the cannonical com-
mutation relations imposed on the operator field ϕ̂ which do not
change the dynamical equation (33). Because of operators can also
form a vector space it is worth noting that quantization provides an
interesting example of the dynamics with constraints without reac-
tion forces. Could it be an expression of extraordinary subtlety of
microcosm?

Let us assume that operator L̂ is a non singular operator (quan-
tum theory case) and we can transfor Eq.38 as

(Î + λL̂−1N̂ + L̂−1Ĉ)|V >= L̂−1|0 >info= |0 >info (40)

This equation leads to nontrivial perturbative solutions due to the
operator Ĉ. We see it by transformation of Eq.40 into equation:

[

Î + λ
(

Î + L̂−1Ĉ)
)−1

L̂−1N̂)
]

|V >=
(

Î + L̂−1Ĉ)
)−1

|0 >info

(41)
Its solution can be formally presented in the form:

|V >=
[

Î + λ
(

Î + L̂−1Ĉ)
)−1

L̂−1N̂)
]−1 (

Î + L̂−1Ĉ)
)−1

|0 >info

(42)
Thus, assuming the legitimacy of a perturbation series or Neu-

mann series for the first inverse appearing in the above formula, it
is easy to see that

Ĉ = 0 (43)

leads to the trivial solution
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|V >= |0 >info (44)

In other words, in quantum theories non trivial perturbation solu-
tions to Eq.38 comes from the lower triangular operator Ĉ 6= 0.
In classical theories, when Ĉ ≡ 0, to get non-trivial perturbative
solutions, we have to assume that operator L̂ is a right invertible.
In this case the formulas (40) - (42) do not occur and have to be
substituted by the formulas below.

In physics, a situation which corresponds to the non-singular op-
erators L̂ (due to ε-prescription or restrictions imposed on class of
possible n-pi) is usually associated with general conditions such as
causality and unitarity conditions. Sometimes, however, even in the
QFT, the operators L̂ are such singular that any ε- prescription is
not able to remove this defect. It takes place when we have too
much symmetry, such as gauge symmetry. In such cases to solve
Eq.38 we proceed differently: we assume that operator L̂ is a right
invertible operator. It means that a one side inverse operator exists,
L̂−1
R , such that

L̂L̂−1
R = Î (45)

With the help of this operator, Eq.38 can be converted in an equiv-
alent manner as follows:

{

Î + L̂−1
R

[

λN̂ + Ĉ
]}

|V >= P̂L|V > +L̂−1
R |0 >info (46)

where projector P̂L = Î − L̂RL̂. Further transformations may look
similar, with the difference that the operator L̂ is substituted by
L̂−1
R . We get, for example,

[

Î + λ
(

Î + L̂−1
R Ĉ)

)−1
L̂−1
R N̂)

]

|V >=

(

Î + L̂−1
R Ĉ)

)−1 (

P̂L|V > +L̂−1
R |0 >info

)

(47)

To find the projection P̂L|V >we can use the perturbation principle,
[2], which means that undetermined element of Eq.47 is identified
with the linear part of original theory:

P̂L|V >= P̂L|V >(0) (48)
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As a consequence, the first order approximation to vector |V> is

|V >(0)=
(

Î + L̂−1
R Ĉ)

)−1 (

P̂L|V >(0) +L̂−1
R |0 >

(0)
info

)

(49)

with the vector P̂L|V >(0) chosen according to classical or quantum
physics with λ = 0. Of course, in case of classical physics we should
have Ĉ = Ĝ, or Ĉ = 0 with L̂−1

R instead of L̂
−1.

