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Abstract

Secure communications can be impeded by eavesdroppers in conventional relay systems. This paper

proposes cooperative jamming strategies for two-hop relay networks where the eavesdropper can wiretap

the relay channels in both hops. In these approaches, the normally inactive nodes in the relay network

can be used as cooperative jamming sources to confuse the eavesdropper. Linear precoding schemes

are investigated for two scenarios where single or multiple data streams are transmitted via a decode-

and-forward (DF) relay, under the assumption that global channel state information (CSI) is available.

For the case of single data stream transmission, we derive closed-form jamming beamformers and

the corresponding optimal power allocation. Generalized singular value decomposition (GSVD)-based

secure relaying schemes are proposed for the transmission of multiple data streams. The optimal power

allocation is found for the GSVD relaying scheme via geometric programming. Based on this result, a

GSVD-based cooperative jamming scheme is proposed that shows significant improvement in terms of

secrecy rate compared to the approach without jamming. Furthermore, the case involving an eavesdropper

with unknown CSI is also investigated in this paper. Simulation results show that the secrecy rate is

dramatically increased when inactive nodes in the relay network participate in cooperative jamming.
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I. INTRODUCTION

Security is an important concern in wireless networks due to their vulnerability to eavesdropping.

Traditionally, security is viewed as an issue addressed above the physical (PHY) layer, and all widely

used cryptographic protocols are designed and implemented assuming the physical layer has already been

established and provides an error-free link [1]. However, higher-layer key distribution and management

may be difficult to implement and vulnerable to attack in complex environments such as ad-hoc or relay

networks, in which transceivers may join or leave randomly [2], [3]. Therefore, there has recently been

considerable interest in physical layer security, which explores the characteristics of the wireless channel

to improve wireless transmission security.

The theoretical basis of this area was laid by Wyner, who introduced the wiretap channel and demon-

strated that when the eavesdropper’s channel is a degraded version of the channel of the legitimate

receiver, the transmitter can send secret messages to the destination while keeping the eavesdropper from

learning anything about the message [4]. The notion of secrecy capacity was introduced and defined as

the maximum achievable transmission rate of confidential information from the source to its intended

receiver. Later, Csiszár and Körner generalized Wyner’s approach by considering the transmission of secret

messages over broadcast channels [5]. Recently, considerable research has examined secrecy in wiretap

channels with multiple antennas [6]–[14]. In particular, the secrecy capacity of the multiple-input multiple-

output (MIMO) wiretap channel has been fully characterized in [10], [11]. With the additional degrees

of freedom provided by multi-antenna systems, transmitters can generate artificial noise to degrade the

channel condition of the eavesdropper while maintaining little interference to legitimate users [13]–[16].

As a natural extension, approaches for physical layer security have also been investigated in cooperative

relaying networks [17]–[22]. In these cases, relays or even destinations can be used as helpers to provide

jamming signals to confuse the eavesdropper. This approach is often referred to as cooperative jamming.

In [20], a noise-forwarding strategy is introduced for a four-terminal relay-eavesdropper channel where

the full-duplex relay sends codewords independent of the secret message to confuse the eavesdropper.

A two-stage cooperative jamming protocol is investigated in [14], where multiple relay nodes act as an

extension of the single-antenna source node. In this work, the “relays” only play the role of a helper and

do not relay the information signals. In [21], three cooperative schemes are proposed for a single-antenna

relay network, and the corresponding relay weights and power allocation strategy are derived to enhance

the secrecy for the second hop. An optimal beamforming design for decode-and-forward (DF) relays is

investigated in [22], but only the scenario where the eavesdropper wiretaps just the link between the relay
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and destination is considered.

Unlike the aforementioned work, this paper proposes cooperative jamming strategies for a half-duplex

two-hop wireless MIMO relay system in which the eavesdropper can wiretap the channels during both

transmission phases. Cases involving both single and multiple data stream transmissions are investigated.

Due to the lack of “outer” helpers, the source, relay and destination must rely on themselves for jamming

support. This approach guarantees that the eavesdropper is jammed whether it is close to the source or

the destination. In the proposed cooperative jamming strategies, the source and the destination nodes

act as temporary helpers to transmit jamming signals during the transmission phases in which they

are normally inactive. We define two types of cooperative jamming schemes, full cooperative jamming

(FCJ) and partial cooperative jamming (PCJ), depending on whether or not both the transmitter and the

temporary helper transmit jamming signals at the same time.

We focus on the design of linear precoding schemes throughout the paper, and begin with a simple

scenario where the relay has only a single antenna. In this case, we investigate the joint design of the

jamming beamformer and the power allocation for two optimization problems: (1) maximizing the secrecy

rate with certain power constraints, and (2) minimizing the transmit power with a fixed target secrecy

rate. Since a joint optimization of the beamformers and power allocation is in general intractable even

if global CSI is available, we use a suboptimal zero-forcing constraint that the jamming and information

signals lie in orthogonal subspaces when received by the legitimate nodes, and we derive closed-form

expressions for the jamming beamformers. Based on these results, we find the optimal solution for the

power allocation by utilizing the method of geometric programming (GP). Then we expand the scope

to study the scenario where all nodes have multiple antennas, and multiple data streams are transmitted

via the relay. A generalized singular value decomposition (GSVD)-based cooperative jamming scheme

is proposed and the corresponding power allocation strategy is discussed. Unlike the single data stream

case that uses a zero-forcing constraint, the cooperative GSVD-based jamming method will not in general

produce jamming signals that are orthogonal to the desired signal.

Another important consideration is the availability of the eavesdropper’s CSI. If the CSI of the

eavesdropper is known, (for example, if the eavesdropper is another active user in the wireless network),

the transmitter can optimize its beamformer to enhance the information transmission to intended nodes

while suppressing or even eliminating the leakage to eavesdroppers. However, in some cases (e.g., passive

eavesdroppers), it is impractical to assume known CSI for the eavesdroppers. Since the secrecy rate can

not be optimized without knowledge of the eavesdropper’s CSI, we will follow the approach of [15],

[23]–[25], where the transmitter first allocates part of its resources to guarantee a fixed target rate, and
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then uses the remaining resources to jam the eavesdropper.

The organization of the paper is as follows. Section II describes the system model considered throughout

the paper. In Section III, the cooperative jamming schemes, including the jamming beamformer design

and power allocation, is investigated when the eavesdropper’s CSI is known. Both single and multiple data

stream transmissions are considered in this section. Secure relaying under the assumption of unknown

eavesdropper’s CSI is studied in Section IV. The performance of the proposed cooperative jamming

schemes are discussed in Section V, and conclusions are drawn in Section VI.

The following notation is used in the paper: E{·} denotes expectation, (·)T the matrix transpose and

(·)H the Hermitian transpose. || · || represents the Euclidean norm, | · | is the absolute value, [x]+ denotes

max{x, 0}, tr(·) is the trace operator, N (·) represents the null space, and I is an identity matrix of

appropriate dimension.

II. SYSTEM MODEL

We consider a two-phase four-terminal relay system composed of a source (Alice), a destination (Bob),

a DF relay node and an eavesdropper (Eve), as shown in Fig. 1. The message from Alice is uniformly

distributed over the message set W = {1, · · · , 2nR}, where R denotes the source rate in bits per channel

use. The confidential message is randomly mapped to a length-n source codeword zna ∈ Zna and the Relay

encoder maps its received signal to codeword znr ∈ Znr , where Zna and Znr are length-n input alphabets.

Nr

Ne

Na Nb

Phas
e 1 Phase 2

Alice

Relay

Bob

Eve

Fig. 1. Relay scenario.

All nodes are assumed to be half-duplex, i.e. a two-hop time division multiple access system is

considered. Alice transmits in the first phase while the relay listens, and relay transmits in the second

phase. We assume there is no direct communication link between Alice and Bob, except perhaps for
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some low-rate control or channel state information, and thus Alice and Bob must rely on two-phase

transmissions through the relay. This is a reasonable assumption in the type of scenarios where relaying

is used, where direct high-rate communication is too “expensive” in terms of the given power constraints,

but low-rate control information can still be exchanged [19]. When Alice transmits a jamming signal,

however, its impact on Bob’s received signal must be taken into account. All nodes in general have

multiple antennas. The number of antennas possessed by Alice, Bob, the Relay and Eve are denoted

by Na, Nb, Nr and Ne, respectively. In part of the paper, we will explicitly consider scenarios where

the Relay has only a single antenna. We restrict attention to scenarios where all nodes (including the

eavesdropper) employ linear precoding and receive beamforming.

