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Scalar Beltramization in turbulent flows
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We show that in turbulent scalar mixing the advection is strongly suppressed with respect to its
Gaussian estimate. This effect is particularly important in the small scales. Results are given for
different Schmidt numbers, illustrating the persistency and universality of the phenomenon. The
link with the generation of passive scalar fronts is discussed and it is argued that scalar fronts are
the consequence of the underlying suppression of nonlinearity observed in a wide class of flows for
which the dynamics are governed by quadratic nonlinearities or pseudo-nonlinearities.
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The advection of a blob of scalar in a fluid in movement
is governed by a linear partial derivative equation. De-
spite the apparent simplicity of the problem, the stretch-
ing and folding of the scalar blob will generally result in
a complicated, multi-scale pattern, even in the case in
which the flow-field is predictable. In the case of sim-
ple flow patterns, some characteristics of the mixing pro-
cess can be understood on a deterministic level [1]. In
the case in which the flow is stochastic, the scalar field
is not easily amenable to such an approach and a sta-
tistical description is needed. The statistical approach
will be adopted in the present letter to explain a typical
feature observed in independent realizations of a scalar
mixed by a turbulent, or random multi-scale flow: the
persistence of small scale gradients, or fronts. An in-
teresting feature of scalar mixing is that fronts are even
generated when the advecting velocity field is structure-
less [2, 3]. This suggested that the problem of small scale
intermittency could be studied by considering the scalar
advection-diffusion equation in the hope to learn about
the more complicated case of Navier-Stokes turbulence
(see e.g. reference [4]). In reference [2, 3] a phenomeno-
logical explanation of the generation of fronts was pro-
posed, based on the convergence of fluid parcels. In the
present letter we do not propose another mechanism of
front-generation but we show that the mechanism pro-
posed in references [2, 3] can be seen as a consequence of
a more general phenomenon called depletion of nonlinear-
ity of which the discovery can be attributed to Kraichnan
and Panda [5].
In turbulent flows, velocity and vorticity have a ten-

dency to align in the small scales, leading to local helic-
ity fluctuations. This alignment, called Beltramization,
was suggested by Levich and Tsinober [6] to be dynami-
cally important and its existence was first shown in sim-
ulations by Pelz et al. [7]. The alignment results in
a weakening of the nonlinear term which can be read-
ily seen from the Navier-Stokes equations. The Fourier
tranformed Navier-Stokes equations can be written as

[

∂t + νk2
]

ûi(k) = Pij(k)λ̂j(k) + f̂i(k) (1)

in which ν is the kinematic viscosity, λ = ω(x) × u(x),
with ω the vorticity, Pij(k) = δij − kikjk

−2 is the Riesz

projector and f(k) an external forcing. All quantities
in which the time argument is omitted are implicitly as-
sumed to be evaluated at time t.
Clearly, if the Lamb-vector λ(x) is equal to zero, the

nonlinearity vanishes. A later study by Rogers and Moin
[8], showed, in contrast to [7], that in a number of differ-
ent turbulent flow geometries, this mechanism was not
clearly observed. This observation was confirmed by the
analysis of Kraichnan and Panda [5], who investigated
the suppression of nonlinearity by comparing the mean-
square nonlinearity of Navier-Stokes turbulence with its
value in a Gaussian field with the same kinetic energy
wavenumber spectrum. In their study it was shown that
Beltramization is not strong enough to account for the
suppression of nonlinearity observed in simulations of
Navier-Stokes turbulence. A certain alignment of the
Lamb-vector λ with the wave-vector k is needed to ex-
plain the observed reduction of nonlinearity. This ob-
servation combined with the fact that they observed the
same effect in the statistics of Betchov model equations,
led Kraichnan and Panda to the suggestion that the ef-
fect was not caused by topological constraints but that
it was a phenomenon observed in a wider class of flows
containing quadratic nonlinearities.
In the present work we will show that this effect can

be transposed to the advection of a passive scalar θ(x, t).
Furthermore, it will be argued that this effect leads to
the persistence of strong gradients or fronts observed in
the fine scales of the scalar field.
The equation for the advection of a passive scalar is,

