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LIE ALGEBROID MODULES AND REPRESENTATIONS UP TO

HOMOTOPY

RAJAN AMIT MEHTA

Abstract. We explain how Lie algebroid modules in the sense of Vaintrob
provide geometric models for Lie algebroid representations up to homotopy.
Specifically, we show that there is a noncanonical way to obtain representa-
tions up to homotopy from a given Lie algebroid module, and that any two
representations up to homotopy obtained in this way are equivalent in a nat-
ural sense. This result extends the relationship between VB-algebroids and
2-term representations up to homotopy, as studied by Gracia-Saz and the au-
thor. We also extend the construction of VB-algebroid characteristic classes
to the setting of Lie algebroid modules.

1. Introduction

In [Văı97], Vaintrob introduced the notion of a module over a Lie algebroid, using
the language of supergeometry, and he observed that this notion generalizes that
of Lie algebroid representation. Since that time, various other generalizations of
Lie algebroid representations have appeared, with the most popular being that of
representation up to homotopy [AC09]. A representation up to homotopy of a Lie
algebroid A → M is a complex of vector bundles (E , ∂) over M equipped with an

A-connection ∇ and maps ωi :
∧i

Γ(A) → End1−i(E) for i ≥ 2, satisfying a series
of coherence conditions, the first of which says that ω2 generates chain homotopies
controlling the curvature of ∇. The reader should not confuse this with an earlier,
different definition of representation up to homotopy in [CF05, ELW99].

In [GSM10], Gracia-Saz and the author studied VB-algebroids (i.e. Lie algebroids
in the category of vector bundles) and their relationship to representations up to
homotopy1 on 2-term complexes of vector bundles. It was shown there that VB-
algebroids provide geometric models for 2-term representations up to homotopy,
in the sense that VB-algebroids can be “decomposed” to produce 2-term repre-
sentations up to homotopy, and that different choices of decomposition lead to
“gauge-equivalent” representations up to homotopy. One of the advantages of this
point of view is that the category of VB-algebroids over a Lie algebroid A contains
canonical objects, namely the tangent and cotangent bundles of A, that respectively
play the roles of adjoint and coadjoint representations.

When the definition of VB-algebroid is expressed in supergeometric terms, it
becomes clear that VB-algebroids form a special case of Lie algebroid modules in
the sense of Vaintrob. The purpose of this paper is to show that the relationship

2010 Mathematics Subject Classification. 16E45, 53D17, 58A50.
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1In [GSM10], Lie algebroid representations up to homotopy were called flat superconnections

or superrepresentations.
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between VB-algebroids and 2-term representations up to homotopy extends to a
relationship between Lie algebroid modules and representations up to homotopy.
In particular,

(1) Lie algebroid modules can be (noncanonically) decomposed to produce rep-
resentations up to homotopy,

(2) different choices of decomposition lead to gauge-equivalent representations
up to homotopy, and

(3) all semibounded representations up to homotopy arise in this manner.

These results are almost immediate consequences of two structure theorems, proven
in §2, for vector bundles over N -manifolds. Since the structure theorems are given
in the general setting of N -manifolds, the above statements continue to hold if one
replaces A[1] by an arbitrary NQ-manifold. For example, the results of this paper
could be applied to the theory of modules over Lie n-algebroids or L∞-algebras.

Unlike the category of VB-algebroids, the category of Lie algebroid modules has
a natural tensor product, giving it the structure of a symmetric monoidal category.
It would be interesting to know how much information about a Lie algebroid can
be recovered from its category of modules.

The structure of the paper is as follows:

• In §2, we study vector bundles over N -manifolds. We state and prove the
structure theorems and introduce the notion of decomposition.

• In §3, we recall the definitions of representation up to homotopy and gauge-
equivalence.

• In §4, we recall the definition of Lie algebroid module, and we arrive at
the main results relating Lie algebroid modules to representations up to
homotopy.

• In §5, we consider the example of the adjoint module of a Lie algebroid A.
The cohomology of A with values in the adjoint module is isomorphic to
the deformation cohomology of Crainic and Moerdijk [CM08].

