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Abstract—Certain binary asymmetric channels, such as Z-
channels in which one of the two crossover probabilities is
zero, demand optimal ones densities different from 50%. Some
broadcast channels, such as broadcast binary symmetric channels
(BBSC) where each component channel is a binary symmetric
channel, also require a non-uniform input distribution due to
the superposition coding scheme, which is known to achieve the
boundary of capacity region. This paper presents a systematic
technique for designing nonlinear turbo codes that are ableto
support ones densities different from 50%. To demonstrate the
effectiveness of our design technique, we design and simulate
nonlinear turbo codes for the Z-channel and the BBSC. The best
nonlinear turbo code is less than 0.02 bits from capacity.

I. I NTRODUCTION

Unlike their linear counterparts, nonlinear turbo codes are a
family of turbo codes which can have average ones densities
not equal to 50%. The constituent code symbols of nonlinear
turbo codes are not restricted to linear combinations of state
and input bits, and any ones density can be achieved by using
a look-up table that maps the state and input bits to output
bits. Parallel concatenated nonlinear turbo codes have been
designed to maintain specific ones densities for multiple access
channels [1] and broadcast Z-channels [2].

In [1], [2], the look-up tables defining nonlinear turbo codes
were designed in an ad-hoc manner, mostly by hand. These
techniques do not extend to trellises with many states. This
paper provides a new and efficient technique for designing
nonlinear turbo codes. The advantage of this technique is
that the complexity does not grow exponentially with the
number of states. We demonstrate the effectiveness of the
codes designed using our technique on both the point-to-
point Z-channel and the broadcast binary symmetric channel
(BBSC).

This paper is organized as follows. Section II introduces
nonlinear turbo codes and describes an efficient design scheme
in a step-by-step manner. Section III describes nonlinear
turbo codes designed specifically for the Z-channel and the
BBSC and provides simulation results. Section IV delivers the
conclusions.

II. A D ESIGN SCHEME FORNONLINEAR TURBO CODES

A nonlinear turbo code is defined by look-up tables that
map state and input bits to output bits in the trellises of
the constituent codes. By controlling the number of ones in
the look-up table, any desired ones density can be closely
approximated. In general, a brute-force search to find the
look-up table yielding the largest effective free distanceis

impractical because the complexity grows exponentially with
the number of states.

In this section, we propose a systematic method for design-
ing nonlinear turbo codes with a complexity that does not grow
exponentially in the number of states. Therefore, our approach
can be used to design codes employing trellises with many
states. In Section III, we use this technique to design several
capacity-approaching nonlinear turbo codes for the Z-channel
and the BBSC. We would like to remark that although our
technique is described in the context of binary turbo codes
that use identical constituent encoders, it immediately extends
to more general cases.

A. State sub-tables, branch distance, and merge distance

Throughout this section, we consider a trellis corresponding
to a constituent code of the turbo code. We assume that the
trellis hasℓ states and each trellis transition corresponds tok

input bits andn output bits. Using this notation, we define a
state sub-table.

Definition 1: A state sub-table M(s) corresponding to
state s is a 2k-by-n binary matrix describing the mapping
of input-bits to output-bits when the encoder is in states

as follows. When the encoder is in states and the input-
bits are b1, . . . , bk, the encoder outputs then bits in the
row corresponding to thek-tuple b1, . . . , bk. Without loss of
generality, we assume that the rows ofM(s) are indexed by
the binaryk-tuples in lexicographical order.

We also define the minimum branch-distance and the min-
imum merge-distance as follows:

Definition 2: The branch-distance of states is the mini-
mum distance between the rows ofM(s), the branch-distance
of a trellis is the minimum of the state branch-distances. The
merge-distanceof a state and the merge-distance of a trellis
are defined analogously as the minimum distances between
then-bit outputs of trellis transitions that merge into a state.

Note that the particular distance metric can depend on the
channel, as we will see in Section III.

As discussed above, designing the constituent codes for a
nonlinear turbo code includes defining a look-up table that
maps state and input bits to output bits in a trellis. A look-
up table that defines a constituent code with a large effective
free distance is preferable to one that defines a constituent
code with a small effective free distance. A good heuristic for
determining whether a look-up table will produce a code with
a large effective free distance is to analyze the distances at the
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branches and merges of the trellis. Our approach is based on
the following key observation:

Observation 1:If Π1 andΠ2 are 2k × 2k andn × n per-
mutation matrices respectively, then a state sub-tableM(s′) =
Π1M(s)Π2 has the same branch distance properties asM(s)
in the sense that the set of distances between outputs from
states is the same as the set of distances between outputs
from states′.

