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Abstract

Adjusting ocean wind observations to a standard height, usually 10 m, requires
the use of a boundary layer model, and knowledge of the thermodynamical variables.
Height adjustment is complicated by the fact that a necessary parameter, the rough-
ness height, cannot be given in a closed form solution. If only the wind and reporting
height are known, the best that can be done is to assume neutral stability. The deter-
mination of roughness height is analyzed and a simple approximation (used by Atlas
et al. 2011) is derived in detail. This approximation is accurate for winds in the range
of 1−30 m s−1 for neutral stratification and would be an excellent initial estimate for
a Newton iteration to determine the roughness height precisely, whether or not neutral
stability is assumed.

1. Introduction
Adjusting ocean wind observations to a standard height, usually 10 m, requires the use of a bound-
ary layer model, and knowledge of the thermodynamical variables. Whichever PBL model is used,
an exact solution requires iterating the constant flux layer equations. This is due to the fact that z0,
the roughness length, is an implicit function of the model variables over the oceans. The Charnock
formula states that over the ocean z0 and the surface stress magnitude |τ| are linearly related by

z0 =
a

ρg
|τ|. (1)

Here a = 0.0185 is the Charnock constant, g = 9.81 m s−2, and ρ , the density of air, is assumed to
be constant for the range of heights considered and equal to its surface value. Previously a = 0.032
was the accepted value for the Charnock constant, but now it is known the Charnock constant is not
actually a constant, but depends on the sea state, through the wave age (Wu 1985). Accordingly,
the Charnock constant is determined by the wave model in the ECMWF system, and normally is
in the range 0.01 ≤ a ≤ 0.04, corresponding to sea states from swell to steep young ocean waves
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(Hersbach 2011). While values of a as large as 0.1 sometimes occur in the ECMWF system, a
typical value is a = 0.018, which agrees with the value of 0.0185 used here and by Wu (1985).
Note that Eq. (1) neglects the contribution of molecular viscosity which is important at low wind
speeds (e.g., Hersbach 2011). However, at low wind speeds the height correction and consequently
errors made in the height correction should be small.

Surface stress determined from
τ =−ρCd|V |V (2)

also depends on z0 through the neutral drag coefficient, and in the unstable case through the sim-
ilarity function, usually denoted f (Ri) where Ri is the Richardson number. In Eq. (2) V is the
vector wind at some height z, |V | is the magnitude of the vector wind, the wind and stress vectors
are assumed to be parallel for the range of heights considered, and the drag coefficient Cd is given
by the product of the similarity function f (Ri) and the neutral drag coefficient

Cdn =

 k

log
(

z
z0

)
2

. (3)

Here the von Kármán constant k = 0.4. See Hoffman and Louis (1990) for details.
NWP models usually “cheat” and use the value of τ of the previous time step to find z0 through

the Charnock formula. Actually using old values to evaluate the dissipative terms can be a good
policy as this can reduce computational instability. But outside of a model we must calculate z0
implicitly. For this purpose we substitute the absolute value of Eq. (2) into Eq. (1) and then use the
expresseion for Cd to obtain

z0 =
a
g

Cd|V |2 =
a
g

f (Ri)

 k|V |

log
(

z
z0

)
2

≡ h(z0; |V |,z,Ri). (4)

For neutral stratification, Ri = 0, and f (Ri) = 1. To solve Eq. (4) we must iterate. To begin the
process, Hoffman and Louis (1990) estimated Cd as a linear function of |V | and then obtained the
initial estimate of z0 from the Charnock relationship. Then Eq. (4), z0 = h, is iterated. This con-
verges to a good approximation within a few iterations. It is then possible to switch to a Newton
iteration to solve z0−h≡ f (z0) = 0. The Newton method requires the partial derivative of h with
respect to z0. This can be evaluated using the tangent linear code corresponding to the calculation
of h by setting all inputs to zero except for that corresponding to z0, which is set to unity. The ad-
vantage of the Newton method is that it iterates to machine precision in 2-4 steps from a reasonable
start. (With an unreasonable start it can diverge.) With a solution exact to machine precision one
can then skip the iteration in the adjoint and/or tangent models. As an alternative within the context
of the ECMWF system, Hersbach (2011) describes an accurate fit for Cdn and z0 as functions of
neutral wind speed and the Charnock value, two parameters available in the interface between the
ECMWF atmospheric and wave models.
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2. Height correction for ocean winds
Knowing z0 is equivalent to knowing the stress, and we can then solve Eq. (4) for |V | at any height,

z, if only we know the Richardson number. In particular, Eq. (4) states that C
1
2
d |V | is conserved as

we vary the height z. However Ri depends on knowing the stratification of the boundary layer. In
what follows we assume that only the wind and reporting height are known. Then the best that can
be done is to assume neutral stability, and in the rest of this treatment V will denote the neutral

stability wind. Now, C
1
2
dn|V | is conserved, allowing us to determine the 10 m neutral wind speed

|V10| from an observation at some other height according to:

|V10|=
[

log(10/z0)

log(z/z0)

]
|V |. (5)

Note that according to Eq. (5), the ratio between neutral stability winds at two levels is entirely
determined by z0 and the two heights.