• In §6, we describe the constructions of tensor product, direct sum, and
dual. We show that there is a cohomology pairing for dual Lie algebroid
modules.

• In §7, we recall the construction of characteristic classes in [GSM10], and
show that this construction provides well-defined invariants of Lie algebroid
modules.

Acknowledgements. We thank David Li-Bland and Dmitry Roytenberg for helpful
comments and suggestions on a draft of the paper.

2. The structure of N-manifold vector bundles

Let M be a nonnegatively graded manifold, or N -manifold. Recall that there
is a natural projection πM onto the underlying degree 0 manifold M , where the
pullback map π∗

M identifies smooth functions on M with degree 0 functions on M.
There is also a natural “zero” embedding 0M : M → M, whose pullback map
annihilates the ideal of positive degree functions on M.

A vector bundle B over M is given by its sheaf of sections Γ(B), which is, by
definition, a locally free graded C∞(M)-module. We denote the rank of Γ(B) in
degree i by rki(B). For simplicity, we suppose that B is degree-bounded, in the
sense that there exist integers m,n such that rki(B) = 0 for i < m and for i > n.
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However, as noted below in Remark 2.6, the results of this section continue to hold
if rki(B) is only bounded on one side. In any case, we emphasize that the total
space of B is allowed to be a Z-graded (as opposed to N-graded) manifold.

The pullback bundle 0∗MB is a graded vector bundle over M . Any graded
C∞(M)-module canonically splits as a direct sum of its homogeneous parts, so we
may write 0∗MB =

⊕

Ei[−i], where {Ei} is a collection of vector bundles over M .
We refer to E := 0∗MB =

⊕

Ei[−i] as the standard graded vector bundle associated
to B. Obviously, rki(B) = rk(Ei).

Since we are assuming that rki(B) = 0 for i < m, we have that the map of sections
0∗M : Γ(B) → Γ(E) is an isomorphism in degree m, and we can identify Γm(B) with
Γ(Em[−m]). More generally, if we identify the space of sections of π∗

MEm[−m]
with C∞(M) ⊗ Γ(Em[−m]), then the map α ⊗ ε 7→ αε defines a C∞(M)-linear
injection of Γ(π∗

MEm[−m]) into Γ(B) that is isomorphic in degree m.
Let Bm+1 be defined as the cokernel of the injection π∗

MEm[−m] → B. Clearly,
rki(Bm+1) = 0 if i < m+ 1. By iterating this process, we obtain a tower of vector
bundles over M

(1) B := Bm
// Bm+1

// · · · // Bn
// Bn+1 = 0 ,

where rki(Bk) = 0 for i < k, together with canonical isomorphisms ker(Bk →
Bk+1) ∼= π∗

MEk[−k].
If we choose a splitting of the short exact sequence

(2) π∗
MEk[−k] // Bk

// Bk+1

for each k, then we obtain an isomorphism B ∼= π∗
ME . Thus we have the following

structure theorem:

Theorem 2.1. Let B be a vector bundle over M, and let E → M be the standard
graded vector bundle associated to B. Then B is noncanonically isomorphic to
π∗
M(E).

The statement of Theorem 2.1 can be strengthened slightly. We have described
a specific procedure for constructing isomorphisms from B to π∗

M(E), and we would
like to characterize the isomorphisms that arise from this procedure. To address
this issue, we first make the observation that 0∗MB = E is canonically isomorphic
to 0∗Mπ∗

ME , since πM ◦ 0M = idM . Any isomorphism Θ : B → π∗
M(E) obtained via

splittings of (2) is such that the following diagram commutes:

(3) E

0̃M

��

id
// E

0̃M
��

B
Θ

// π∗
M(E)

Here, the vertical maps are the natural maps associated to pullback bundles.
On the other hand, by considering changes of splittings of the sequences (2), we

see that the difference between any two isomorphisms obtained by such splittings is
given by a collection of maps σk,i : Γ(Ek) → C∞

i (M)⊗Γ(Ek−i) for 1 ≤ i ≤ k−m.