A. Relay Transmission

In the first phase, Alice transmits the information signal to the Relay. Both the Relay and Eve will

receive the signal as

yr = HarTaza + nr (1)

ye1 = HaeTaza + ne1 (2)

where za is the information signal vector transmitted by Alice, Ta ∈ CNa×k (1 ≤ k ≤ s) is the transmit

beamformer used by Alice, and we assume m = rank{Har}, n = rank{Hrb}, s = min(m,n) and

k represents the number of data streams to be transmitted. The terms nr and ne1 represent naturally

occurring noise at the Relay and Eve, respectively. For simplicity, we assume that the noise vectors at all

nodes are Gaussian with covariance σ2I. In general, Hij (hij) represents the channel matrix from node

i to j, with i, j ∈ {a, b, e, r} denoting which of the four terminals is involved. These channel matrices

are fixed over both hops. The signal received by Bob and Eve in the second transmission phase can be

expressed as

yb = HrbTrzr + nb (3)

ye2 = HreTrzr + ne2 (4)

where zr is the signal vector transmitted by the Relay, Tr ∈ CNr×k is the transmit beamformer used by

the Relay, and nb, ne2 represent the noise vectors at Bob and Eve. There is a transmit power constraint P

on both phases, i.e., E{zHa za} ≤ P and E{zHr zr} ≤ P . We assume a repetition-coding scheme, where zr

is simply a scaled version of za. In particular, we assume za = Daz and zr = Drz, where E{zzH} = I

and Da, Dr are diagonal power loading matrices that ensure the power constraints are met.
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B. Cooperative Jamming

In the most general case, the signals transmitted by Alice in the first phase may contain both information

and jamming signals, and Bob may also transmit jamming signals at the same time. Thus the signals

received by the Relay and Eve in the first phase will be given by

yr = Har(Taza + T′az
′
a) + HbrT

′
bz
′
b + nr (5)

ye1 = Hae(Taza + T′az
′
a) + HbeT

′
bz
′
b + ne1 (6)

where z′a and z′b are jamming signal vectors transmitted by Alice and Bob, respectively, and T′a and

T′b are the corresponding transmit beamformers. In this paper, T′a and T′b could be chosen to project

the jamming signals on the subspace orthogonal to the information signals, or they could allow a small

amount of interference leakage to the legitimate receiver while producing more interference power at

Eve, as will be discussed when the GSVD-based transmission strategy is used. We refer to the case

where both z′a 6= 0 and z′b 6= 0 as full cooperative jamming (FCJ). If either of them is zero, we refer to

it as partial cooperative jamming (PCJ). FCJ will not be considered in the scenario where Eve’s CSI is

known, since in this case splitting the power between data and jamming signals at Alice is known to be

suboptimal. However, when Eve’s CSI is known, we will still study the PCJ scheme where Bob uses part

of the global transmit power to produce jamming signals. When Eve’s CSI is not available, FCJ should

be used, as will be discussed in Section IV.

In phase 2, the signals received by Bob and Eve are given by

yb = Hrb(Trzr + T′rz
′
r) + HabT

′
a2z
′
a2 + nb (7)

ye2 = Hre(Trzr + T′rz
′
r) + HaeT

′
a2z
′
a2 + ne2 (8)

where zr is the information signal vector of the Relay with transmit beamformer Tr, z′r and z′a2 are

jamming signal vectors transmitted by the Relay and Alice, respectively, and T′r and T′a2 are their

corresponding transmit beamformers. Note that, although there is no direct link for the information

signal, Bob still sees the jamming signal from Alice. For a global power constraint, we have

E{zHa za + z′Ha z′a + z′Hb z′b} ≤ P E{zHr zr + z′Hr z′r + z′Ha2z′a2} ≤ P.

We will also investigate scenarios with individual power constraints, i.e. E{zHa za + z′Ha z′a} ≤ Pa,

E{z′Hb z′b} ≤ Pb, E{zHr zr + z′Hr z′r} ≤ Pr, and E{z′Ha2z′a2} ≤ Pa.
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C. Performance Metric

MIMO wiretap channels have been extensively analyzed in recent work, and the achievable secrecy

rate has been shown to be [10], [11]

Rs = max[Id − Ie]+ (9)

where Id is the mutual information from the source to the destination, Ie is the mutual information from

the source to the eavesdropper, and the maximum is taken over all possible input covariance matrices.

For the half-duplex two-hop relay channel, the achievable secrecy rate was found in [26] to satisfy the

same expression as in (9), where amplify-and-forward, decode-and-forward, and compress-and-forward

relaying modes were all investigated. Eq. (9) was also used as a performance metric to evaluate cooperative

jamming schemes for half-duplex relay networks in [21]. In general, to obtain the maximum secrecy rate,

one must construct an optimal coding scheme, although potentially suboptimal Gaussian codebooks are

assumed in [8], [21], [26]. In Section III, we will follow the convention adopted in [21], [26] and use (9)

as our metric for evaluating the achievable secrecy rate, assuming Gaussian inputs. Note that (9) was

shown to be valid for both independent and repetition codebooks [26], although we will only focus on

repetition coding (e.g. [27], [28]) at the relay since independent codebooks are expected to result in

smaller secrecy rates when the encoding schemes and relay protocols are public information [26].

The discussion above applies to the cases where the eavesdropper’s CSI is known or at least partially

known (e.g. the case where only statistical channel knowledge is available and ergodic secrecy rate

is studied [8], [29]). However, when the eavesdropper’s CSI is completely unavailable, (9) may not

represent an achievable secrecy rate. Some recent progress has been made on finding expressions for the

achievable secrecy rate in certain scenarios where the eavesdropper’s CSI is completely unknown [30],

but the derivation of such an expression for the relay network considered here is still an open problem.

Nonetheless, the difference in the mutual information between the desired receiver and the eavesdropper

is still a valid metric for evaluating the relative security of competing physical layer approaches. While the

transmission parameters cannot be chosen to optimize (9) when the eavesdropper’s CSI is unknown, the

approach of [15], [24], [25] can be followed in which attention is restricted to obtaining a certain desired

QoS for the legitimate receiver, and then finding a robust strategy for using the remaining resources to

jam potential eavesdroppers. This is the approach adopted in Section IV, with (9) as the performance

metric.
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III. SECURE RELAYING WITH KNOWN ECSI

In this section, we assume that Eve’s CSI (ECSI) is available to the relay network. We will begin

with the simple case where the Relay is equipped with only a single antenna, then a more complicated

scenario with a MIMO relay will be investigated.

A. Single data stream relaying

We begin by assuming a single-antenna DF relay (Nr = 1), where only one data stream can be

transmitted via the Relay. Under the PCJ approach, the signals received in each phase can be expressed

as

yr = hartaza + hbrT
′
bz
′
b + nr (10)

ye1 = Haetaza + HbeT
′
bz
′
b + ne1 (11)

and

yb = hrbzr + HabT
′
az
′
a + nb (12)

ye2 = hrezr + HaeT
′
az
′
a + ne2 (13)

where E{zHa za} = pa, E{z′Hb z′b} = pb, E{zHr zr} = pr and E{z′Ha z′a} = pa2. This is the PCJ form of

(5)-(8) with z′a = 0 and z′r = 0. Since Nr = 1 in this case, we can design T′b such that the jamming

signals are completely nulled at the Relay, i.e., hbrT
′
b = 0. For the transmit beamformer ta in the first

phase, we choose the generalized eigenvector of the pencil (I+ pa
σ2 hHarhar, I+

pa
σ2 HH

aeHae) with the largest

generalized eigenvalue, which achieves the secrecy capacity for the single-hop MISO wiretap channel

[13]. For the second phase, we design T′a such that HabT
′
a is orthogonal to the one-dimensional signal

subspace span{hrb}, so that the jamming does not impact Bob’s reception of the information signal.

1) Maximum secrecy rate with power constraints: Next, we will discuss the design of the jamming

beamformers and power allocation for maximizing the secrecy rate under both global power constraints

(pa+ pb ≤ P in the first phase and pr + pa2 ≤ P in the second phase) and individual power constraints.