4.3 One-time n-pi (n-point information)

To be more specific let as assume that functions

α = (αi, αo) (50)

describe initial and other conditions respectively, for Eq.12. Then,
introducing notation: x̃ ≡ (t, ~̃x), we have

ϕ(x̃) ≡ ϕ[x̃;α] → ϕ[x̃;α]|t=0 ≡ ϕ[0, ~̃x;α] = αi(~̃x) (51)

where ~̃x contains indexes related to different filelds and space com-
ponents without time t. Hence we have the last equality in Eq.51.
Of course, (50), (51) do not describe the most general case. For
example, αomay depend on the time t as in case of non-stationary
boudary conditions which are changing over time. Then equations
for n-pi, for ensemble with such different boundary conditions, are
not so simple. Of course, still we can use moving averages with
respect to the time! Hence, perhaps, the popularity of this type of
averages.

Let us introduce the generating functional (not vector)

V [η; t] =

ˆ

δαiδαoW [αi, αo]exp

{

i

ˆ

d~̃xϕ[t, ~̃x;α]η(~̃x)

}

(52)

for the one-time n-pi < ϕ(t, ~̃x1)...ϕ(t, ~̃xn) >. Here and elsewhere the
symbol

´

represents a summation rather than integration (discrete
space). η - without hat, means a function, not an operator as in the
case η̂. But square brackets express the functional dependence of
corresponding quantities, [6].

It satisfies the Hopf’s evolution equation, [12]:
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i
∂

∂t
V [η; t] +H [η, i

δ

δη
]V [η; t] = 0 (53)

where the operator H linearly depends on the function η. To get
this equation we have to describe Eq.12 in a form

∂

∂t
ϕ(x̃) + L′[x̃;ϕ] + λN [x̃;ϕ] +G(x̃) = 0 (54)

and take into account the formula (52). To get a first-order evolution
equation (54) we must increase the number of components of the
vector x̃.

For the initial time t = 0, and from (51) and from (52) we get

V [η; 0] =
´

δαiδαoW [αi, αo]exp
{

i
´

d~̃xϕ[0, ~̃x;α]η(~̃x)
}

=
´

δαiδαoW [αi, αo]exp
{

i
´

d~̃xαi(~̃x)η(~̃x)
}

≡
´

δαiW [αi]exp
{

i
´

d~̃xαi(~̃x)η(~̃x)
}

(55)

Thus we see that the generating functional V [η; 0] has a form of fuc-
tional Fourier transform of the marginal functional (distribution)
W [αi] ≡

´

δαoW [αi, αo]. In other words, the effect of other condi-
tions, for example, the stationary boundary conditions, on the initial
generating functional and, via the Hopf’s evolution equation, on the
generating functional V [η; t], is reduced to the calculation of this
integral. In the case when other conditions and initial conditions
are independent quantities:

W [αi, αo] = W [αi]W [αo] (56)

the above integration leads to identity.
If the smearing functional W [αi] is presented in the form

W [αi] = exp

{

ˆ

d~̃xS(αi(~̃x))

}

(57)

with a quasi-local functional S (S can depend as well on derivatives),
which reflects subsystem quasi-independence, [14], then it satisfies
Schwinger equation, [6]. Its vector description has the form (38).
So we get a surprising result: The functional V [η; 0] describing
the initial conditions for the Hopf’s equation satisfies the
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Schwinger’s type equation of quantum physics considered
in the space of one dimension less, but evolution of equal times
n-pi is described by the generating functional V [η; t] of classical sta-
tistical physics satisfying Hopf’s evolution equation. If, for the func-
tional S, the action integral is chosen, then a gauge symmetry can
be introduced.

Formally, a solution to the Hopf’s equation (53} can be presented
as

V [η; t] = exp

{

itH [η, i
δ

δη
]

}

V [η; 0] (58)

where H is the Hopf’s operator. This formula is apparently different
in nature from the formula (42) with the vacuum vector |0 >infoin
the right hand side. But we must remember that the functional
(vector) V [η; 0] representing the initial state of the system is simul-
taneously a function of the rest of the universe and can be repre-
sented in the form (42). In other words, even in classical case the
initial vector of a system representing also the rest of the world has
a quantum character. It is also possible that the impact of the Uni-
verse on a isolated system is a beyond time, because the functional
V depends on functions defined in the D-1 space.