The associated automorphism of π∗
M(E) takes ε ∈ Γ(Ek) to ε+

∑k−m
i=1 σk,i(ε). All

automorphisms of π∗
M(E) fixing the image of 0̃M are of this form. In summary, we

have the following result, which refines Theorem 2.1:
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Theorem 2.2. Let B be a vector bundle over M, and let E → M be the standard
graded vector bundle associated to B. An isomorphism Θ : B → π∗

M(E) can be
obtained via splittings of (2) if and only if the diagram (3) commutes.

For later use, we introduce the following terminology.

Definition 2.3. A decomposition of a vector bundle B → M is a choice of isomor-
phism Θ : B → π∗

M(E) such that (3) commutes.

Definition 2.4. A statomorphism of a vector bundle B → M is a vector bundle
automorphism Ψ such that

(4) E

0̃M
��

id
// E

0̃M
��

B
Ψ

// B

commutes.

Remark 2.5. The term “statomorphism” is due to Gracia-Saz andMackenzie [GSM09],
who used it to describe automorphisms of double and triple vector bundles that pre-
serve the underlying structure bundles. We use the term here because there is a
natural way to view double vector bundles as graded vector bundles (for exam-
ple, see [GR09, Meh09, Roy99]), and in this case our definition of statomorphism
coincides with theirs.

Remark 2.6. The structure theorems in this section can be extended to the case
where rki(B) is only bounded one side. In this “semibounded” case, B is still
realized as a colimit of a tower of vector bundles as in (1), but the tower extends
infinitely in one direction. By choosing splittings of the short exact sequences (2),
we can obtain an isomorphism B ∼= π∗

ME as a colimit of isomorphisms.

3. Representations up to homotopy of Lie algebroids

Let A→M be a Lie algebroid. Then Ω(A) :=
∧

Γ(A∗) is the algebra of A-forms,
equipped with the differential dA.

Let E =
⊕

Ei[−i] be a graded vector bundle over M . The space of E-valued
A-forms

Ω(A; E) := Ω(A) ⊗C∞(M) Γ(E)

is endowed with a Z-grading where the subspace Ωp(A)⊗Γ(Ei[−i]) is homogeneous
of degree p+ i.

Definition 3.1. A representation up to homotopy, or ∞-representation, of A on E
is a degree 1 operator D on Ω(A; E) such that D2 = 0 and such that the Leibniz
rule

(5) D(αω) = (dAα)ω + (−1)pα(Dω)

holds for α ∈ Ωp(A) and ω ∈ Ω(A; E).

There is a natural projection map µ : Ω(A; E) → Γ(E) for which the kernel is
⊕

p>0 Ω
p(A)⊗Γ(E). If D is an ∞-representation, then the Leibniz rule implies that
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kerµ is D-invariant. Therefore, there is an induced differential ∂ on Γ(E), defined
by the property that the following diagram commutes:

Ω(A; E)
D

//

µ

��

Ω(A; E)

µ

��

Γ(E)
∂

// Γ(E)

If D and D′ are ∞-representations of A on E and E ′, respectively, then a mor-
phism from D to D′ is an Ω(A)-module morphism φ : Ω(A; E) → Ω(A; E ′) such that
φ ◦ D = D′ ◦ φ. In this case, φ induces a chain map from Γ(E) to Γ(E ′).

As usual, an invertible morphism of ∞-representations is called an isomorphism.
However, in the case where the graded vector bundle E is fixed, there is a slightly
more refined notion, which we call gauge equivalence.

Definition 3.2. A gauge transformation of Ω(A; E) is a degree-preserving Ω(A)-
module automorphism u such that the following diagram commutes:

Ω(A; E)
u

//

µ

��

Ω(A; E)

µ

��

Γ(E)
id

// Γ(E)

Under a gauge transformation, an ∞-representation D transforms as D′ =
u−1Du. Two ∞-representations that are related by a gauge transformation are
said to be gauge-equivalent. Note that gauge-equivalent ∞-representations induce
the same differential ∂ on Γ(E).

4. Lie algebroid modules

Let A→M be a Lie algebroid.