For a two-hop DF-based relay channel, the mutual information between Alice and Bob through the relay

link can be written as [31]

Id =
1

2
min{log2(1 + γar), log2(1 + γrb)} (14)
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where 1
2 appears because the relay transmission is divided into two stages, and γij is the SINR at node

j for the signal from node i. Eve receives data during both phases, and her mutual information is

Ie =
1

2
min{log2(1 + γar), log2(1 + γae + γre)}. (15)

Thus, the secrecy rate can be expressed as

Rs =

 1
2 log2

min{1+γar,1+γrb}
(1+γae+γre)

, γae + γre ≤ γar < γrb or γar ≥ max{γrb, γae + γre}

0, otherwise.
(16)

Since the rate of the relay link is limited by the SINR of the inferior phase, for a single data stream

the transmit power for Alice and the Relay should be adjusted such that γar = γrb for power efficiency.

Thus Rs = 1
2 log2

(1+γar)
(1+γae+γre)

will be used as the objective function in the remainder of this section, as

a result of the power adjustment.

We assume Eve uses beamformers we1 and we2 to receive the signals from Alice and the Relay in

the first and second phases, respectively:

wH
e1ye1 = wH

e1(Haetaza + HbeT
′
bz
′
b + ne1) (17)

wH
e2ye2 = wH

e1(hrezr + HaeT
′
az
′
a + ne2), (18)

and we assume that Eve can compute the beamformers which yield the best SINR,

we1 = (HbeT
′
bQzb′T

′H
b HH

be + σ2I)−1Haeta (19)

we2 = (HaeT
′
aQza′T

′H
a HH

ae + σ2I)−1hre (20)

where Qzb′ = E{z′bz′Hb } and Qza′ = E{z′az′Ha }. With the above assumptions, the secrecy rate can be

written as

Rs =
1

2
log2

(1 + γar)

(1 + γae + γre)
(21)

where

γar =
pa
σ2
|harta|2 (22)

γae = pat
H
a HH

ae(HbeT
′
bQzb′T

′H
b HH

be + σ2I)−1Haeta (23)

γre = prh
H
re(HaeT

′
aQza′T

′H
a HH

ae + σ2I)−1hre, (24)

and we aim to find the joint optimal solution for the jamming beamformers T′a, T′b, the covariance

matrices Qzb′ , Qza′ , and the transmit power vector p = [pa, pr, pa2, pb]
T in order to maximize the

secrecy rate Rs.
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We will first consider optimizing the jamming beamformers and covariance matrices. For T′b and Qzb′ ,

the problem of minimizing the SINR at Eve γae can be written as

min
Qzb′�0,T′b

tHa HH
ae(HbeT

′
bQzb′T

′H
b HH

be + σ2I)−1Haeta (25a)

s.t. tr(Qzb′) ≤ pb, hbrT
′
b = 0. (25b)

Although problem (25) can be formulated as a semidefinite program (SDP) that can be solved efficiently

(see Appendix A), we can not directly obtain an analytical solution that is useful for optimizing the global

power allocation. Therefore, we will make use of the following lemma, a proof of which is provided in

Appendix B.

Lemma 1: The covariance matrix Qzb′ that minimizes (25a) is rank one.

According to Lemma 1, we know that a one-dimensional jamming signal is optimal for the case of

single data stream transmission: T′b = t′b. Under the constraint that hbrt
′
b = 0, and defining G⊥b as an

orthonormal basis for N (hbr), the jamming beamformer from Bob can be written as t′b = G⊥b cb, for

some unit-length vector cb. Eq. (23) becomes

γae = pat
H
a HH

ae(pbHbet
′
bt
′H
b HH

be + σ2I)−1Haeta

=
pa
σ2

tHa HH
aeHaeta −

tHa HH
aeHbet

′
bt
′H
b HH

beHaeta

t′Hb (σ
2

pb
I + HH

beHbe)t
′
b

 , (26)

where the second equality holds due to the matrix inversion lemma [32]. The optimization problem is

equivalent to maximizing the second term in (26), which can be formulated as

max
cb

cHb aba
H
b cb

cHb (
σ2

pb
I + BH

b Bb)cb
s.t. cHb cb = 1 (27)

where ab = G⊥Hb HH
beHaeta and Bb = HbeG

⊥
b . The maximum value of the Rayleigh quotient in (27) is

the largest generalized eigenvalue of the matrix pencil (abaHb ,
σ2

pb
I+BH

b Bb), and the vector that achieves

it is the corresponding generalized eigenvector [33]. Since aba
H
b is rank one, the solution can be written

as

t′b = G⊥b
(σ

2

pb
I + BH

b Bb)
−1ab

||(σ2

pb
I + BH

b Bb)−1ab||
, (28)

and γae becomes

γae =
pa
σ2

(
tHa HH

aeHaeta − aHb (
σ2

pb
I + BH

b Bb)
−1ab

)
. (29)



10

Similarly for the second phase, the SINR for Eve is rewritten as

γre = prh
H
re(pa2Haet

′
at
′H
a HH

ae + σ2I)−1hre

=
pr
σ2

hHrehre −
hHreHaet

′
at
′H
a HH

aehre

t′Ha ( σ
2

pa2
I + HH

aeHae)t′a

 . (30)

Using the same method as in (26)-(28), Alice’s jamming beamformer is given by

t′a = G⊥a
(σ

2

pa
I + BH

a Ba)
−1aa

||(σ2

pa
I + BH

a Ba)−1aa||
, (31)

where G⊥a is an orthonormal basis for N (hHrbHab), aa = G⊥Ha HH
aehre,Ba = HaeG

⊥
a , and γre becomes

γre =
pr
σ2

(
hHrehre − aHa (

σ2

pa
I + BH

a Ba)
−1aa

)
.

Next we find the power allocation that maximizes the secrecy rate. Note that the jamming beamformers

are not independent of the jamming power, and thus we need to jointly optimize over both quantities. In

general, (21) is not convex with respect to p, so instead we maximize the following lower bound for Rs:

Rs(p) ≥
1

2
log2

γar

(1 + γae + γre)
=

1

2
log2

|harta|2

σ2g(p)
(32)

where

g(p) = p−1a + p̃b
−1 + p−1a prp̃

−1
a2 (33)

p̃−1b = tHa HH
aeHaeta − aHb (

σ2

pb
I + BH

b Bb)
−1ab (34)

p̃−1a2 = hHrehre − aHa (
σ2

pa
I + BH

a Ba)
−1aa. (35)

Over the range of practical transmit powers, p̃b and p̃a2 can be accurately approximated as linear functions

of pb and pa2, which we denote by p̃b = c1pb + c2 and p̃a2 = c3pa2 + c4. Note that according to (34),

as pb increases, the second term can only increase in size, which means p̃−1b decreases, and hence p̃b

increases, which implies that c1 is positive. As pb approaches zero, the second term approaches zero, but

the first term is non-negative, so that implies that c2 > 0. Thus c1 and c2 are both positive constants.

Similarly, we can see that c3 and c4 in (35) are also positive constants.

Using this approximation, the rate maximization problem under a global power constraint P becomes

one of minimizing g(p) in (32):

min
p

p−1a + p̃b
−1 + p−1a prp̃

−1
a2 (36a)

s.t. pa + c−11 p̃b ≤ P + c−11 c2, pr + c−13 p̃a2 ≤ P + c−13 c4 (36b)

pa|harta|2 = pr|hrb|2 (36c)
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where (36b) is derived from pa + pb ≤ P and pr + pa2 ≤ P , and (36c) is the optimal power adjustment

for the two hops used to guarantee that γar = γrb. The optimization problem stated above is in the

standard form for Geometric Programming (GP) problems, with (36a) and (36b) as posynomial and

(36c) as monomial constraints. GP problems are a class of non-linear optimization problems that can

be readily turned into convex optimization problems, and hence a global optimum can be efficiently

computed [34]. If individual power constraints are employed, we can also use GP to solve the following

similar optimization problem:

min
p

p−1a + p̃b
−1 + p−1a prp̃

−1
a2 (37a)

s.t. pa ≤ Pa, pr ≤ Pr (37b)

c−11 p̃b ≤ Pb + c−11 c2, c−13 p̃a2 ≤ Pa + c−13 c4 (37c)

pa|harta|2 = pr|hrb|2. (37d)

Remark 1: As discussed in the beginning of this section, we choose the principal generalized eigen-

vector of the pencil (I + pa
σ2 hHarhar, I +

pa
σ2 HH

aeHae) as the information signal transmit beamformer ta.