[

∂t + αk2
]

θ̂(k) = −ikiγ̂i(k) + f̂θ(k) (2)

with γi = ui(x)θ(x) and f̂θ(k) a scalar source term, that
we will assume confined to the large scales. The diffu-
sivity of the scalar is denoted by α. Strictly speaking
the advection term is not a quadratic nonlinearity, but
as we will see, an analogous effect is observed for the
advection as is for the nonlinearity of the Navier-Stokes
equation. We will call the advection term in this context
a pseudo-nonlinearity.
Let us compare the structure of the nonlinear term of

the Navier-Stokes equation (1) and the advection term in
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FIG. 1: Left, top: velocity Beltramization; bottom: deple-
tion of nonlinearity through alignment of the Lamb-vector
and the wavevector. Right: scalar Beltramization in physical
and Fourier space.

equation (2). There are two non-trivial ways to reduce
the nonlinearity in (1). Firstly the alignment of velocity
and vorticity so that λ = 0, secondly the alignment of the
Lamb-vector with the wavevector. These two possibili-
ties are illustrated in Figure 1 (left). Both possibilities
can, and do, contribute to the depletion of nonlinearity
in turbulent flows. For the passive scalar the equivalent
of the first possibility would be the vanishing of the vec-
tor γ ≡ θu. We do not consider this trivial possibility
in which either the velocity or the scalar is zero. The
only non-trivial possibility to reduce the advection term
is the tendency of the vector γ to be perpendicular to
the wavevector. Since

ik · γ̂ = ∇̂ · γ = û · ∇θ, (3)

this corresponds to the case in which the velocity is per-
pendicular to the scalar gradient, as illustrated in Figure
1 (right). In analogy to the mechanism of Beltramiza-
tion, which is one of the possible mechanisms to reduce
nonlinearity in a turbulent velocity field, we will call the
geometry in which the scalar gradient is perpendicular to
the velocity field scalar Beltramization. We stress here
that for the velocity field it is not the only mechanism
which suppresses nonlinearity (the other mechanism be-
ing the alignment of the Lamb-vector with the wavevec-
tor), however, scalar Beltramization corresponds to the
only non-trivial geometry which reduces the strength of
the advection. The goal of the present work is to inves-
tigate whether a reduction of advection (or scalar flux
variance) is indeed observed in turbulent mixing.
To measure to what extent the turbulent advection is

suppressed in a turbulent flow, we will consider the mean-
square of the advection. The quantity we focus on is the
spectrum of the advection term, normalized so that the
integral is equal to the scalar flux variance,

∫

wθ(k)dk = [u(x) · ∇θ(x)]2. (4)

In addition to giving the strength of the advection, the
wavenumber spectrum also gives insight on its scale de-
pendence. The spectrum wθ(k) is then given by

wθ(k) = 4πk2kikj γ̂i(k)γ̂j(−k) (5)

We will compare the spectrum to its Gaussian estimate
wG

θ (k), in which we will consider a scalar field ζθ(x, t),
with the same scalar variance spectrum as the true field,
in other words,

ζθ(k)ζ∗θ (k) ≡ θ(k)θ∗(k) = (2πk2)−1Eθ(k) (6)

with Eθ(k) the scalar variance spectrum. In the following
we will in particular investigate the ratio wθ(k)/w

G
θ (k).

This ratio can be interpreted as a measure of non-
Gaussianity of the strength of the advection as a function
of lengthscale. If this quantity is equal to one, the scalar
advection is as strong as it would be if the scalar field
were Gaussian.
In direct numerical simulations wθ(k) can be deter-

mined directly using expression (5). The Gaussian esti-
mate wG

θ (k) is then obtained by replacing the vector-field
θ(x, t) by ζθ(x, t). This field can be readily obtained by

randomizing the phases of the Fourier-coeffients θ̂(k, t).
This will yield a field with Gaussian statistics and leaves
unchanged the wavenumber spectrum since the values of
the amplitudes of the Fourier-coeffients are not changed.
This procedure was carried out using data of high res-
olution (10243 gridpoint) pseudospectral direct numeri-
cal simulations (DNS) of an isotropic scalar advected by
isotropic turbulence. Details on the data and the simu-
lation can be found in [9], low resolution observations of
the depletion of advection are reported in [10].
A disadvantage of DNS is that its resolution is lim-