Definition 4.1 ([Văı97]). A Lie algebroid module over A, or A-module, is a vector
bundle B → A[1] equipped with a degree 1 operator Q on Γ(B) such that Q2 = 0
and such that the Leibniz rule

Q(αβ) = (dAα)β + (−1)pα(Qβ)

holds for α ∈ C∞
p (A[1]) = Ωp(A) and β ∈ Γ(B).

A morphism of A-modules from (B, Q) to (B′, Q′) is a linear map ψ : B → B′,
covering the identity map on A[1], such that ψQ = Q′ψ.

Recall that, for a fixed vector bundle B → A[1], we have defined in Definition
2.4 a distinguished class of automorphisms, called statomorphisms. We will say
that two A-module structures Q and Q′ on B are statomorphic if there exists a
statomorphism ψ : B → B such that ψQ = Q′ψ.

Remark 4.2. The operator Q in the definition of Lie algebroid module can be
equivalently viewed as a linear homological vector field whose base vector field is
dA. In other words, a Lie algebroid module is a special case of a Q-vector bundle,
i.e. a vector bundle in the category of Q-manifolds.
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Remark 4.3. Of particular interest is the special case where the total space of B
is concentrated in degrees 0 and 1 (so that rki(B) vanishes except for i = −1, 0).
In this case, B = D[1] for some vector bundle D → E. The fact that B also has a
vector bundle structure over A[1] implies that D is a double vector bundle. In this
case, an A-module structure on B is equivalent to a VB-algebroid structure on D
over A.

Let E =
⊕

Ei[−i] be a graded vector bundle overM . Assume that E is bounded
in degree (or semibounded, c.f. Remark 2.6). Initially, we consider A-module
structures of the form π∗

AE → A[1], where πA is the projection map from A[1]
to M . In this case, the module of sections Γ(π∗

AE) is canonically isomorphic to
Ω(A) ⊗C∞(M) Γ(E) = Ω(A; E). Under this identification, Definitions 3.1 and 4.1
become identical, so we immediately have the following:

Lemma 4.4. ∞-representations of A on E are in one-to-one correspondence with
A-modules of the form π∗

AE.

In light of Theorem 2.2, we have a straightforward way to obtain an ∞-rep-
resentation from an arbitrary A-module B → A[1]; one simply needs to choose a
decomposition Θ : B → π∗

AE (see Definition 2.3), and then the operator Q on Γ(B)
induces an ∞-representation D := Θ ◦Q ◦Θ−1 of A on E .

Furthermore, we observe that a gauge transformation of Ω(A; E) is precisely the
same thing as an automorphism of π∗

A(E) that preserves the image of 0̃A. In other
words, changes of decomposition correspond to gauge transformations of D. We
now have our main result:

Theorem 4.5. Let A→M be a Lie algebroid.

(1) There is a one-to-one correspondence between isomorphism classes of A-
modules and isomorphism classes of (semi)bounded ∞-representations of
A.

(2) For any (semi)bounded graded vector bundle E =
⊕

Ei → M , there is
a one-to-one correspondence between statomorphism classes of A-modules
with standard graded vector bundle E and gauge-equivalence classes of ∞-
representations of A on E.

5. Adjoint module and deformation cohomology

Let A→M be a Lie algebroid, and let B → A[1] be an A-module.

Definition 5.1 ([Văı97]). The cohomology of A with values in B, denotedH•(A;B),
is the cohomology of the complex (Γ(B), Q).

The results of §4 imply that H•(A;B) is isomorphic to the cohomology of A with
values in any ∞-representation arising from B.

Example 5.2 (Adjoint module). The adjoint module of A is the tangent bundle
T (A[1]). The sections of T (A[1]) are of course vector fields on A[1] (i.e., graded
derivations of the algebra Ω(A)), with the operator Q := [dA, ·]. The low-degree
cohomology with values in the adjoint module was described in [Văı97], but it is
worth repeating with additional details.

We first consider degree −1. The degree −1 derivations of Ω(A) are precisely
the contraction operators ιX for X ∈ Γ(A). The Lie derivative operator LX :=
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[dA, ιX ] vanishes if and only if X is in the center of the Lie algebra Γ(A). Therefore
H−1(A;TA[1]) can be identified with the center of Γ(A).