Once z0 is determined, the neutral wind, defined by

τ =−ρCdn|V |V, (6)

is easily determined from knowledge of z0 alone according to

V =
( g

ak2

) 1
2

z0
1
2 log

(
z
z0

)
, (7)

which is obtained by combining Eq. (6) with Eq. (1) and making use of Eq. (3). A few sample
calculations using Eq. (7) are presented in Table 1 for heights of 4, 10, and 19.5 m. In Table 1
we see that the variation in z0 is two orders of magnitude greater than the variation in wind speed.
Over this range of wind speed, the correction factors for determining |V10| vary by as much as 5%.
This variation is the same order of magnitude as the corrections, and is therefore worth accounting
for.

Table 1: Sample calculations based on Eq. (7). The z0 values are equal to 2− j but have been
multiplied by 106 for presentation in this table. The |V10| values are in m s−1 and are calculated
using Eq. (7). The ratios in columns 4 and 5 are equal to the term in square brackets in Eq. (5).
The last column contains the estimated value of z0 from Eq. (12).

j z0×106 |V10| |V10/V4| |V10/V19.5| ẑ0×106

14 61 5.4 1.08 0.947 68
11 488 12.6 1.10 0.937 493
8 3906 28.2 1.13 0.922 3216
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3. Calculation of z0 under neutral conditions
To apply Eq. (5) we still need to determine z0. Here we demonstrate a simple approximation. The
motivation is that under neutral conditions, for some fixed height, we expect wind speed, surface
stress, and roughness height to all increase together. Differentiating Eq. (7), we obtain

d|V |
dz0

=
( g

ak2

) 1
2

z0
− 1

2

[
1
2

log
(

z
z0

)
−1
]
. (8)

Thus d|V |/dz0/ > 0 provided z > e2z0. This holds for wind speeds less than hurricane strength
and heights of several meters or more. The suggestion then is that z0 should be a monotonically
increasing function of |V |, and interpolation into a look-up table, or a simple fit to a set of exact
values should work.

For this investigation it is convenient to define

y = log(z/z0) so that z0 = ze−y. (9)

Then the square of Eq. (7) may be written as

y2e−y ≡ γ =
ak2

gz
V 2. (10)

Usually we will know V and z and hence γ from Eq. (10). From γ we then determine y and
finally z0 from Eq. (9). To determine y from γ we tabulate or model y as a function of γ , based
on data obtained by calculating γ from Eq. (10) for different values of y. Note that the values
of the regression coefficients determined below are independent of the value of z or any of the
other parameters, including the Charnock constant a. However, to create a relevant sample of y-
values for fitting, we take z = 10 m, and vary z0. Below, as in Table 1, we take values of z0 evenly
distributed in log space given by 2− j for integer values of j.

Figure 1a plots y as a function of log(γ) for j = 0, . . . ,30. Clearly a linear fit will work well
over most the range of γ . This is not unexpected since according to Eq. (10) logγ = −y+2logy.
As j increases, z0, |V10|, and γ decrease, while y increases. For example, for j = 0, z0 = 1 m and
|V10|= 134 m s−1, while for j = 30, z0 ≈ 10−9 m and |V10|= 0.04 m s−1. Fitting points for j≥ 6,
corresponding to |V10| ≤ 40 m s−1 (where the extreme point included is marked by the vertical line
in the plots) we find that

y = c0 + c1 log(γ) (11)

with c0 = 3.7 and c1 =−1.165.
Combining Eq. (9), Eq. (10), and Eq. (11), we obtain our estimate of z0

ẑ0 = zexp[−(c0 + c1 log[γ])] = zexp[−(c0 + c1 log[(ak2V 2)/(gz)])]. (12)

Figure 1b shows the error of the fit in log space. Values calculated using Eq. (12) are shown in the
last column of Table 1 for the cases listed. The differences are not tiny, but when we recalculate
the ratios of the wind speeds in columns 4 and 5 of the table, the results are nearly the same. Using
the same precision as in the table, the values are the same except that the value for |V10/V19.5| is
0.923.
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Figure 1: Fitting y = log(z/z0) as a function of γ = (ak2/gz)V 2. (a) The linear fit to values of y
and logγ for j = 6, . . . ,30 is plotted as a dotted line. The data values are plotted as dots. (b) Log
residuals for Eq. (12) fit of z0. For this calculation we define the true values of z0 and then y, γ and
ẑ0 for the chosen value of z (10 m), using Eq. (9) and Eq. (12). The vertical lines identify j = 6.

y

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•
•
•
•

log(gamma)

y

-15 -10 -5 0

5
10

15
20

lo
g
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4. Concluding remarks
An approximation for roughness height (Eq. (12)) is given that is accurate for winds in the range of
1−30 m s−1, assuming neutral stability and neglecting effects of molecular viscosity. (Also, note
that coherent structures in the atmospheric boundary layer are not explicitly included in the simi-
larity theory employed here.) Values of z0 that vary with wind speed should be used in correcting
ocean winds to a standard height. Typical corrections are in the range of 5-15%, so assuming a
single value for z0 will incur errors of a few per cent. Our approximation is also an excellent initial
estimate to begin a Newton iteration to determine the roughness height precisely, whether or not
neutral stability is assumed.

In practice, the approximation derived here is adequate because errors due to other approxima-
tions and assumptions are graver. For example, observations and meta-data associated with ship
reports are often limited: information required to estimate atmospheric boundary layer stability
may be lacking, anemometer heights may be unknown or incorrect, and effects due to ship motion
and flow anomalies due to superstructure may not be accounted for.
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