B. Description of Design Scheme

With this observation in mind, we now describe our design
approach:

1) If we require a constituent code with ones densityu1,
chooseν to be the nearest integer tou1 · n · 2k.

2) Select parametersdb and dm, wheredb is the desired
branch-distance of the trellis anddm is the desired
merge-distance of the trellis.

3) Create a state sub-tableM(1) with exactlyν ones. This
ensures that the average ones density of the output bits
from state1 is ν

n·2k
which is approximatelyu1. The

state sub-table is designed by carefully placing the ones
so that the branch-distance is greater thandb. If this is
not possible, then return to step 2 and select a smaller
db. This step is the main source of complexity. Ifn and
k are sufficiently small, a goodM(1) can be found via
a brute-force search.

4) For each other states ∈ {2, . . . , ℓ}, choose random
permutation matricesΠ1 and Π2 and setM(s) =
Π1M(1)Π2. By Observation 1, this ensures that the
trellis has branch-distance greater thandb.

5) Check the resulting merge-distance of the trellis. If it is
less thandm, return to step 4. If a maximum number of
iterations is reached, return to step 2 and select a smaller
dm.

6) Check the effective free distance of the obtained code.
Steps 3-5 are generally repeated several times to produce
several candidate codes. Usually, we select the code with
the largest effective free distance.

With this scheme, we can construct nonlinear turbo codes
without an exhaustive computer search over all lookup tables
with the desired ones density. Since we only manually design
a sub-table for one state, the complexity does not grow
exponentially in the number of states. Through a series of
many experiments, we have observed that this procedure is
effective for designing nonlinear turbo codes that approach
capacity in channels demanding nonuniform ones densities.
In Section III, we use this technique to design nonlinear turbo
codes for Z-channels and BBSCs.

III. E XAMPLES

In this section, we apply our design technique to two differ-
ent types of channels: Z-channels and BBSCs. In each case,
we successfully design nonlinear turbo codes that approach
the capacity of their respective channels. For the Z-channel,
the codes are designed to perform well with respect to the

directional Hamming distance metric, while in the case of the
BBSC, the traditional Hamming distance metric is used.

A. Z-channels: Introduction and directional distance

Z-channels are binary asymmetric channels in which one
of the two crossover probabilities is zero (see Figure 1). This
subsection considers point-to-point Z-channels and uses the
model in which the probability of the1 → 0 crossover is 0.
This channel applies to certain data storage systems [3] and
certain optical communication systems [4].

Golomb [5] studied the capacity and optimal ones density
of Z-channels. The capacity of the Z-channel is given by

C = H(u0(1 − p))− u0H(p) (1)

with optimal zeros density

u0 =
pp/(1−p)

1 + (1 − p)pp/(1−p)
. (2)

The optimal ones density for the Z-channel is higher than
50% everywhere except for the noiseless channel where the
crossover probability is zero. All linear codes have an average
ones density of 50%, and are thus prevented from achieving
the capacity of the Z-channel. However, nonlinear turbo codes
can provide any ones density and thus have the potential to
achieve the capacity of the Z-channel.

For the Z-channel, directional Hamming distance, intro-
duced in [3], accurately describes the distance between code-
words under Z-channel distortion. Consider two codewords of
length-n bits, X and X̃. The directional Hamming distance
betweenX andX̃ is

dD(X, X̃) =
∑

1≤i≤n

I(xi = 0, x̃i = 1) (3)

whereI is the indicator function. The directional Hamming
distance is asymmetric, anddD(X, X̃) is usually not equal to
dD(X̃,X). A more precise definition of the pair-wise distance
of Z-channel is defined in [1] and [6]:

dZ(X, X̃) = max
[

dD(X, X̃), dD(X̃,X)
]

(4)

since the larger directional distance matters in the decoding.

B. Z-channels: Code Design

The design begins with the 16-state duo-binary trellis
described in [2]. With the design technique described in
Subsection II-B, we first design a systematic rate-1/10 turbo
code with a target ones density of 0.621. The actual ones
density produced is 0.5953. This rate-1/10 code maximizes
the minimum pairwise directional Hamming distance for the
splits from each state and the merges to each state.