4.4 Stationary solutions

In this case

V [η; t] = V [η; 0] (59)

for all t > 0. In result the evolutionary equation like (58) loses its
meaning. The problem reduces to calculating the functional integral
(55). However, the nature itself saves the value of the evolutionary
equations. It turns out that systems pushed out of equilibrium tend
to equilibrium by themselves - like in the case of shaken vessel with
liquid. This means that we can use Eq.58 with simpler initial condi-
tions described, for example, by Gaussian functionals, [6, 7], and get
a stationary state in the process of solving evolutionary equations
with t → ∞. Sometimes people say that computers like evolutionary
equations, [22].

Moreover, if the dimension of the vectors x̃ is increased by one, by
introducing so called the fictitiouse time s, then by means of Eq.58
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one can also describe Quantum Field Theory, [10], which further
reduces the differences between classical and quantum theories. This
allows you to look at quantum system as a classical system with the
lack of detailed data responsible for the uniqueness of the solutions.
Of course, we cannot forget that mentioned above of lack of detailed
data is obtained by integration with a complex measure.

So things are in spacetime with one extra time, which perhaps
is wrongly called the fictitious time. In fact, we should call it the
hidden variable or rather the hidden time!. For comparison, see
[21]. To reveal to us our world - starting with a big bang until the
present day, with physical laws allowing us to predict the future and
the past, we have to go with the hidden time up to infinity.

Addition to the hidden time there is the hidden probability which
is a complex valued function giving the usual probability by calcu-
lating the square of its module.

One can also use Eq.8 with the whole benefit of the possibilities
supplied by the free Fock space.

5 Final remarks

“In physics, a unified field theory (occasionally referred
to as a "uniform" field theory[1]) is a type of field theory
that allows all that is usually thought of as fundamental
forces and elementary particles to be written in terms of
a single field. There is no accepted unified field theory.
It remains an open line of research. The term was coined
by Einstein, who attempted to unify the general theory
of relativity with electromagnetism, hoping to recover an
approximation for quantum theory. A "theory of every-
thing" is closely related to unified field theory, but differs
by not requiring the basis of nature to be fields, and also
attempts to explain all physical constants of nature.”;

[http://en.wikipedia.org/wiki/Unified_field_theory].

From the above equations and formulas - vector |0 >info, which
should not contain any information about considered systems,[2],
- in fact it contains such information (global) and this is true in
classical as well as in quantum case. It is possible that this is a
manifestation of a physical inability to create a situation which we
might call absolute nothingness. We must note, however, that by
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nothingness we have here in mind rather information vacuum about
the system which we do not identify with the absence of that sys-
tem. It is not excluded that if the system is the whole Universe
then information vacuum about the Universe - due to lack of any
measuring instruments outside of the system - can be identified with
the physical vacuum describing nothingness!

Presented and previous studies had added to the eigenvalues and
eigenvectors philosophy of physics a new approach in which creation,
annihilation operators and the “vacuum” vectors still appear but are
rather used for creation and annihilation of information contained
in fields.

As an interesting issue would be an explanation of why only the
presence of the external field represented by the operator Ĝ or the
presence of the canonical commutation relations represented by the
operator Ĉ lead to the impact of information vacuum, |0 >info, on
the n-pi. Would it be a real manifestation of the true nature of the
vacuum?

The multitimes formalism considered mainly here and other au-
thor papers, and of course by other peoples, [28], [15], allows better
aquaint ourselves with real role of the time in description of the Na-
ture and choose right description in particular cases. In my opinion
the multitime formalism not only casts a new perspective on equa-
tions for the n-pi, but also shows opportunity to formulate a theory
in the form in which temporal and spatial variables plays a similar
role. In this sense we can speak about of a unification of space and
time, even in the Newtonian theories. In many cases, as additional
advantage of the above unification, is a possibility to derive the same
equations for n-pfs V (x̃(n)) in the two types of averages: like in the
case of (34) - (36) and in a more practical case of averaging with re-
spect to variables x̃, see [1], [4], among which are averages to which
ergodic hypothesis can be postulated, [16].