ited to moderately high Reynolds and Péclet numbers.
Furthermore, statistics of the large scales are at these
Reynolds numbers poorly converged since the computa-
tion can only be carried out for a limited number of eddy
turn-over times and the large scales are resolved by a
relatively small number of Fourier modes. To study the
statistics of high Reynolds number turbulence, two-point
closures are a useful tool. Their geometrical discretiza-
tion allows to attain very high Reynolds numbers (e.g.
[11]), and since the method considers ensemble-averages,
no averaging is needed to obtain converged statistics.
Several textbooks on the subject [12–14] give details on
these methods and report on their capabilities to con-
tribute to the understanding of turbulence at asymptot-
ically high Reynolds number.
The closure expression for wθ(k) will now be obtained,

using the Direct Interaction Approximation (DIA)[15],
which can be considered the cornerstone of the analytical
theory of turbulence. In order not to digress unnecessar-
ily from the physical ideas, only a short outline is given
of the derivation of the closure expression. Two proce-
dures are outlined in [16] to obtain DIA expressions for
higher-order quantities. One of these is based on the use
of generalized Langevin models [17]. The other method is
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FIG. 2: DNS and theoretical results. Top: compen-
sated scalar spectra in isotropic turbulence at a Taylor-scale
Reynolds number of 427 and Sc = 1. Bottom: comparison of
the spectrum of the mean square advection term of the scalar
equation in isotropic turbulence to its Gaussian value. In the
inset the same results are plotted in linear representation.
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FIG. 3: Comparison of the spectrum of the mean square ad-
vection term of the scalar equation in isotropic turbulence to
its Gaussian value at a Taylor-scale Reynolds number of 1000
and Sc = 0.01, 0.1, 1. Inset: scalar variance spectra.

by means of a second-order DIA perturbation approach.
Both methods lead to the same expression,

wθ(k) = wG
θ (k) + wC

θ (k) (7)

with

wG
θ (k) = k3

∫

∆

(1− z2)E(p)Eθ(q)
dp

p

dq

q
(8)

and

wC
θ (k) =

1

2

∫∫

∆

∫∫

∆′

(1 − z2)kq2E(p)(1 − z′2)kq′2E(p′)×

[

(Ξkpqp′q′ + Ξkp′q′pq)Eθ(k)− 2Ξkpqp′q′kq
−1Eθ(q)

]

×

dp′

p′
dq′

q′
dp

p

dq

q
(9)

where ∆ indicates that the integration domain is con-
fined to the wavevectors k,p, q which can form a triangle
and z is the cosine of the angle between k and p. The
manipulations needed to obtain (9) are standard in DIA
and for details we refer to [12]. Technical details on and
theoretical considerations about the derivation of these
expressions will be published elsewhere. In expression
(9), the time-scale Ξ can be obtained by assuming an ex-
ponential time-dependence of all two-time quantities and
a relation between the energy spectra and the response
functions, given by the flucuation-dissipation theorem.
In the long-time limit the time-scale will then be given
by

Ξkpqp′q′ =
1

ηθk + ηp′ + ηθq′

1

ηp + ηθq + ηp′ + ηθq′
(10)

in which ηk and ηθk are turbulent time-scales related to
the velocity and scalar correlations respectively. These
time-scales can be chosen as in standard EDQNM type
closures. In the present work we will use the self-
consistent closure presented in [19], in which ηk is de-
termined without the introduction of a model constant.
An analytical check of the above equations is that the
cumulant contributions should vanish in the case of ther-
mal equilibrium, in which the statistics are supposed to
be Gaussian. Indeed, using the fluctuation-dissipation
theorem which is exact in this case, one can show that
(9) vanishes when the scalar field is in equipartition, in-
dependent of the choice of the time-scale. Note that in
this derivation we considered mirror-symmetric isotropic
turbulence. The influence of helicity constitutes an in-
teresting perspective.
In Figure 2 we compare the results of DNS and closure.