Next, we consider degree 0. The degree 0 derivations of Ω(A) are in one-to-one
correspondence with linear vector fields on A. A degree 0 derivation φ satisfies the
equation [dA, φ] = 0 if and only if φ corresponds to a morphic vector field [MX98,
Meh09], i.e. an infinitesimal automorphism of A. The coboundaries are the Lie
derivatives LX , which may be considered inner infinitesimal automorphisms. The
cohomology H0(A;TA[1]) is then the space of outer infinitesimal automorphisms.

Let χ be a degree 1 derivation, and consider the operator dA + χh, where h
is a formal parameter. Obviously, (dA + χh)2 vanishes to order h2 if and only if
[dA, χ] = 0. Thus, the degree 1 cocycles correspond to infinitesimal deformations
of the Lie algebroid structure on A. The coboundaries consist of those “trivial”
infinitesimal deformations that come from pulling back dA along infinitesimal bun-
dle automorphisms of A. In this sense, H1(A;TA[1]) controls the infinitesimal
deformations of A.

The degree 2 cohomology arises when one wants to extend an infinitesimal defor-
mation to higher order. For example, suppose that χ, as above, is a degree 1 cocycle.
Then χ2 is a degree 2 cocycle. If χ2 = −[dA, ν], then (dA + χh + νh2)2 vanishes

to order h3. More generally, given a formal operator dA +
∑k

i=1 χih
i whose square

vanishes to order hk, one can find a χk+1 such that (dA +
∑k+1

i=1 χih
i)2 vanishes to

order hk+1 if an obstruction in H2(A;TA[1]) depending on the χi vanishes.

It was already observed by Crainic and Moerdijk [CM08] that the differential
graded Lie algebra of derivations of Ω(A) is isomorphic, up to a degree shift, with
their deformation complex of A, consisting of k-ary antisymmetric brackets on Γ(A)
satisfying Leibniz rules. The isomorphism can be described in terms of derived
brackets, as follows. Let χ be a degree k derivation of Ω(A). Then we may define
a (k + 1)-ary bracket J·, . . . , ·Kχ on Γ(A) by

ιJX1,...,Xk+1Kχ = [[· · · [[χ, ιX1
], ιX2

], · · · ], ιXk+1
]

for X1, . . . , Xk+1 ∈ Γ(A). Antisymmetry of J·, . . . , ·Kχ follows from the Jacobi
identity and the fact that contraction operators commute. The Leibniz rule follows
immediately from the fact that the Lie bracket of derivations satisfies the Leibniz
rule.

6. Tensor products, direct sums, and duals

Let A → M be a Lie algebroid, and let (B1, Q1) and (B2, Q2) be A-modules.
Then there is a natural A-module structure on B1 ⊗ B2, given by

Q(β1 ⊗ β2) = (Q1β1)⊗ β2 + (−1)|β1|β1 ⊗ (Q2β2)

for βi ∈ Γ(Bi). The tensor product is symmetric, in the sense that the Koszul
isomorphism from B1 ⊗ B2 to B2 ⊗ B1, taking β1 ⊗ β2 to (−1)|β1||β2|β2 ⊗ β1, is an
A-module isomorphism.

Similarly, the direct sum B1 ⊕ B2 inherits an A-module structure, given by

Q(β1 + β2) = Q1β1 +Q2β2.

Next, we consider duals. Let (B, Q) be an A-module, and let B∗ → A[1] be
the vector bundle dual to B. We denote by 〈·, ·〉 the pairing taking Γ(B∗) ⊗ Γ(B)
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to C∞(A[1]) = Ω(A). The induced A-module structure Q∗ on B∗ is uniquely
determined by the equation

(6) dA〈b, β〉 = 〈Q∗b, β〉+ (−1)|b|〈b,Qβ〉

for b ∈ Γ(B∗) and β ∈ Γ(B). Note that requiring (6) to hold is equivalent to asking
that the pairing 〈·, ·〉 be an A-module morphism from B∗ ⊗ B to the trivial rank 1
A-module (A[1]× R, dA).

