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ON HECKE EIGENVALUES AT PRIMES OF THE FORM [g(n)]
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Abstract. In this paper, we study the average of the Fourier coefficients of a holomorphic cusp form for
the full modular group at primes of the form [g(n)].
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1. Introduction

The estimation of mean-values of arithmetic functions over sparse sequences and the detection of primes
in arithmetically interesting and sparse sets of natural numbers are often very hard and of great interest
to analytic number theorists. In [1], we investigated a problem that addresses both of these questions,
namely the distribution of Fourier coefficients of cusp forms for the full modular group at Piatetski-Shapiro
primes. These are primes of the form [nc], where c > 1 is fixed. We successfully handled the c’s in the range
1 < c < 8/7. In this paper, we extend our result in [1] to primes of the form [g(n)], where g(x) is a general
“nice” function that grows much faster than a linear function. However, our result will be weaker in the
sense that it covers the result in [1] only for the range 1 < c < 30/29.

We first introduce some notations and conditions. By F we denote a holomorphic cusp form of weight κ
for the full modular group SL2(Z) and by λF (n) the normalized n-th Fourier coefficient of F , i.e. we assume
that

F (z) =

∞
∑

n=1

λF (n)n
(κ−1)/2e(nz)

for ℑz > 0. We note that the Ramanujan-Petersson conjecture, proved by P. Deligne [2, 3], gives a bound
for the modulus of λF . It states that for any fixed ε > 0,

(1.1) λF (n) ≪ d(n) ≪ nε,

where d(n) is the number of divisors of n. If we assume, in addition, that F is an eigenform of all the Hecke
operators, then F can be normalized such that λF (1) = 1 and with this normalization the implied constant
in the first “≪” in (1.1) can be taken to be 1.

Further, we assume that g : [1,∞) → [1,∞) is a function satisfying the following conditions.

(i) g is monotonically increasing.
(ii) g is infinitely differentiable.
(iii) g satisfies the inequalities

(1.2) x ≤ g(x) ≤ x30/29−ε.

We note that then the inverse function f : range(g) → [1,∞) of g exists and has the following corresponding
properties.

(a) f is monotonically increasing.
(b) f is infinitely differentiable.
(c) f satisfies the inequalities

(1.3) x29/30+ε ≤ f(x) ≤ x.

Moreover, we shall also suppose that the derivatives of f satisfy the following conditions.
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(d) The k-th derivative of f satisfies

(1.4) f (k)(x) ≍
f(x)

xk
for all x in the image of g and k ∈ N,

where the implied constants depend on k alone.
(e) The second and third derivatives of f satisfy

(1.5) 2f ′′(x) + xf ′′′(x) ≍
f(x)

x2
for all x in the image of g.

Furthermore, we denote the set of primes by P. The main result of this paper is the following.

Theorem 1.1. Let g : [1,∞) → [1,∞) be a function satisfying the conditions (i) – (iii) above. Suppoer that
the inverse function of g satisfies the condtions (a)–(e) above. Let λF (n) be the normalized n-th Fourier
coefficient of a holomorphic cusp form F for the full modular group SL2(Z). Then there exists a constant
C > 0 depending on g and F such that

(1.6)
∑

n≤N
[g(n)]∈P

λF ([g(n)]) ≪ N exp
(

−C
√

logN
)

,

where the implied ≪-constant depends on g and F .

For comparison, our main result in [1] was as follows.

Theorem 1.2. Let 1 < c < 8/7 and λF (n) be the normalized n-th Fourier coefficient of a holomorphic cusp
form F for the full modular group SL2(Z). Then there exists a constant C > 0 depending on F such that

(1.7)
∑

n≤N
[nc]∈PλF ([nc]) ≪ N exp

(

−C
√

logN
)

,

where the implied ≪-constant depends on c and the cusp form F .