However, the allocated power pa is unavailable before the optimization algorithm starts. Therefore,

iterations will be needed for computing the beamformers, initialized with pa = P , where P is the

maximum transmit power. Based on our numerical experiments, the algorithm usually converges with

very few iterations, and introduces little complexity to the overall algorithm.

Remark 2: For the case where Hae does not have full column rank, i.e., Na > Ne, an alternative

would be to choose ta to lie in the null space N (Hae). This beamformer will in general be different

from the one we propose, and will result in a solution where Eve will not receive any information signal

in the first phase and hence the jamming from Bob is not necessary. However, based on our numerical

experiments, the solution we propose yields a larger secrecy rate. This is mainly due to the fact that

although ta may allow a small amount of information leakage from Alice to Eve, the rate improvement

in the information channel outweighs that of the wiretap channel, given the cooperative jamming support

from Bob and the optimized power allocation.

2) Minimum transmit power with fixed secrecy rate: The problem of minimizing the transmit power

under a certain fixed secrecy rate is similar to the problems discussed above. We still choose jamming

beamformers that lie in the subspace orthogonal to the intended channels. As before, for the first phase

we will have t′b = ρbG
⊥
beb, where ρb is a scalar that maintains the unit norm of t′b. We aim to minimize
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the norm of eb under a fixed target secrecy rate R0. According to (27) and (32), the problem can be

formulated as

min
eb

eHb eb s.t.
cHb aba

H
b cb

cHb (
σ2

pb
I + BH

b Bb)cb
≥ f(R0, t

′
a) (38)

where f(R0, t
′
a) is a function of R0 and t′a independent of t′b. The solution is again seen to be the

generalized eigenvector of the pencil (abaHb ,
σ2

pb
I+BH

b Bb) corresponding to the largest eigenvalue. Since

it is a rank-one Hermitian matrix, the result can be explicitly presented as t′b = G⊥b
(σ

2

pb
I+BH

b Bb)−1ab

||(σ2
pb

I+BH
b Bb)−1ab||

,

which is the same result as in the rate maximization problem. Similarly, for the second phase, we also

have the same beamformer as (31). Considering the transmit power of all the nodes, we can now formulate

the optimization problem under the global transmit power constraint as

min
p

max(pa + p̃b, pr + p̃a2) s.t. g(p) ≤ |harta|
2

22R0σ2
(39)

where g(p) is given in (32). This is also a GP problem. To minimize individual transmit powers, (39)

should be rewritten as minpmax(pa, p̃b, pr, p̃a2) instead.

B. Multiple data stream relaying

Since ECSI is known to the relay network, Alice and the Relay can utilize certain beamformers to

perform multiple data-stream relay transmission and reduce information leakage to Eve as well. The

GSVD has been employed for the traditional MIMO wiretap channel [13], and it operates by dividing

the channels from the transmitter to the intended receiver and the eavesdropper into a set of parallel

subchannels.

Definition 1 (GSVD Transform): Given two matrices H1 ∈ CNr×Na and H2 ∈ CNe×Na and k =

rank{[HH
1 ,H

H
2 ]H}, there exist unitary matrices U ∈ CNr×Nr , V ∈ CNe×Ne and Ψ ∈ CNa×Na , and a

non-singular upper-triangular matrix R ∈ Ck×k such that

UHH1Ψ = S1[R,0k×Na−k], VHH2Ψ = S2[R,0k×Na−k]

where S1 ∈ RNr×k, S2 ∈ RNe×k are nonnegative diagonal matrices with ST1 S1+ST2 S2 = Ik, the diagonal

elements of (ST1 S1)
1

2 are ordered as 0 ≤ s1,1 ≤ · · · ≤ s1,k, and the diagonal elements of (ST2 S2)
1

2 are

ordered as s2,1 ≥ · · · ≥ s2,k ≥ 0.

It has been shown [7] that, for the standard Gaussian MIMO wiretap channel, using the GSVD-based

beamformer

T =
Ψ

||R−1||

 R−1

0Na−k×k


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to transmit the desired signals along dimensions where s1,i ≥ s2,i achieves the secrecy capacity in the

high SNR regime with uniform power allocation. In this section, two transmission strategies based on

the GSVD will be investigated for the two-hop relay channel. In the first strategy, each transmission

phase is treated as a standard wiretap channel, and Alice and the Relay will use GSVD-based transmit

beamformers in the first and the second phase, respectively, without any cooperative jamming from

inactive nodes. In the second strategy, a cooperative jamming scheme is proposed in which Bob and

Alice also transmit jamming signals based on the GSVD transform in a reverse manner.

1) Simple GSVD-based relaying: To begin, we consider the case where GSVD-based beamforming is

used without jamming. According to Definition 1, the MIMO channels in phase 1 and phase 2 can be

decomposed as

Har = UaSar[Ra,0s×Na−s]Ψ
H
a Hae = VaSae[Ra,0s×Na−s]Ψ

H
a

Hrb = UrSrb[Rr,0s×Nr−s]Ψ
H
r Hre = VrSre[Rr,0s×Nr−s]Ψ

H
r

where s = min(rank{[HH
ar,H

H
ae]

H}, rank{[HH
rb,H

H
re]

H}), representing the maximum possible number

of data streams. Alice and the Relay transmit signals with the following two beamformers respectively,

Ta =
Ψa

||R−1a ||

 R−1a

0Na−s×s

 Tr =
Ψr

||R−1r ||

 R−1r

0Nr−s×s

 . (40)

Proposition 1: When (40) is used for transmit beamforming, the secrecy rate under the simple GSVD-

based relaying scheme can be expressed as:

Rgsvd =
1

2
log2

min
{∏s

i=1

(
1 +

pa,is2ar,i
σ2||R−1

a ||2

)
,
∏s
i=1

(
1 +

pr,is2rb,i
σ2||R−1

r ||2

)}
∏s
i=1

(
1 +

pa,is2ae,i
σ2||R−1

a ||2
+

pr,is2re,i
σ2||R−1

r ||2

) (41)

where pa,i and pr,i are the transmit power for the ith parallel channel from Alice and the Relay,

respectively.

The proof of Proposition 1 is given in Appendix C. Next, we will investigate the power allocation

for the above transmission scheme. Maximizing the rate in (41) is generally a nonconvex optimization

problem. However, applying the single condensation method for GP [35], the posynomial in the numerator

of (41) can be accurately approximated as a monomial, and we can still solve this nonconvex problem

through a series of GPs.

Lemma 2: Let
s∏
i=1

fi(pa,i) =

s∏
i=1

(
1 +

pa,is
2
ar,i

σ2||R−1a ||2

)
. (42)
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We have
s∏
i=1

fi(pa,i) ≥
s∏
i=1

f̃i(pa,i) =

s∏
i=1

(
1

α1,i

)α1,i

(
pa,is

2
ar,i

α2,iσ2||R−1a ||2

)α2,i

(43)

where α1,i, α2,i ≥ 0. The inequality becomes an equality when α1,i, α2,i satisfy

α1,i =
1

fi(pa,i)
, α2,i =

pa,i

fi(pa,i)

∂fi(pa,i)

∂pa,i
, (44)

in which case
∏s
i=1 f̃i(pa,i) is the best local monomial approximation of

∏s
i=1 fi(pa,i) near pa,i.

Proof: We can rewrite
∏s
i=1 fi(pa,i) as

s∏
i=1

(
1 +

pa,is
2
ar,i

σ2||R−1a ||2

)
=

s∏
i=1

(
α1,i

1

α1,i
+ α2,i

pa,is
2
ar,i

α2,iσ2||R−1a ||2

)
(45)

≥
s∏
i=1

(
1

α1,i

)α1,i

(
pa,is

2
ar,i

α2,iσ2||R−1a ||2

)α2,i

(46)

where (46) holds according to the arithmetic-geometric mean inequality. Noting that α1,i and α2,i are

both positive coefficients and α1,i + α2,i = 1, ∀i, the proof of equality is straightforward by inserting

(44) back into
∏s
i=1 f̃i(pa,i).

Similarly for the second phase, given the posynomial
s∏
i=1

gi(pr,i) =

s∏
i=1

(
1 +

pr,is
2
rb,i

σ2||R−1r ||2

)
, (47)

we have the approximation
s∏
i=1

g̃i(pr,i) =

s∏
i=1

(
1

β1,i

)β1,i

(
pr,is

2
rb,i

β2,iσ2||R−1r ||2

)β2,i

(48)

where

β1,i =
1

gi(pr,i)
, β2,i =

pr,i

gi(pr,i)

∂gi(pr,i)

∂pr,i
. (49)

The approach corresponding to these results is outlined in the following algorithm:

Algorithm 1: Single condensation method for power allocation

Initialize p(0)a,i and p(0)r,i , i = {1, · · · , s}.