In the top figure we show the spectrum of the scalar vari-
ance in compensated form. The wavenumber of the DNS
results is normalized by the Kolmogorov scale, which is
equal to the Batchelor scale for unity Schmidt number.
The wavenumber of the closure results is normalized by
the wavenumber at which the compensated DNS spec-
trum peaks. It is well-known that closures of the La-
grangian DIA [20] family underestimate the inertial range
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level of the scalar spectrum. This is also the case here,
but we will not focus further on this issue. On the bottom
figure we show the comparison of wθ(k)/w

G
θ (k). Even

though the quantitative agreement is only approximate,
both curves show an important suppression of advection
in the small scales. It is possible that this agreement will
improve if the DNS results for E(k) and Eθ(k) are used in
the closure expression for wθ(k)/w

G
θ (k), but that will be

left for future work. It is at this point enough to say that
the effect we investigate is clearly observed both in DNS
and closure. Since the spectrum wθ(k) is an increasing
function of the wavenumber in the inertial range, it is the
large wavenumber end of the spectrum which determines
the integral value of the mean-square advection. It is
therefore not the small wavenumbers, at which a super-
Gaussian value is observed, which determine the integral
value.
It is interesting to know how this scalar-

Beltramization, depends on the relative location of
the viscous and diffusive ranges, in other words, how
it depends on the Schmidt or Prandtl number. To
investigate this we vary the Schmidt number, defined as
Sc = ν/α by a factor 100, from 0.01 to 1. We do this
at a Reynolds number of Rλ = 1000. In Figure 3 we
show the closure results. It is observed that the region
in which the scalar Beltramization takes place moves
with the diffusive scale of the passive scalar. This shows
that the lengthscales at which the depletion of advection
is observed, are not determined by the viscous subrange
of the kinetic energy distribution, but are determined
by the scalar diffusive scale. The scalar Beltramization
is therefore an intricate mechanism, involving both the
effects of nonlinear mode coupling and diffusion.
We can conclude that scalar Beltramization is observed

in scalar mixing. Geometricallly this corresponds to the
case in which the velocity is perpendicular to the scalar
gradients as shown in Figure 1 (right). This particu-
lar geometry will favour the generation of fronts (a phe-
nomenon we can also call frontogenesis), since the scalar
gradients will not be mixed by a perpendicular velocity.

Fronts of passive scalar are indeed observed in turbu-
lent mixing, see for example reference [9], for the case
of isotropic turbulence, advecting an isotropic scalar. In
particular, this example shows that no external effects
introducing anisotropy or inhomogeneity are needed to
explain the typical small scale behavior of a scalar field.
Only the intrinsic tendency towards a state with reduced
nonlinearity [5] is needed to create the characteristic fine
scale structure observed in turbulent mixing. Another
way to phrase this is that, if the velocity and scalar would
not only be uncorrelated, as is the case in isotropic tur-
bulent mixing, but also independent, which is what the
Gaussian estimate assumes, there could not possibly be
any scalar fronts. Fronts are therefore a signature of the
statistical dependence of θ and u, which is observed in
the present study.
We anticipate that, according to our analysis, the effect

should also be observed if the advecting velocity field is
Gaussian. Indeed, in our analysis the only non-Gaussian
contributions to the mean-square advection stem from
the perturbation of the passive scalar fluctuation in (5).
This is in agreement with observations of the creation
of scalar fronts in advection by a Gaussian velocity field
[2, 21].
It might seem surprising that if the depression of ad-

vection is linked to the marked fronts observed in the fine
scales, it could be captured by statistical closures. Indeed
it is often mistakenly assumed that these approaches can
not predict anything on structure related issues since all
phase-information is averaged out. The apparent para-
dox stems from the fact that structures are a dynamical
consequence of the underlying equations and the statisti-
cal theories are derived from these equations. It is there-
fore not completely surprising that, if the assumptions
used in deriving the closures are physically sound, the
statistics observed from closures can be related to the
structures observed in experiments and simulations
Acknowledgments. The authors are indebted to
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