We choose the best code with largest directional effective
free distance among the randomly generated nonlinear turbo
codes. Table I shows the nine nonsystematic (parity) bits for
the two identical constituent nonlinear binary trellis encoders
that comprise this turbo code. The two constituent encoders
each produce nine parity bits, which join with the two sys-
tematic bits to produce 20 coded bits for each two-bit input



TABLE I
OCTAL LABELING FOR CONSTITUENT BINARY TRELLIS CODES. ROWS

REPRESENT THE STATEs1s2s3s4 , COLUMNS REPRESENT THE INPUTu1u2 .

state input
00 01 10 11

0000 534 343 671 517
0001 476 073 707 364
0010 346 257 571 632
0011 137 752 711 265
0100 754 566 227 171
0101 370 467 516 335
0110 743 574 037 626
0111 566 273 532 615
1000 465 457 343 334
1001 752 665 037 370
1010 274 563 754 307
1011 723 354 617 465
1100 435 643 317 564
1101 153 666 703 334
1110 327 176 453 664
1111 466 153 335 761

TABLE II
OCTAL PUNCTURING PATTERNS(IN OCTAL) OF PARITY BITS. PUNCTURED

BITS ARE INDICATED BY 1’S. THE PUNCTURING PERIOD IS9 BITS.

Rate Encoder 1 Encoder 2 Ones Density Optimal Density
1/10 000 000 0.5953 0.621
1/9 001 002 0.5955 0.6197
1/8 201 042 0.5938 0.6181
1/7 241 043 0.5915 0.6161
1/6 243 243 0.5911 0.6134
1/5 247 263 0.5828 0.6094
1/4 257 267 0.5742 0.6035
1/3 277 367 0.5599 0.5931

symbol. The interleaver for this turbo code can be found in
[7].

As is commonly done with turbo codes, we puncture this
rate-1/10 code to create a variety of rates. The puncturing
patterns are given in Table II with the code rates and ones
densities they produce. In each case, the resulting ones density
closely approximates the optimal ones density.

C. Z-channels: Numerical Results

We simulated our nonlinear turbo codes on Z-channels with
capacities slightly greater than the code rates. All of the sim-
ulations use 20,000 input bits per codeword and an extended
spread interleaver [8]. The complete interleaver description is
available online [7]. Figure 2 shows the capacity of the Z-
channel for different crossover probabilities and the observed
operating point (code rate and crossover probability) where
each codes achieved bit error rates of less than10−5. The
distance from capacity ranges from approximately0.018 to
0.05 bits.

D. BBSC: Introduction

We also designed nonlinear codes for the two-user BBSC,
which consists of two binary symmetric component channels,
one with transition probabilityα and the other with transition
probabilityβ, as shown in Figure 3. Without loss of generality,
we assumeα < β. A simple and optimal encoding scheme
is an independent-encoding approach in which symbols from
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Fig. 2. The capacity with optimal ones density and designed nonlinear Turbo
codes for Z-channels. The operating points from left to right correspond to
the rate-1/3 to rate-1/10 nonlinear turbo codes respectively.

independent codebooks are added together using the XOR
function. We refer to this scheme as superposition coding, and
the encoder structure is shown in Figure 4.

The capacity region of a degraded broadcast channel was
established by Cover [9], Bergmans [10] and Gallager [11].
Cover [12] introduced an independent-encoding scheme for
two-user broadcast channels. This scheme is known to achieve
the boundary of the capacity region for the broadcast binary-
symmetric channel (BBSC) and is investigated in [13] [14]
[15] [16].

The capacity region for a BBSC is given by

R1 ≤ h(α ∗ p1)− h(α)

R2 ≤ 1− h(β ∗ p1),
(5)

wherep1 is the ones density ofX1, X2 has 50% ones density
and the operation∗ is defined by

a ∗ b = a(1 − b) + b(1− a), 0 < a, b < 1. (6)

In order to use a superposition coding scheme, the codes
of the two users cannot both have ones densities of 50%.
This precludes the exclusive use of linear codes. Using the
techniques described in Section II-B, we design a family
of nonlinear turbo codes that can provide a controlled ones
density. Superposition of one of our nonlinear codes with a
linear turbo code produces an overall transmission with the
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potential to approach an optimal point the capacity region of
the BBSC.