For iteration k:

1) Evaluate posynomial fi(p
(k−1)
a,i ) and gi(p

(k−1)
r,i ), according to (42) and (47).

2) Compute α(k) and β(k):
α
(k)
1,i =

1

fi(p
(k−1)
a,i )

, β
(k)
1,i =

1

gi(p
(k−1)
r,i )

α
(k)
2,i =

p
(k−1)
a,i

fi(p
(k−1)
a,i )

∂fi(p
(k−1)
a,i )

∂p
(k−1)
a,i

, β
(k)
2,i =

p
(k−1)
r,i

gi(p
(k−1)
r,i )

∂gi(p
(k−1)
r,i )

∂p
(k−1)
r,i

.

(50)
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3) Condense posynomials fi and gi into monomials f̃i and g̃i, according to (43) and (48).

4) Solve the GP

min
p

max

{
s∏
i=1

f̃i(pa,i)
−1,

s∏
i=1

g̃i(pr,i)
−1

}
s∏
i=1

(
1 +

pa,is
2
ae,i

σ2||R−1a ||2
+

pr,is
2
re,i

σ2||R−1r ||2

)
(51a)

s.t.

s∑
i=1

pa,i ≤ P,
s∑
i=1

pr,i ≤ P. (51b)

5) Apply the resulting p(k)a,i and p(k)r,i to step 1 and loop until convergence.

The GP problems in this successive optimization method can be solved using interior-point methods

with polynomial-time complexity [36], and it has been proven in [35] that the solution obtained using

successive approximations for the single condensation method will efficiently converge to a point satisfy-

ing the KKT conditions of the original problem, and the global optimum can consequently be obtained.

Note that (51a) is refered to as a generalized posynomial [36] since it is formed from posynomials using

a maximum operation, and can be easily converted to the standard posynomial form as

min
p,µ

µ

s∏
i=1

(
1 +

pa,is
2
ae,i

σ2||R−1a ||2
+

pr,is
2
re,i

σ2||R−1r ||2

)
(52a)

s.t.

s∑
i=1

pa,i ≤ P,
s∑
i=1

pr,i ≤ P (52b)

s∏
i=1

f̃i(pa,i)
−1µ−1 ≤ 1,

s∏
i=1

g̃i(pr,i)
−1µ−1 ≤ 1. (52c)

2) GSVD-based PCJ: A GSVD-based, partial cooperative jamming scheme is proposed in this subsec-

tion. In this case, Alice and the Relay will still use the same transmit beamformers as in the case without

cooperative jamming. Since Bob and Alice are normally inactive in phase 1 and phase 2 respectively,

they can act as temporary helpers to help improve the secrecy rate. As before, however, the power used

for jamming must come from the total power budget of P in each hop. A GSVD-based beamformer for

the jamming signal is used by Bob in the first phase, due to the assumption that ECSI is available. The

GSVD is implemented in a reverse fashion, since Bob in phase 1 considers Eve as the intended receiver

of the jamming and wants to avoid leaking interference signals to the Relay. Similarly in phase 2, Alice

treats Eve as the intended receiver. The signal model for this scheme is given in Section II-B.

Performing the GSVD for the channels from Bob to Eve and the Relay according to Definition 1, we

have

Hbe = UbSbe[Rb,0kb×Nr−kb ]Ψ
H
b Hbr = VbSbr[Rb,0kb×Nr−kb ]Ψ

H
b

Hae = Ua′Sae[Ra′ ,0ka×Na−ka ]Ψ
H
a′ Hab = Va′Sab[Ra′ ,0ka×Na−ka ]Ψ

H
a′
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where kb = rank{[HH
be,H

H
br]

H}. Bob and Alice use the following jamming beamformers to implement

the reverse GSVD

T′b =
Ψb

||R−1b ||

 R−1b

0Nr−kb×kb

 T′a =
Ψb

||R−1a′ ||

 R−1a′

0Na−ka×ka

 ,
and, unlike the simple GSVD-based relaying scheme, there will be jamming energy present in the signals

received by the Relay and Bob. For Eve, the received signal is given by

ye =

 HaeTaDa

HreTrDr

 z +

 HbeT
′
bz
′
b + ne1

HaeT
′
az
′
a + ne2

 = H̃ez + ñe.

Employing the above jamming beamformers, the mutual information between Alice and Bob is

Id = min

{
1

2
log2 det(I + HarTaQzaT

H
a HH

arQ
−1
ñr ),

1

2
log2 det(I + HrbTrQzrT

H
r HH

rbQ
−1
ñb )

}
(53)

where E(z′az′Ha ) = Qza′ E(z′bz′Hb ) = Qzb′ , and

Qñr = E[(HbrT
′
bz
′
b + nr)(HbrT

′
bz
′
b + nr)

H ] = HbrT
′
bQzb′T

′H
b HH

br + σ2I

Qñb = E[(HabT
′
az
′
a + nb)(HabT

′
az
′
a + nb)

H ] = HabT
′
aQza′T

′H
a HH

ab + σ2I.

The mutual information at Eve is

Ie = min

{
1

2
log2 det(I + HarTaQzaT

H
a HH

arQ
−1
ñr ),

1

2
log2 det(I + H̃eQzH̃

H
e Q−1ñe )

}
(54)

where

Qñe =

 HbeT
′
bQzb′T

′H
b HH

be + σ2I 0

0 HaeT
′
aQza′T

′H
a HH

ae + σ2I

 .
To maximize the secrecy rate, we then have the following optimization problem:

max
Qza,Qzb′ ,Qzr,Qza′

RPCJgsvd

s.t. tr(Qza + Qzb′) ≤P, tr(Qzr + Qza′) ≤ P (55)

where RPCJgsvd = Id − Ie and P is the global power constraint.

Remark 3: The secrecy rate in this case does not have a form similar to (41), and finding the optimal

power allocation for this case is generally intractable. Therefore, we will use Newton’s method initialized

with the optimal point from the GSVD-based relaying algorithm. Though this may not find the global

optimum, we can at least gain insight into this strategy. The global power constraints in (55) are set for

fair comparison with the case without cooperative jamming.
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IV. SECURE RELAYING WITH UNKNOWN ECSI

In this section, we assume that ECSI is unknown to the relay network. Thus, Alice and the Relay can

no longer use beamforming methods like those based on the GSVD to selectively transmit information

away from and jamming signals towards the eavesdropper. However, cooperative jamming can still be

used to improve the secrecy of the information in the two-hop network. As described below, the approach

we take to achieve this goal is to first meet a fixed target rate for the relay link, and then allocate all

remaining resources to wide-area jamming, while guaranteeing that the jamming signal has no impact

on the desired information.

We propose a cooperative jamming strategy in which the signal space is divided into two orthogonal

subspaces, an information subspace and a jamming subspace. Both PCJ and FCJ approaches can be

applied in this scenario. For PCJ, any available jamming power will only be allocated to information

transmitters, while Bob (phase 1) and Alice (phase 2) remain inactive. For FCJ, both the transmitter

and the temporary helpers can perform cooperative jamming in the jamming subspace, which will allow

the legitimate receivers to use beamforming to reject interference from this subspace. Note that when

using FCJ, cooperative jamming requires the receiver to broadcast the jamming subspace so that the

interference can be aligned at the desired receiver without a loss of information. Although Eve may also

be aware of this subspace, she can not remove the jamming signal since she sees different channels from

the transmitters and jammers.