Some parts of [1] generalize directly in the present paper, while other parts cannot be carried over. We
indicate the differences in the following description of our method for the proof of Theorem 1.1. First,
since every cusp form can be written as a linear combination of finitely many Hecke eigenforms, it will
suffice to prove Theorem 1.1 for (normalized) Hecke eigenvalues. The advantages of working with Hecke
eigenvalues are that they are multiplicative and real. Now we make a similar standard reduction of the
problem to exponential sums with Hecke eigenvalues and the von Mangoldt function as in [1]. Then, just
as in [1], we decompose the von Mangoldt function using a Vaughan-type identity, which leads to type I
and type II sums. The type II sums are then treated by simply using van der Corput’s method for ex-
ponential sums. In contrast, in [1], we used sophisticated estimates for exponential sums with monomials,
which are not applicable in the present, more general situation. For the type I sums, we need to estimate
smooth exponential sums with Hecke eigenvalues. Since we work with general functions g(x) in place of
xc, it is not possible to apply Jutila’s method utilized in [1]. Instead, we estimate the said exponential
sums using a Weyl shift and a bound for shifted convolutions of Hecke eigenvalues with a weakly oscillating
weight, a result analogous to that of W. Duke, J. B. Friedlander and H. Iwaniec in [4] for the divisor function.

Notations. The following notations and conventions are used throughout the paper.
e(z) = exp(2πiz) = e2πiz.
η and ε are small positive real numbers, where ε may not be the same number in each occurance.
c > 1 is a fixed number and we set γ = 1/c.
λ(n) denotes the normalized n-th Fourier coefficients of a Hecke eigenform for the full modular group. In the
sequel, we shall suppress the subscript F , used in the introduction, since the cusp form is fixed throughout
the paper.
Λ(n) is the van Mangoldt function.
d(n) is the divisor function.
k ∼ K means K1 ≤ k ≤ K2 with K/2 ≤ K1 ≤ K2 ≤ 2K.
f = O(g) or f ≪ g means |f | ≤ cg for some unspecified positive constant c.
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f ≍ g means f ≪ g and g ≪ f .
[x] denotes the largest integer not exceeding x, and ψ(x) = x− [x]− 1/2 denotes the saw-tooth function.

2. Preliminary lemmas

For the estimation of exponential sums with Hecke eigenvalues, we need the following bound for shifted
convolutions of Hecke eigenvalues.

Lemma 2.1. Set

Dg(a, b;h) :=
∑

am∓bn=h

λ(m)λ(n)g(am, bn),

where a, b ≥ 1, (a, b) = 1, h 6= 0 and g is a smooth function on R
+ × R

+ satisfying

xiyjg(ij)(x, y) ≪
(

1 +
x

X

)−1 (

1 +
y

Y

)−1

P i+j

with some P,X, Y ≥ 1 for all i, j ≥ 0, the implied constant depending on i, j alone. Then

Dg(a, b;h) ≪ P 5/4 (X + Y )
1/4

(XY )1/4+ε,

where the implied constant depends on ε only.

Proof. In [4], a result analogous to this one was proved for the divisor function d(n) in place of λ(n). The
same arguments based on the delta-method and the Voronoi summation formula lead to the above result. �

To reduce our problem to the estimation of exponential sums, we shall use the following approximation
of the saw-tooth function ψ(x) due to J. D. Vaaler.

Lemma 2.2 (Vaaler). For 0 < |t| < 1, let

W (t) = πt(1− |t|) cotπt+ |t|.

Fix a positive integer J . For x ∈ R define

ψ∗(x) := −
∑

1≤|j|≤J

(2πij)−1W

(

j

J + 1

)

e(jx)

and

δ(x) :=
1

2J + 2

∑

|j|≤J

(

1−
|j|

J + 1

)

e(jx).

Then δ is non-negative, and we have

|ψ∗(x)− ψ(x)| ≤ δ(x)

for all real numbers x.

Proof. This is Theorem A6 in [6] and has its origin in [9]. �

At several places of the paper, we shall use the following classical estimate for exponential sums due to
van der Corput.

Lemma 2.3 (van der Corput). Suppose that f is a real valued function with two continuous derivatives on
[N,N1]. Suppose also that there is some λ > 0 and some α ≥ 1 such that

λ ≤ |f ′′(x)| ≤ αλ

on [N,N1], where N1 ≥ N + 1. Then
∑

N<n≤N1

e(f(n)) ≪ α(N1 −N)λ1/2 + λ−1/2.

Proof. This is Theorem 2.2. in [6]. �

The following is the prime number theorem for Hecke eigenvalues which is used to bound the main term.
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Lemma 2.4. There exists a positive constant C, such that
∑

n≤N

Λ(n)λ(n) ≪ N exp
(

−C
√

logN
)

,

where the implied ≪-constant and the constant C depend on the cusp form.