Dualization takes vector bundles that are bounded in degree from below to those
that are bounded from above, and vice versa. The property of being bounded on
both sides is preserved by dualization.

Proposition 6.1. The pairing between Γ(B) and Γ(B∗) induces a well-defined co-
homology pairing H•(A;B∗)⊗H•(A;B) → H•(A).

Proof. From (6), we have that 〈b, β〉 is closed if both b and β are closed, and that
〈b, β〉 is exact if one of b or β is exact and the other is closed. Therefore, the map
taking [b]⊗ [β] to [〈b, β〉] is well-defined at the level of cohomology. �

In the case where M is compact and orientable, one can obtain R-valued pair-
ings parametrized by cohomology with values in the (canonically decomposed)
Berezinian A-module Ber := π∗

A(∧
topA ⊗ ∧topT ∗M). This is done by composing

the pairing of Proposition 6.1 with that of Evens, Lu, and Weinstein [ELW99].

7. Characteristic classes

Chern-Simons type characteristic classes associated to ∞-representations were
constructed in [GSM10]. In the 2-term case, it was shown there that the character-
istic classes are gauge-invariant, so they can be interpreted as VB-algebroid invari-
ants. We will recall the construction, and we will show that the gauge-invariance
property holds in full generality. We note that the arguments here are essentially
the same as those in [GSM10]; however, the presentation here is intended to be
more geometrically intuitive.

Let A → M be a Lie algebroid, and let E → M be a graded vector bundle that
is bounded in degree. We recall the notion of A-superconnection.

Definition 7.1 ([GSM10]). An A-superconnection on E is a degree 1 operator D
on Ω(A; E) satisfying the Leibniz rule (5). An A-superconnection is called flat if
D2 = 0.

Clearly, a flat A-superconnection is the same thing as an ∞-representation. In
general, a version of Chern-Weil theory gives obstructions to the existence of ∞-
representations. Specifically, given an A-superconnection D, one can obtain Chern-
Weil forms

chk(D) := str(D2k) ∈ Ω2k(A),

where str denotes the supertrace.

Proposition 7.2. For each k, the form chk(D) is closed, and the cohomology class
of chk(D) is independent of D.

Before proving Proposition 7.2, we give the following Lemma.

Lemma 7.3. Let D be an A-superconnection on E, and let θ be an End(E)-valued
A-form. Then [D, θ] is an End(E)-valued A-form, and

str([D, θ]) = dA str(θ).
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Proof. Locally, D may be written as dA + η, where η is an End(E)-valued A-form.
The result follows from the fact that str([η, θ]) = 0. �

Proof of Proposition 7.2. We have that D2k is an End(E)-valued A-form, so by
Lemma 7.3, we have that dA str(D2k) = str([D,D2k]) = 0. This proves that chk(D)
is closed.

The independence of the cohomology class of chk(D) on D will be an immediate
consequence of Proposition 7.4. �

In the case where D is an ∞-representation, the Chern-Weil forms chk(D) ob-
viously vanish. However, given a pair of ∞-representations, one can construct
Chern-Simons type transgression forms, as follows.

Let I be the unit interval, and consider the product Lie algebroid A × TI →
M × I. Let {t, ṫ} be the canonical coordinates on T [1]I. Any Lie algebroid q-form
ξ ∈ Ωq(A × TI) can be uniquely written as ξ0(t) + ṫξ1(t), where ξ0 and ξ1 are
t-dependent elements of Ωq(A) and Ωq−1(A), respectively. The Berezin integral

∫

ξ :=

∫

T [1]I

dt dṫ ξ =

∫ 1

0

dt ξ1

defines a degree −1 map from Ω(A × TI) to Ω(A). The differential on Ω(A× TI)
is

dA×TI = dA + ṫ
∂

∂t
,

and a straightforward computation shows that the equation

(7)

∫

dA×TIξ + dA

∫

ξ = ξ0(1)− ξ0(0)

holds for all ξ ∈ Ω(A× TI).
Let p be the projection map fromM×I toM . Given a pair of A-superconnections

D0 and D1 on E , we can form an (A × TI)-superconnection TD0,D1
on p∗E , given

by

TD0,D1
(a) = tD1(a) + (1− t)D0(a),

where a ∈ Γ(E) is viewed as a t-independent section of p∗E . The transgression
forms csk(D0,D1) ∈ Ω2k−1(A) are defined as

csk(D0,D1) :=

∫

chk(TD0,D1
) =

∫

str(T 2k
D0,D1

).