In phase 1, assume span{Har} = span{η1, η2, . . . , ηk, ηk+1, . . . , ηm}, where k is no greater than the

maximum possible number of data streams, and η1, η2 . . . , ηm form an orthonormal basis. The information

and jamming subspaces are defined to be S1 and J1, respectively, where S1 = span{η1, η2, . . . , ηk} and

J1 = S⊥1 . Assuming the receive beamformer matrix at the Relay is Wr = [η1, η2, . . . , ηk], the signal

received by the Relay is

ỹr = WH
r [Har(Taza + T′az

′
a) + HbrT

′
bz
′
b + nr] = H̃arza + ñr (56)

where H̃ar = WH
r HarTa, za is the information signal vector transmitted by Alice with covariance

Qza, z′a and z′b are jamming signals transmitted by Alice and Bob, with covariance matrices Qz′a and

Qz′b, respectively. The transmit beamformers are chosen such that HarTaza ∈ S1, and HarT
′
az
′
a ∈

J1,HbrT
′
bz
′
b ∈ J1. The signal received by Eve in phase 1 is

ye1 = Hae(Taza + T′az
′
a) + HbeT

′
bz
′
b + ne1 = H̃aeza + ñe1 (57)

where ñe1 = HaeT
′
az
′
a + HbeT

′
bz
′
b + ne1.
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In phase 2, signal S2 and jamming J2 subspaces are chosen from span{Hrb}, and similar to phase

1, the signals at Bob and Eve are

ỹb = WH
b [Hrb(Trzr + T′rz

′
r) + HabT

′
a2z
′
a2 + nb] = H̃rbzr + ñb (58)

ye2 = Hre(Trzr + T′rz
′
r) + HaeT

′
a2z
′
a2 + ne2 = H̃rezr + ñe2 (59)

where H̃rb = WH
b HrbTr, H̃re = HreTr and ñe2 = HreT

′
rz
′
r+HaeT

′
a2z
′
a2+ne2, zr is the information

signal transmitted by the Relay with covariance Qzr, z′a2 and z′r are jamming signals transmitted by

Alice and the Relay, with covariance matrices Qz′a2 and Qz′r, respectively. As before, the beamformers

Tr and T′r force HrbTrzr ∈ S2, and HrbT
′
rz
′
r ∈ J2, HabT

′
a2z
′
a2 ∈ J2.

The cooperative scheme outlined in this section involves the allocation of power and the number

of dimensions for the information and jamming subspaces. If the MIMO channel is rich enough, more

dimensions allocated to the signal subspace increases the amount of power available for jamming, but leads

to a smaller dimensional jamming subspace for both transmitters and cooperative jammers. More antennas

for Eve usually requires a higher dimensional jamming subspace, especially when ECSI is unknown to

the transmitters. One of the advantages of FCJ in this case is that in addition to the pre-assigned jamming

subspace of dimension Na−k (for phase 1), the helpers provide jamming support in additional dimensions

due to the fact they have different channels to Eve. Taking the transmission in phase 1 as an example,

assuming k dimensions are assigned to the information subspace, the jamming subspace seen from Eve

will be greater than Na− k. In particular, Na− k ≤ dim(span{HaeT
′
a}∩ span{HbeT

′
b}) ≤ 2(Na− k).

Therefore, the tradeoff between power and allocation of the jamming subspace dimension needs to

be considered. In this case, we propose to use an approach similar to that in [24] and minimize the

product of the power allocated to the information signal and the dimension of the information subspace,

(pa+ pr)k, such that the fixed target rate for the relay transmission is achieved. We then allocate all the

remaining dimensions and power for jamming. Since the ECSI is not known, the jamming power will

be uniformly distributed among all available dimensions at the transmitters and cooperative jammers.

Assuming the target rate for the relay transmission is Rt, we have the following FCJ algorithm:

Algorithm 2: FCJ with unknown ECSI

1) Initialize svd(Har) = UarΣarV
H
ar and svd(Hrb) = UrbΣrbV

H
rb.

2) While i ≤ s

• Let Wr = Uar[:, 1 : i], Wb = Urb[:, 1 : i], Ta = Var[:, 1 : i], Tr = Vrb[:, 1 : i].

• Let T′a = Var[:, i+ 1 : Na], T′r = Vrb[:, i+ 1 : Nr].
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• Let svd(WH
r Hbr) = UbrΣbrV

H
br, T′b = Vbr[:, i+ 1 : Nb], and svd(WH

b Hab) = UabΣabV
H
ab,

T′a2 = Vab[:, i+ 1 : Na].

• Solve the following problem

p(i)a = min tr(Qza), p(i)r = min tr(Qzr)

s.t.
1

2
log2 det(I +

1

σ2
H̃arQzaH̃

H
ar) = Rt,

1

2
log2 det(I +

1

σ2
H̃rbQzrH̃

H
rb) = Rt

where the water filling algorithm is used to determine Qza and Qzr.

3) Find k = argmini [p
(i)
a + p

(i)
r ] · i, and determine all beamformers for the resulting k.

4) Allocate p(k)a to diag{Qza}, and p(k)r to diag{Qzr} using water filling.

5) Uniformly allocate P − p(k)a to diag{Qz′a,Qz′b}, and P − p(k)r to diag{Qz′r,Qz′a2}.

The PCJ algorithm in the unknown-ECSI case is similar to that for FCJ, except that jamming support

will not be provided by Bob (in phase 1) and Alice (in phase 2), and thus the beamformers T′b and T′a2 in

step 2 will not be used. In step 5, when the necessary amount of power for information signals is assigned,

all remaining jamming power will be used by Bob and Alice in phase 1 and phase 2, respectively; i.e., the

power P −p(k)a and P −p(k)r will instead be assigned to diag{Qz′a} and diag{Qz′r}. In either approach,

the optimization problem in step 2 can be solved with a simple line search. If the minimum rate Rt

can not be achieved with the available power, the link is assumed to be in outage. In this algorithm, we

assume that the Relay uses the same information dimension as Alice, as discussed in Section II. However,

using different information dimensions for the two phases with a more complicated coding scheme may

also be an interesting case to consider for future work.

V. NUMERICAL RESULTS

In the following simulations, the elements of all the channel matrices are assumed to be i.i.d. complex

Gaussian. As shown in Fig. 2, Alice, Bob, the Relay and Eve are assumed to be located at (−0.5, 0),

(0.5, 0), (0, 0), (dx,−0.5) respectively, where distances are expressed in kilometers. We adopt a simple

transmission model in which the standard deviation of each channel coefficient is inversely proportional to

the distance between two nodes. We assume a path-loss coefficient of 3, and the same background noise

power σ2 = −60dBm at all nodes. All results are calculated based on an average of 3000 independent

trials.

For the known-ECSI case discussed in Section III, we examine the performance of the following three

schemes: PCJ for single data stream relaying (Section III-A), simple GSVD-relaying (Section III-B1)

and also GSVD-PCJ (Section III-B2) for multiple data streams. For the unknown ECSI case discussed in
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Fig. 2. Simulation scenario showing locations for Alice(A), Bob(B), Relay(R) and Eve(E).

Section IV, both the FCJ and PCJ approaches are simulated. For each of these schemes, we also examine

the impact of both global and individual power constraints. For the case of individual power constraints,

we assume the total transmit power to be evenly distributed to all transmit nodes. Furthermore, in order to

examine the performance gain of the proposed cooperative jamming schemes and optimization algorithms,

we also investigate cases using uniform power allocation, as well as cases involving conventional relay

transmissions without jamming.

The secrecy rate as a function of transmit power is shown in Fig. 3 for a case with known ECSI,

where Alice and Bob both have four antennas, and the Relay and Eve each has one. Eve is assumed to

be located closer to the Relay at (0,−0.5), which (as will be seen in the next example) is usually the

worst-case assumption for the relay link. This will be the default assumption unless otherwise specified.

Compared to traditional DF relaying, the PCJ schemes provide a significant improvement in terms of

secrecy rate in the medium and high SNR regime. The benefit of having the flexibility associated with a

global power constraint over fixed individual power constraints is clearly evident. Also, the performance

gain of using geometric programming for power allocation is obvious, compared to the uniform power

allocation scheme. We can also see that even the conventional relaying scheme is better than PCJ schemes

with individual or uniform power allocation when the transmit power is low. This is because, with a less

flexible power adjustment, a fraction of power that could have brought higher secrecy rate if used for

data transmission is wasted on jamming signals. This illustrates the importance of an efficient power

allocation if cooperative jamming support is applied.

Fig. 4 presents the impact of Eve’s location on the transmit power fraction for both the information

and jamming signals, assuming that the global transmit power is limited to 10dBm. Unlike the settings in

Fig. 3, Eve has four antennas in this scenario, which provides her with increased eavesdropping abilities.
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Fig. 3. Secrecy rate vs. transmit power for Na = 4, Nb = 4, Ne = 1, Nr = 1, and Eve located at (0,−0.5).