Proof. This is a special case of the more general Theorem 5.12 in [8]. �

To bound the error term, we shall see that it suffices to prove that

(2.1)
∑

n∼N

Λ(n)r(n) = O
(

N1−η
)

for a some fixed η > 0, where r is a certain function involving λ(n) and an exponential sum. The following
lemma reduces the above sum containing the von Mangoldt function to so-called type I and type II sums.

Lemma 2.5 (Heath-Brown). Let r(n) be a complex-valued function defined on the natural numbers. Suppose
that u, v and z are real parameters satisfying the conditions

3 ≤ u < v < z < 2N, z − 1/2 ∈ N, z ≥ 4u2, N ≥ 32z2u, v3 ≥ 64N.

Suppose further that 1 ≤ Y ≤ N and XY = N . Assume that am and bn are complex numbers. We write

(2.2) K :=
∑

m∼X

∑

n∼Y
mn∼N

amr(mn)

and

(2.3) L :=
∑

m∼X

∑

n∼Y
mn∼N

ambnr(mn).

Then the estimate (2.1) holds if we uniformly have

K ≪ N1−2η for Y ≥ z and any complex am ≪ 1

and

L≪ N1−2η for u ≤ Y ≤ v and any complex am, bn ≪ 1.

Proof. This is a consequence of Lemma 3 in [7]. �

To separate the variablesm an n appearing in the previous Lemma 2.5, we shall use the following lemmas.
The first of them is the multiplicative property of Hecke eigenvalues, and the second of them is a variant of
Perron’s formula.

Lemma 2.6. Hecke eigenvalues are multiplicative and they satisfy the following relation.

λ(mn) =
∑

d| gcd(m,n)

µ(d)λ
(m

d

)

λ
(n

d

)

.

Proof. This Lemma follows by applying the Möbius inversion formula to the product formula for the Hecke
eigenvalues. See, for example, Proposition 14.9 of [8]. �

Lemma 2.7. Let 0 < M ≤ N < νN < κM and let am be complex numbers with |am| ≤ 1. We then have

(2.4)
∑

N<n<νN

an =
1

2π

M
∫

−M

(

∑

M<m<κM

amm
−it

)

N it(νit − 1)t−1dt + O(log(2 +M)),

where the implied O-constant depends only on κ.

Proof. This is Lemma 6 in [5]. �

To bound a certain error term, we shall need the following.
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Lemma 2.8. Assume that 1 ≤ N < N + 1 ≤ N1 ≤ 2N . Define the function δ as in Lemma 2.2. If f
satisfies

f(x) ≍ f(N), f ′(x) ≍
f(N)

N
, f ′′(x) ≍

f(N)

N2
for N < x ≤ N1,

then
∑

N<n≤N1

δ (−f(n)) ≪ J−1N + J1/2f(N)1/2 + J−1/2Nf(N)−1/2.

Proof. We prove this along the lines of Lemma 2.8 on page 48 in [6]. Clearly, we have

(2.5)
∑

N<n≤N1

δ (−f(n)) ≪
1

J

∑

|j|≤J

∣

∣

∣

∣

∣

∣

∑

N<n≤N1

e(jf(n))

∣

∣

∣

∣

∣

∣

≪
N

J
+

1

J
·
∑

1≤j≤J

∣

∣

∣

∣

∣

∣

∑

N<n≤N1

e(jf(n))

∣

∣

∣

∣

∣

∣

.

Using Lemma 2.3, we get, for j ≥ 1, that
∑

N<n≤N1

e(jf(n)) ≪ j1/2f(N)1/2 + j−1/2Nf(N)−1/2.

Putting everything together, it follows that
∑

N<n≤N1

δ (−f(n)) ≪ J−1N + J1/2f(N)1/2 + J−1/2Nf(N)−1/2.

Thus we have completed the proof of the lemma. �

We shall also need the following “Weyl differencing” lemma.

Lemma 2.9. For any complex numbers zn, we have
∣

∣

∣

∣

∣

∑

a<n<b

zn

∣

∣

∣

∣

∣

2

≤

(

1 +
b− a

Q

)

∑

|q|<Q

(

1−
|q|

Q

)

∑

a<n,n+q<b

zn+qzn,

where Q is any positive integer.