Proposition 7.4. dAcsk(D0,D1) = chk(D1) − chk(D0). In particular, if D0 and
D1 are ∞-representations, then csk(D0,D1) is closed.

Proof. Let ξ := chk(TD0,D1
) = str(T 2k

D0,D1
) ∈ Ω2k(A × TI). By Proposition 7.2, we

have that dA×TIξ = 0. Equation (7) then implies that

(8) dAcsk(D0,D1) = ξ0(1)− ξ0(0).

To compute the right side of (8), we first calculate

(9) T 2
D0,D1

= ṫ(D1 −D0) + t2D2
1 + (1− t)2D2

0 + t(1− t)[D0,D1],

so that

T 2
D0,D1

(1) = ṫ(D1 −D0) +D2
1,

T 2
D0,D1

(0) = ṫ(D1 −D0) +D2
0.
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It follows that

T 2k
D0,D1

(1) = D2k
1 +O(ṫ),

T 2k
D0,D1

(0) = D2k
0 +O(ṫ).

We conclude that the right side of (8) is str(D2k
1 )− str(D2k

0 ) = chk(D1)− chk(D0).
�

Remark 7.5. If D0 and D1 are ∞-representations, then (9) reduces to

T 2
D0,D1

= ṫ(D1 −D0) + t(1− t)[D0,D1].

Using the fact that D0 and D1 both commute with [D0,D1], we see that

T 2k
D0,D1

= kṫtk−1(t− 1)k−1(D1 −D0)[D0,D1]
k−1 + tk(1− t)k[D0,D1]

k.

The Berezin integral of T 2k
D0,D1

can then be explicitly computed, giving us the simple
formula

(10) csk(D0,D1) = Pk str
(

(D1 −D0)[D0,D1]
k−1

)

,

where the constant Pk is

Pk = k

∫ 1

0

tk−1(1− t)k−1dt =
k!(k − 1)!

(2k − 1)!
.

The following two propositions describe important properties satisfied by the
forms csk(D0,D1). The first is a sort of “triangle identity”, and the second asserts
that the cohomology classes are stable under Ω(A)-module automorphisms.

Proposition 7.6. Let D0, D1, and D2 be ∞-representations of A on E. Then

csk(D0,D1) + csk(D1,D2)− csk(D0,D2)

is exact.

Proof. Consider the transgression form ξ := csk(TD0,D1
, TD0,D2

) ∈ Ω2k−1(A × TI).
By Proposition 7.4, we have that

dA×TIξ = chk(TD0,D2
)− chk(TD0,D1

).

Applying the Berezin integral to both sides and using (7), we get

−dA

∫

ξ + ξ0(1)− ξ0(0) = csk(D0,D2)− csk(D0,D1).

To complete the proof, we need to compute the terms ξ0(1) and ξ0(0).
Letting s be the coordinate on the second copy of I, we write

TTD0,D1
,TD0,D2

(a) = stD2(a) + (1 − s)tD1(a) + (1− t)D0(a)

for a an s- and t-independent section of the pullback of E to M × I × I. Then

T 2
TD0,D1

,TD0,D2
=ṡt(D2 −D1) + ṫ(sD2 + (1− s)D1 −D0) + s(1 − s)t2[D2,D1]

+ st(1− t)[D2,D0] + (1− s)t(1− t)[D1,D0].