In this case, we plot the secrecy rate performance as Eve moves from (−1,−0.5) to (1,−0.5). The

secrecy rate is smallest when Eve is at the midpoint (0,−0.5), and increases in either direction away

from (0,−0.5). Note also that the fraction of the transmit power devoted to jamming also decreases as

Eve moves away from the midpoint. This behavior is due to the fact that, when Eve is closer to either

Alice or Bob, most of her information about the desired signal comes from only one of the hops, due

to the fact that the other hop is farther away and can be effectively jammed with minimal power by the

transmitter she is closest to. This is the primary benefit of the cooperative jamming support provided by

PCJ.

The performance of GSVD-based relaying without cooperative jamming and GSVD-based PCJ strate-

gies, where the relay link transmits multiple data streams, is shown in Fig. 5. Here we see that cooperative

jamming with global power allocation provides considerable gain in secrecy rate over other schemes.

However, the use of individual power constraints significantly degrades the benefit of the jamming signals,

although it still approaches and even surpasses the performance of GSVD-relaying with optimal power

allocation when the transmit power is higher. In addition, we also see the benefit of Algorithm 1 for

power allocation in the GSVD-relaying scheme, compared with using simple uniform power allocations.

Finally we consider examples for the case where ECSI is not available. The transmit power P is set

to be 15dBm in these examples. In Fig. 6, all nodes are equipped with four antennas, and the secrecy
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power constraint P = 10dBm, and Eve’s location varies from (−1,−0.5) to (1,−0.5).
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Fig. 5. Secrecy rate vs. transmit power for Na = 4, Nb = 4, Ne = 4, Nr = 4, and Eve located at (0,−0.5).

performance is given as a function of the rate constraint at Bob. For purpose of comparison, a naive PCJ

scheme that uses the criterion min(pa+pr) (instead of min(pa+pr)k as discussed in Section IV) is also

simulated. It can be seen that if no jamming signals are used, there is little difference between the mutual
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information at Bob and that at Eve, and thus we expect the secrecy of the message to be low. Similar

to Fig. 3, the individual power constraint will reduce the secrecy performance due to the inefficiency of

the power assignment. We can see that FCJ achieves a big performance gain compared with PCJ as Rt

increases, since FCJ leads to a higher dimensional jamming subspace than PCJ, although they transmit

with the same jamming power. In addition, the performance of PCJ begins to level off and even drop for

high Rt, since more power is allocated to information signals, and the protection from eavesdropping is

reduced.

Fig. 7 provides a detailed look at how the number of eavesdropper antennas affects the performance

of the different cooperative jamming schemes. In this case, we fix the target rate for relay transmission

to be Rt = 1bps/Hz. Alice, Bob and the Relay are equipped with four antennas, and the number of Eve’s

antennas increases from one to eight. It can be seen that when Eve has only one antenna, little advantage

is observed for FCJ since Eve only receives single-dimensional signals. However, as the capability of the

eavesdropper increases (i.e. when Eve has more antennas), the relative gain of FCJ over PCJ increases,

although the performance of all methods decreases.
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Fig. 6. Secrecy performance vs. rate constraint for relay link when ECSI is unknown, Na = 4, Nb = 4, Ne = 4, Nr = 4,

Eve located at (0,−0.5), P = 15dBm.
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Fig. 7. Secrecy performance vs. eavesdropper antenna number when ECSI is unknown, Na = 4, Nb = 4, Nr = 4, Eve located

at (0,−0.5), fixed target rate Rt = 1bps/Hz, P = 15dBm.

VI. CONCLUSIONS

In this paper, we have proposed partial cooperative jamming (PCJ) and full cooperative jamming

(FCJ) strategies for two-hop DF relay systems in the presence of an eavesdropper that can wiretap

both transmission phases. Both single and multiple data stream transmission scenarios were considered.

For single data stream relaying, the system design was conducted from the perspective of secrecy rate

maximization and transmit power minimization. By adopting the zero-forcing constraint that the jamming

signals be nulled out at the intended receivers, we obtained closed-form expressions for the jamming

beamformers and the corresponding power allocation. For the case of multiple data stream transmission,

we proposed a GSVD-based relaying scheme without jamming, as well as a GSVD-based PCJ scheme.

The latter shows a significant performance improvement even though only a potentially suboptimal power

allocation scheme is used. We also studied the secure relaying problem when the eavesdropper’s CSI is

unknown. Instead of maximizing the secrecy rate, a more reasonable relaying scheme with both PCJ and

FCJ is proposed in which a target QoS for the relay network is met, and only the remaining resources

are used for jamming. These schemes are shown to provide large gains in terms of the difference in the

mutual information between the desired receiver and the eavesdropper. In particular, FCJ is shown to be

a better choice when the eavesdropper’s CSI is unavailable since the ability to exploit additional jamming
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subspace dimensions is preferable when the transmitters possess no information about the eavesdropper.

APPENDIX A

SDP FOR PROBLEM (25)

Let Q̃zb′ = T′bQzb′T
′H
b , where T′b is normalized such that tr(Q̃zb′) = tr(Qzb′). Problem (25) is

equivalent to

min
Q̃zb′�0,µ≥0

µ (60a)

s.t. tHa HH
ae(HbeQ̃zb′H

H
be + σ2I)−1Haeta ≤ µ (60b)

tr(Q̃zb′) ≤ pb. (60c)

Using the Schur complement [32], constraint (60b) can be written as µ HH
aet

H
a

Haeta HbeQ̃zb′H
H
be + σ2I

 � 0. (61)

Combining (61) with the trace constraint and the semidefinite constraints on Q̃zb′ , the equivalent problem

becomes

min µ (62a)

s.t. tr(Q̃zb′) ≤ pb, Q̃zb′ � 0, µ ≥ 0,hbrQ̃zb′ = 0 (62b) µ HH
aet

H
a

Haeta HbeQ̃zb′H
H
be + σ2I

 � 0. (62c)

This is an SDP that consists of a linear objective function, a linear equality constraint, and a set of

linear matrix inequalities (LMIs) [34], and thus can be solved efficiently, and T′b can be obtained via the

eigenvalue decomposition of Q̃zb′ .

APPENDIX B

PROOF OF LEMMA 1

Given any jamming beamformer T′b, (25) becomes

min
Qzb′�0

f(Qzb′) s.t. tr(Qzb′) ≤ pb (63)

where f(Qzb′) = tHa HH
ae(HbeT

′
bQzb′T

′H
b HH

be + σ2I)−1Haeta, and the Lagrangian of (63) is

L(Qzb′ , λ,Φ) = f(Qzb′) + λ(tr(Qzb′)− pb)− tr(ΦQzb′) (64)
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where λ ≥ 0 is the Lagrange multiplier associated with the inequality constraint tr(Qzb′) ≤ pb, and

Φ � 0 is the Lagrange multiplier associated with the inequality constraint Qzb′ � 0. Next, we can obtain

the necessary conditions for the optimal Qzb′ by using the Karush-Kuhn-Tucker (KKT) conditions:

tr(Qzb′) ≤ pb, Qzb′ � 0, λ ≥ 0, Φ � 0 (65)

tr(ΦQzb′) = 0 (66)

λ(tr(Qzb′)− pb) = 0 (67)

Φ−Θ = λI (68)

where Θ is obtained by differentiating f(Qzb′) with respect to Qzb′ , and is given by

Θ = −HH
beT
′H
b (HbeT

′
bQzb′T

′H
b HH

be + σ2I)−1Haetat
H
a HH

ae(HbeT
′
bQzb′T

′H
b HH

be + σ2I)−1T′bHbe.

Since ta is a vector, it is obvious that Θ is a rank-one negative semidefinite matrix.

For the case that λ = 0, according to (68), we have Θ = Φ. Since Θ has a negative eigenvalue, Φ

will also have a negative eigenvalue, which contradicts the fact that Φ is positive semidefinite. Thus λ

can only be positive. For λ > 0, according to (68), we know that Φ −Θ is a positive definite matrix.

Therefore, Φ has at least N−1 positive eigenvalues, i.e. rank(Φ) ≥ N−1, in order to keep Φ−Θ � 0.

Assuming λi(Φ) and λi(Qzb′), i = {1, 2, . . . , N} are eigenvalues of Φ and Qzb′ , respectively, in non-

increasing order, and due to the fact that Φ and Qzb′ are both positive semidefinite matrices, we have

tr(ΦQzb′) ≥
∑N

i=1 λi(Φ)λN−i+1(Qzb′). Combining this observation with (66), we also have
N∑
i=1

λi(Φ)λN−i+1(Qzb′) = 0. (69)

Thus we can conclude that rank(Φ) 6= N , since otherwise all eigenvalues of Qzb′ are zero and no

jamming signals are transmitted. Combining this conclusion and the observation that rank(Φ) ≥ N − 1,

we can conclude that rank(Φ) = N − 1. Therefore, according to (69), we have λ1(Qzb′) > 0 and

λi 6=1(Qzb′) = 0, which indicates that rank(Qzb′) = 1, and the proof is completed.