Proof. This is Lemma 8.17 in [8]. �

3. Exponential sums with Hecke eigenvalues

In this section, we consider exponential sums of the form

(3.1) S =
∑

N<n≤N ′

λ(n)e(f(n)),

where 3 ≤ N < N ′ ≤ 2N and f ∈ C∞([N/2, 3N ]) satisfies

(3.2)
∣

∣

∣
f (k)(x)

∣

∣

∣
≪k

T

Nk
for all x ∈ [N/2, 3N ] and k ∈ N0

with some

(3.3) T ≥ N3/4.

We shall prove the following lemma.

Lemma 3.1. With S defined in (3.1) and the conditions (3.2) and (3.3) satisfied, we have

(3.4) S ≪ N2/3+εT 5/18 +N5/6T−5/18,

where the implied constant depends on ε only.
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Proof. We first do a “Weyl differencing”, where we introduce an extra smooth weight function Φ ∈ C∞(R),
compactly supported in [N/2, 5N/2] and satisfying

Φ(k)(x) ≪k N
−k for all x ∈ R

+ and k ∈ N0

and

Φ(x) = 1 for N ≤ x ≤ N ′.

Let Q be any positive integer and set

zn :=

{

1 if N < n ≤ N ′,

0 otherwise.

Then we have

S =
∑

n

znλ(n)e(f(n)) =
∑

n

zn+qλ(n+ q)e(f(n+ q))

for any q ∈ Z. We sum this up over q with 0 ≤ q < Q ≤ N/2, getting

QS =
∑

N−Q<n<N ′

∑

0≤q<Q

zn+qλ(n+ q)e(f(n+ q)).

Hence, by Cauchy’s inequality,

Q2|S|2 ≤ (N ′ −N +Q)
∑

n

∣

∣

∣

∣

∣

∣

∑

0≤q<Q

zn+qλ(n+ q)e(f(n+ q))

∣

∣

∣

∣

∣

∣

2

.

It follows that

Q2|S|2 ≪ N
∑

N<n≤N ′−Q

∣

∣

∣

∣

∣

∣

∑

0≤q<Q

λ(n+ q)e(f(n+ q))

∣

∣

∣

∣

∣

∣

2

+Q3N1+ε

and further

Q2|S|2 ≪ N
∑

n

Φ(n)2

∣

∣

∣

∣

∣

∣

∑

0≤q<Q

λ(n+ q)e(f(n+ q))

∣

∣

∣

∣

∣

∣

2

+Q3N1+ε.

Expanding the square on the right-hand side and setting

Gq1,q2(m1,m2) := Φ(m1 − q1)Φ(m2 − q2) and Fq1,q2(m) := f(m)− f(m+ q1 − q2)

gives

Q2|S|2 ≪ N
∑

0≤q1<Q

∑

0≤q2<Q

∑

m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e (Fq1,q2(m1)) +

+Q3N1+ε.

(3.5)

Now we impose the condition that

Q ≥
N

T
.

Then a simple computation shows that

di+j

dxidyj
Gq1,q2(x, y)e (Fq1,q2(x)) ≪i,j

(

TQ

N2

)i

N−j

for

0 ≤ q1, q2 < Q,
N

2
+ q1 ≤ x ≤

5N

2
+ q1,

N

2
+ q2 ≤ y ≤

5N

2
+ q2.

Now if q1 6= q2, we use Lemma 2.1 with

g(x, y) := Gq1,q2(x, y)e (Fq1,q2(x))

and

a = b = 1, X := N, Y := N, P :=
TQ

N
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to deduce that the inner double sum on the right-hand side of (5.6) is

(3.6)
∑

m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e (Fq1,q2(m1)) ≪ (TQ)5/4N−1/2+ε.

If q1 = q2, then we have the trivial bound

(3.7)
∑

m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e (Fq1,q2(m1)) =
∑

m

Φ(m− q1)
2λ(m1)

2 ≪ N1+ε.

Combining everything in this section, we obtain

(3.8) S ≪ (TQ)5/8N1/4+ε +
N

Q1/2
+N1/2Q1/2

under the condition

(3.9)
N

T
≤ Q ≤

N

2
.

Now we choose

Q :=
N2/3

T 5/9
.

Then, by N ≥ 3 and (3.3), the condition in (3.9) is satisfied, and we get (3.4). �

4. Reduction to exponential sums

Using λ(n) ≪ nε, partial summation, and the fact that every cusp form can be written as a linear com-
bination of finitely many Hecke eigenforms, Theorem 1.1, our main result, can be easily deduced from the
following result whose proof will be the object of the remainder of this paper.