Similar remark can be made for the initial conditions for the one-
time Hopf’s equation, which satisfy similar equations as the vectors
|V> generating n-pi in the D-1 dimension space. Was it was the
unification of dynamics and additional conditions? See [13], for a
similar idea. This picture is even deeper if as smearing functional
the action integral is used in exponential function, 56, which has
the same symmetry as the dynamical equations in D-1 dimension.
It is worth noting that in the description of the one-time evolution,
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where time is treated differently than spatial variables, in the initial
conditions - the local information vacuum appears. As an additional
evidence that an unification of dynamics and initial conditions takes
place is that the algorithmic information content of the final state
is not much greater than that of the initial state, [19].

Due to many similarities in the description of classical and quan-
tum physics in the full Fock space, we can consider this space as
their unifier or - to put it simply - as an arena of their unification.

We would like to mention the unification called the spacetimemat-
ter unification, see W.M. Stuckey’s pappers about relational block-
world, and the unification called p-q duality, see [29].

The covariant formulation of a theory can be treated as some kind
of unification of different reference frames particularly recomended
for description of large scale systems. We add that covariant formu-
lation means symmetrical formulation, where by this we understand
only formal distinction, [26]. From that point of view it is interest-
ing that quantum physics can be obtained from classical physics by
reducing the symmetry (n-pi are not permutation symmetrical, see
Sec.4.1). In other words, contrary to popular belief, classical world
is more symmetrical than the quantum!

The loss of information can be used perhaps to understand the
role of covariant formulation of theory used by Einstein requiring
that there be no preferred reference frames and further: ‘The laws
of physics must be of such a nature that they apply to systems of
reference in any kind of motion” (1916); [20],[23]. We can hope that
in the case of a more symmetrical theories the moving averages are
more smooth and can be used in the case of less precise measure-
ments possible only in large scale systems.

Appendix1:
“In modern theoretical physics particle interactions are described

by gauge theories. These theories are constructed by demanding
that symmetries in the laws of physics should be local, rather than
global, in character. “–Anthony Lasenby, Chris Doran, and Stephen
Gull

Appendix2:
“The free algebra on n indeterminates X1, ..., Xn (the construc-

tion works also for any countable set S of “indeterminates”), is the
algebra spanned by all linear combinations
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∑

Πi1...inXi1...Xin (60)

of formal products of the generators Xi , with coefficients Πi1...in ∈
K. This algebra is denoted by K < Xi >and is said to be freely
generated by the X’s. “–X.Bekaert (Internet). We gave this def-
inition to note a similar structure in FFS formed by vectors (1).
In this case, the indeterminates are represented by operators η̂⋆(x̃)
with indexes x̃ instead of subindex i.

Appendix3:
General messages are defined as

A
+ .
=

∞
∑

n=0

An (61)

where Anare n-component words: x1 · · ·xn with letters xi ∈ A,
where the set A is called the alphabet. It follows that the book
of nature can be described both with finite and infinite alphabets.
In physics, as letters can be used distinguished particles or rather
states of particles. In case of Fock space constituated by means of
vectors (1) the letters are operators η̂∗ at particular points x̃, see
also [30].

The following formula is also used:

H⊕ =
∞
⊕

n=0

H⊗n
= H⊗0 ⊕H⊗ ⊕H⊗2 ⊕ · · · (62)

with symbols ⊗,⊕denoting the tensor product and direct sum. H⊕is
a general message space, with the Hilbert, alphabet space H. [30].

Appendix4:
“If something is systematically absent, as if as a rule it is a "non-

given", then in order to express this state in natural language, willy-
nilly, we say that it does not exist.” (from Tadeusz Bartoś, Koniec
Prawdy Absolutnej "The end of absolute truth", page 169, my trans-
lation). Can we say this also about a vacuum??
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