E. BBSC: Code Design

This section describes the construction of practical super-
position codes for the two-user BBSC under different channel
scenarios. For the second user, we use a linear turbo code
from the DVB-RCT standard, which has a 16-state duo-
binary turbo encoder trellis structure, and extend it to lower
rates. For the first user we use nonlinear turbo codes with
various ones densities, a 16-state duo-binary turbo encoder
trellis structure from [17] when the channel parameters of
Fig. 3 are (α, β) = (0.188, 0.2017), and the 64-state 4-
input turbo encoder trellis structure shown in Figure 5 when
(α, β) = (0.01, 0.108). The design process is described as
follows:

1) Choose an appropriate ones density for the first user.
As shown in (5), for a BBSC with fixedα andβ, the
boundary of the capacity region is a function ofp1, the
ones density of User 1:

R1 = f1(p1), R2 = f2(p1).

where f1 and f2 are monotonically increasing and
decreasing functions ofp1 respectively. Since these
functions are one-to-one for0 < p1 < 0.5, p1 can be

S1 S6S5S4S3S2

+

+ + +

u3

u2

u1

u0

Fig. 5. 64-state 4-input turbo encoder trellis structure
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calculated by

p1 = f−1
1 (R1) = f−1

2 (R2).

Thus under this channel, for any working point(r1, r2),
wherer1 andr2 are the rates of user 1 and user 2, pick
the ones densityp1 that satisfies

f−1
2 (r2) < p1 < f−1

1 (r1)

wheref−1
1 (r1) ( f−1

2 (r2) ) corresponds to the ones den-
sity of the intersection between the horizontal (vertical)
line from (r1, r2) and the capacity curve.

2) For the desiredp1, use the approach in Section II-B to
design the look-up table for the nonlinear turbo code.
The look-up tables, interleavers and puncture patterns
could be found online [7].

3) If a low ones density and a high rate is needed, there will
be multiple all zero outputs in the look-up table, which
is problematic. Thus we design a lower rate codes with
the same ones density by using step 2 above. Then we
uniformly puncture the codewords to obtain the desired
rate while preserving the desired rate.

F. BBSC: Numerical Results

We simulated the superposition codes employing our non-
linear turbo codes with different rates for a variety of BBSCs.
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Figure 6 shows the capacity region for 2 different channel sce-
narios and four operating points for each case (each operating
point has a BER less than≤ 10−5).

All of the simulations use 20,000 input bits and an ex-
tended spread interleaver. For the nonlinear codes, we use
an N = 10000 symbol-wise interleaver in the case where
(α, β) = (0.188, 0.2017), and we use anN = 5000 symbol-
wise interleaver in the case where(α, β) = (0.01, 0.108).
For the linear code, we use anN = 10000 symbol-wise
interleaver.

One special case of the BBSC is when(α, β) = (0, 0.1).
This corresponds to the case when the first channel is noiseless
and the distortion observed by User 1 is solely due to interfer-
ence from User 2’s superposed codeword. The capacity region
in this scenario is

R1 ≤ h(p1)

R2 ≤ 1− h(β ∗ p1).
(7)

Since the first channel is noiseless, we can use permutation
codes [18] whose rate can achieveh(p1) for given ones density
p1, and traditional turbo codes for the second user. Simulation
results are given in Figure 7. We would like to point out that
some of the operating points perform at rates higher than those
theoretically achievable by time-sharing schemes.

G. Remarks

Linear turbo codes with 50% ones density can also work un-
der asymmetric channels with a loss in performance. In some
channels, this loss could be small due to the small gap between
the capacity with optimal ones density and mutual information
with 50% onesd density. However, for certain channels such as
the multiple access OR channel, the theoretical gap is largeand
this new design technique of efficiently constructing nonlinear
turbo codes is useful especially for a large trellis.

IV. CONCLUSIONS

This paper proposes a systematic method for designing
nonlinear turbo codes with a desired ones density. Using our
approach, we designed a series of nonlinear turbo codes that
approached capacity in several Z-channels. These codes were
designed using the directional Hamming distance metric. We
also designed a series of nonlinear turbo codes which were
scombined via superposition with linear turbo codes for use
on the two-user BBSC. These codes were designed using
the traditional Hamming distance metric and also performed
near capacity. The presented design techniques for nonlinear
turbo codes could also be extended to general group-addition
degraded broadcast channels [19] as future work.
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