Theorem 4.1. Let g : [1,∞) → [1,∞) be a function satisfying the conditions (i) – (iii) in Section 1.
Suppose that the inverse function of g, f , satisfies the condtions (a) – (e) in Section 1. Let λ(n) be the
normalized n-th Fourier coefficient of a Hecke eigenform for the full modular group. By Λ(n), we denote the
von Mangoldt function. Then there exists a positive constant C depending on the cusp form such that

(4.1)
∑

n≤N

Λ ([g(n)]) λ ([g(n)]) ≪ N exp(−C
√

logN),

where the implied ≪-constant depends only on C and the cusp form.

In this section, we reduce the left-hand side of (4.1) to exponential sums. We recall that f := g−1 denotes
the function inverse to g. Let m,n ∈ N. Then [g(n)] = m is equivalent to

−f(m+ 1) < −n ≤ −f(m).

Therefore, we have

(4.2)
∑

n≤N

Λ ([g(n)])λ ([g(n)]) =
∑

g(1)≤m≤g(N)

([−f(m)]− [−f(m+ 1)]) Λ(m)λ(m) +O(logN).

Breaking into dyadic intervals and using that g is monotonically increasing, it hence suffices to prove that

(4.3) S :=
∑

n∼g(N)

([−f(n)]− [−f(n+ 1)]) Λ(n)λ(n) ≪ N exp(−C
√

logN)

for any N > 1. We write the above sum S in the form

(4.4) S = S1 + S2,

where
S1 =

∑

n∼g(N)

(f(n+ 1)− f(n)) Λ(n)λ(n)

and
S2 =

∑

n∼g(N)

(ψ (−f(n+ 1))− ψ (−f(n))) Λ(n)λ(n),
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with ψ(n) being the saw-tooth function in Lemma 2.2.

By (1.4) and the mean value theorem, we have the bounds

f(x+ 1)− f(x) ≪
f(x)

x
and

d

dx
(f(x+ 1)− f(x)) ≪

f(x)

x2

for all x in the image of g. Hence, using partial summation, f ◦ g(x) = x and g(x) ≪ x30/29−ε, we deduce
from Lemma 2.4 that

S1 ≪ N exp(−C
√

logN),

where the implied constant depends only on C and the cusp form.

Our treatment of the sum S2 begins like in [6]. By Lemma 2.2, we have the following. For any J > 0
there exist functions ψ∗ and δ, with δ non-negative, such that

ψ(x) = ψ∗(x) +O(δ(x)),

where

ψ∗(x) =
∑

1≤|j|≤J

a(j)e(jx), δ(x) =
∑

|j|≤J

b(j)e(jx)

with

a(j) ≪ j−1, b(j) ≪ J−1.

Consequently,

S2 =
∑

n∼g(N)

(ψ∗ (−f(n+ 1))− ψ∗ (−f(n))) Λ(n)λ(n) +O



(logN)
∑

n∼g(N)

(δ (−f(n+ 1)) + δ (−f(n)))





= S3 +O(S4),

say. We fix a small η > 0 and set

(4.5) J :=
g(N)

N
·Nη.

Then, using (1.4), Lemma 2.8 and g(N) ≪ N30/29−ε, we obtain

S4 ≪ N1−η/2.

The remaining task is to prove that

S3 ≪ N1−η/2,

provided that η is sufficiently small. We write

S3 =
∑

1≤|j|≤J

∑

n∼g(N)

Λ(n)λ(n)a(j)φj(n)e(−jf(n)),

where φj(x) = 1− e(j(f(x)− f(x+ 1))). Using partial summation and the bounds a(j) ≪ j−1 and

φj(x) ≪
jf(x)

x
and

d

dx
φj(x) ≪

jf(x)

x2
,

we deduce that it suffices to prove that

∑

1≤|j|≤J

∣

∣

∣

∣

∣

∣

∑

n∼g(N)

Λ(n)λ(n)e(−jf(n))

∣

∣

∣

∣

∣

∣

≪ g(N)N−η/2.