APPENDIX C

PROOF OF PROPOSITION 1

According to the signal model given in Section II-A, the signals received by Eve during both phases

can be combined together as

ye =

 HaeTaDa

HreTrDr

 z +

 ne1

ne2

 = H̃ez + ñe (70)
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where Dk = diag{√pk,i} and E(zzH) = Qz = I.

Using the transmit beamformers in (40), and denoting E(zazHa ) = Qza = diag{pa,1, · · · , pa,s},

E(zrzHr ) = Qzr = diag{pr,1, · · · , pr,s}, the mutual information between Alice and Bob is

Id = min

{
1

2
log2 det(I +

1

σ2
HarTaQzaT

H
a HH

ar),
1

2
log2 det(I +

1

σ2
HrbTrQzrT

H
r HH

rb)

}
(71)

where

1

2
log2 det(I +

1

σ2
HarTaQzaT

H
a HH

ar) =
1

2
log2 det(I +

1

σ2
SarQzaS

H
ar)

=
1

2
log2

s∏
i=1

(
1 +

pa,is
2
ar,i

σ2||R−1a ||2

)
(72)

1

2
log2 det(I +

1

σ2
HrbTrQzrT

H
r HH

rb) =
1

2
log2 det(I +

1

σ2
SrbQzrS

H
rb)

=
1

2
log2

s∏
i=1

(
1 +

pr,is
2
rb,i

σ2||R−1r ||2

)
. (73)

For Eve, we have

Ie = min

{
1

2
log2 det(I +

1

σ2
H̃arQzaH̃

H
ar),

1

2
log2 det(I +

1

σ2
H̃eQzH̃

H
e )

}
(74)

where

1

2
log2 det(I +

1

σ2
H̃eQzH̃

H
e ) =

1

2
log2 det(I +

1

σ2
H̃H
e H̃e)

=
1

2
log2 det(I +

1

σ2
(DH

a SHaeSaeDa + DH
r SHreSreDr))

=
1

2
log2

s∏
i=1

(
1 +

pa,is
2
ae,i

σ2||R−1a ||2
+

pr,is
2
re,i

σ2||R−1r ||2

)
, (75)

and according to the same secrecy constraints in (16), the secrecy rate (41) can be obtained.

REFERENCES

[1] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans.

Inf. Theory, vol. 54, no. 6, pp. 2515–2534, Jun. 2008.

[2] B. Schneier, “Cryptographic design vulnerabilities,” Computer, vol. 31, no. 9, pp. 29–33, Sep. 1998.

[3] M. Debbah, “Mobile flexible networks: The challenges ahead,” in Proc. Int. Conf. Advanced Technologies for Communi-

cations (ATC), Oct. 2008, pp. 3–7.

[4] A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, Jan. 1975.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp.

339–348, May 1978.

[6] P. Parada and R. Blahut, “Secrecy capacity of SIMO and slow fading channels,” in Proc. Int. Symp. Information Theory

(ISIT), Sep. 2005, pp. 2152–2155.



28

[7] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel,”

IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.

[8] S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels with secrecy constraints,” in Proc. IEEE Int.

Symp. Information Theory (ISIT), Jun. 2007, pp. 2466–2470.

[9] R. Liu, R. Bustin, S. Shamai, and H. V. Poor, “An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap

channel,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Jun. 2009, pp. 2602–2606.

[10] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” in Proc. IEEE Int. Symp. Information

Theory (ISIT), Jul. 2008, pp. 524–528.

[11] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap channel,” IEEE Trans. Inf. Theory,

vol. 55, no. 6, pp. 2547–2553, Jun. 2009.

[12] Z. Li, W. Trappe, and R. Yates, “Secret communication via multi-antenna transmission,” in Proc. 41st Annual Conf.

Information Sciences and Systems (CISS), Mar. 2007, pp. 905–910.

[13] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, “On the Gaussian MIMO wiretap channel,” in Proc. IEEE Int. Symp.

Information Theory (ISIT), Jun. 2007, pp. 2471–2475.

[14] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp.

2180–2189, Jun. 2008.

[15] A. L. Swindlehurst, “Fixed SINR solutions for the MIMO wiretap channel,” in Proc. IEEE Int. Conf. Acoustics, Speech

and Signal Processing (ICASSP), Apr. 2009, pp. 2437–2440.

[16] J. Huang and A. L. Swindlehurst, “Robust secure transmission in MISO channels based on worst-case optimization,” Apr.

2011. [Online]. Available: http://arxiv.org/abs/1104.3161

[17] Y. Oohama, “Capacity theorems for relay channels with confidential messages,” in Proc. IEEE Int. Symp. Information

Theory (ISIT), Jun. 2007, pp. 926–930.

[18] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and

cooperative jamming,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[19] X. He and A. Yener, “Two-hop secure communication using an untrusted relay,” EURASIP Journal on Wireless

Communications and Networking, vol. 2009, pp. 1–13, 2009.

[20] L. Lai and H. El Gamal, “The relay–eavesdropper channel: Cooperation for secrecy,” IEEE Trans. Inf. Theory, vol. 54,

no. 9, pp. 4005–4019, Sep. 2008.

[21] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,”

IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1875–1888, Mar. 2010.

[22] J. Zhang and M. C. Gursoy, “Collaborative relay beamforming for secrecy,” in Proc. IEEE Int Communications Conf (ICC),

May 2010, pp. 1–5.

[23] J. Wang and A. L. Swindlehurst, “Cooperative jamming in MIMO ad-hoc networks,” in Proc. 43rd Asilomar Conference

on Signals, Systems and Computers, Nov. 2009, pp. 1719–1723.

[24] A. Mukherjee and A. L. Swindlehurst, “Fixed-rate power allocation strategies for enhanced secrecy in MIMO wiretap

channels,” in Proc. 10th IEEE International Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), Jun. 2009, pp. 344–348.

[25] ——, “Robust beamforming for security in MIMO wiretap channels with imperfect CSI,” IEEE Trans. Signal Process.,

vol. 59, no. 1, pp. 351–361, Jan. 2011.

http://arxiv.org/abs/1104.3161


29

[26] M. Yuksel and E. Erkip, “Secure communication with a relay helping the wire-tapper,” in Proc. IEEE Information Theory

Workshop (ITW), Sep. 2007, pp. 595–600.

[27] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless

networks,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[28] K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing tradeoff in half-duplex cooperative

channels,” IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4152–4172, Dec. 2005.

[29] J. Li and A. P. Petropulu, “On ergodic secrecy rate for Gaussian MISO wiretap channels,” IEEE Trans. Wireless Commun.,

vol. 10, no. 4, pp. 1176–1187, Apr. 2011.

[30] X. He and A. Yener, “MIMO wiretap channels with arbitrarily varying eavesdropper channel states,” Jul. 2010. [Online].

Available: http://arxiv.org/abs/1007.4801

[31] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and

outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore: The Johns Hopkins University Press, 1996.

[33] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: The MISOME wiretap channel,” IEEE Trans.

Inf. Theory, vol. 56, no. 7, pp. 3088–3104, Jul. 2010.

[34] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[35] M. Chiang, C. W. Tan, D. P. Palomar, D. O’Neill, and D. Julian, “Power control by geometric programming,” IEEE Trans.

Wireless Commun., vol. 6, no. 7, pp. 2640–2651, Jul. 2007.

[36] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,” Optimization and

Engineering, vol. 8, no. 1, pp. 67–127, Apr. 2007.

[37] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications. New York: Academic Press,

1979.

http://arxiv.org/abs/1007.4801

	I Introduction
	II System Model
	II-A Relay Transmission 
	II-B Cooperative Jamming
	II-C Performance Metric

	III Secure relaying with known ECSI
	III-A Single data stream relaying
	III-A1 Maximum secrecy rate with power constraints
	III-A2 Minimum transmit power with fixed secrecy rate

	III-B Multiple data stream relaying
	III-B1 Simple GSVD-based relaying
	III-B2 GSVD-based PCJ


	IV Secure relaying with unknown ECSI
	V Numerical Results
	VI Conclusions
	Appendix A: SDP for problem (25)
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Proposition 1
	References