We observe that integration with respect to s and ṡ commutes with evaluation of t
and ṫ, so we may evaluate first. We see that

T 2
TD0,D1

,TD0,D2
(t = 1) = ṡ(D2 −D1) + ṫ(sD2 + (1− s)D1 −D0) + s(1 − s)[D2,D1],

T 2
TD0,D1

,TD0,D2
(t = 0) = ṫ(sD2 + (1− s)D1 −D0),
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so that

T 2k
TD0,D1

,TD0,D2
(t = 1) = (ṡ(D2 −D1) + s(1− s)[D2,D1])

k +O(ṫ),

T 2k
TD0,D1

,TD0,D2
(t = 0) = O(ṫ).

Therefore,

ξ0(1) =

∫

str(ṡ(D2 −D1) + s(1− s)[D2,D1])
k =

∫

str(T 2k
D1,D2

) = csk(D1,D2)

and ξ0(0) = 0. �

Proposition 7.7. Let ur be a smooth path of degree-preserving Ω(A)-module au-
tomorphisms of Ω(A; E) such that u0 = id. Let D be an ∞-representation of A on
E, and let Dr := u−1

r D0ur. Then csk(D0,D1) is exact.

Proof. Write Dr = D0 + θr, where θr is a path of End(E)-valued A-forms. Since
D2

r = 0, we have that

(11) [D0,Dr] = [D0, θr] = −θ2r .

From (9) we have

T 2
D0,Dr

= ṫθr + t(1 − t)[D0,Dr] = ṫθr − t(1− t)θ2r ,

so
T 2k
D0,Dr

= k(t2 − t)k−1 ṫθ2k−1
r + (t2 − t)kθ2kr .

It follows that csk(D0,Dr) is proportional to str(θ2k−1
r ), so that d

dr csk(D0,Dr) is
proportional to

(12) (2k − 1) str

(

dθr
dr

θ2k−2
r

)

.

We wish to show that (12) is exact. First, we compute that

dθr
dr

=
dDr

dr
=

du−1
r

dr
D0ur + u−1

r D0
dur
dr

=
du−1

r

dr
urDr +Dru

−1
r

dur
dr

=

[

Dr, u
−1
r

dur
dr

]

.

Using the property [Dr, θ
2
r ] = 0, which follows from (11), we deduce that

dθr
dr

θ2k−2
r =

[

Dr, u
−1
r

dur
dr

θ2k−2

]

.

Therefore, using Lemma 7.3, we have that (12) equals

(2k − 1) str

([

Dr, u
−1
r

dur
dr

θ2k−2

])

= (2k − 1)dA str

(

u−1
r

dur
dr

θ2k−2

)

,

which is exact, as desired. �

The transgression form construction allows us to define characteristic classes
associated to a single ∞-representation D, as follows. Choose a metric on Ei for
each i. We may use the metric to obtain an adjoint operator D† on Ω(A; E), given
by the equation

dA〈ω1, ω2〉 = 〈Dω1, ω2〉+ (−1)|ω1|〈ω1,D
†ω2〉.
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The operator D† satisfies the Leibniz rule and squares to zero, but it is generally
not homogeneous of degree 1; we say that it is a nonhomogeneous ∞-representation
or nonhomogeneous flat A-superconnection. We observe that the definitions and
proofs from earlier in this section carry over verbatim to the nonhomogeneous case,
with the only difference being that the Chern-Weil and Chern-Simons forms may
be nonhomogeneous.

Given an ∞-representation D, define the Chern-Simons forms associated to D
as

csk(D) := csk(D,D
†).

The following theorem implies that the cohomology classes of csk(D) are well-
defined invariants of Lie algebroid modules.

Theorem 7.8. The cohomology classes [csk(D)] are independent of the choice of
metric and invariant with respect to gauge transformations.

Proof. The space of metrics is convex, hence path-connected. Given a path of
metrics 〈·, ·〉r, let ur ∈ End(E) be given by

〈a, a′〉r = 〈ur(a), a
′〉0.

Then the corresponding adjoint operators satisfy the equation

D†r = u−1
r D†0ur.

Metric-independence then follows directly from Propositions 7.6 and 7.7.
Similarly, gauge-invariance follows from Propositions 7.6 and 7.7. For this, we

use the fact that the space of gauge transformations is an affine space modeled on
⊕

i,k Ω
i(A) ⊗Hom(Ek, Ek−i), hence path-connected. �
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