Replacing g(N) byN andN by f(N), taking the definition of J in (4.5) into account, dividing the summation

interval 1 ≤ |j| ≤ J into O(log 2J) dyadic intervals, and using the facts that e(−x) = e(x) and the Hecke
eigenvalues are real, we see that the above bound holds if

(4.6)
∑

h∼H

∣

∣

∣

∣

∣

∑

n∼N

Λ(n)λ(n)e (hf(n))

∣

∣

∣

∣

∣

≪ N1−η
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for any N ≥ 1 and 1 ≤ H ≤ N1+ηf(N)−1. The following lemma reduces the term on the left-hand side of
(4.6) to trilinear exponential sums.

Lemma 4.2. Suppose that u, v and z are real parameters satisfying the conditions

(4.7) 3 ≤ u < v < z < 2N, z − 1/2 ∈ N, z ≥ 4u2, N ≥ 32z2u, v3 ≥ 64N.

Suppose further that 1 ≤ Y ≤ N , XY = N and H ≥ 1. Assume that Am, Bn and Ch are complex numbers.
For d ∈ N set

(4.8) Kd :=
∑

m∼X/d

∑

n∼Y/d

mn∼N/d2

∑

h∼H

AmChλ(n)e
(

hf
(

d2mn
))

and

(4.9) Ld :=
∑

m∼X/d

∑

n∼Y/d

mn∼N/d2

∑

h∼H

AmBnChe
(

hf
(

d2mn
))

.

Then the estimate (4.6) holds if we uniformly have

(4.10) Kd ≪ N1−3ηd−1 for Y ≥ z, d ≤ 2Y and any complex Am, Ch ≪ 1

and

(4.11) Ld ≪ N1−3ηd−1 for u ≤ Y ≤ v, d ≤ 2Y and any complex Am, Bn, Ch ≪ 1.

Proof. We first write

∑

h∼H

∣

∣

∣

∣

∣

∑

n∼N

Λ(n)λ(n)e (hf(n))

∣

∣

∣

∣

∣

=
∑

h∼H

ch
∑

n∼N

Λ(n)λ(n)e (hf(n)) ,

where ch are suitable complex numbers with |ch| = 1. We further set

r(n) := λ(n)
∑

h∼H

che (hf(n))

so that
∑

h∼H

∣

∣

∣

∣

∣

∑

n∼N

Λ(n)λ(n)e (hf(n))

∣

∣

∣

∣

∣

=
∑

n∼N

Λ(n)r(n).

Now, by Lemma 2.5, the bound (4.6) holds if

(4.12) K ≪ N1−2η and L≪ N1−2η

under the conditions of the same lemma. Here K and L are defined as in (2.2) and (2.3). We may rewrite
these terms in the form

K =
∑

m∼X

∑

n∼Y
mn∼N

∑

h∼H

amchλ(mn)e (hf(mn))

and
L =

∑

m∼X

∑

n∼Y
mn∼N

∑

h∼H

ambnchλ(mn)e (hf(mn)) .

Using the multiplicative property of Hecke eigenvalues, Lemma 2.6, we have

(4.13) K =
∑

d≤2Y

µ(d)
∑

m∼X/d

∑

n∼Y/d

mn∼N/d2

∑

h∼H

admλ(m)chλ(n)e
(

hf(d2mn)
)

and

(4.14) L =
∑

d≤2Y

µ(d)
∑

m∼X/d

∑

n∼Y/d

mn∼N/d2

∑

h∼H

admλ(m)bdnλ(n)che
(

hf(d2mn)
)

.

Now, (4.12) follows from (4.10), (4.11),(4.13), (4.14) and the bound λ(n) ≪ nε. �
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In the following sections, we shall estimate the terms Kd and Ld.

5. Estimation of Ld

Our task in this section is to estimate Ld, defined in (4.9).

Lemma 5.1. For every sufficiently small and fixed η > 0, we have

(5.1) Ld ≪ N1−3ηd−1

provided that f(N) ≥ N8/9+30η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(5.2)
N2+100η

f(N)2
≤ Y ≤

f(N)6

N5+100η
.

Proof. From (4.9), we have

Ld =
∑

m∼X/d

∑

n∼Y/d

mn∼N/d2

∑

h∼H

AmBnChe(hf(d
2mn)),

with

Am ≪ mε, Bn ≪ nε and Ch ≪ hε.

Using Cauchy’s inequality, we get

(5.3) L2
d ≪ NεX

d
H
∑

h

∑

m

∣

∣

∣

∣

∣

∑

n

Bne
(

hf(d2mn)
)

∣

∣

∣

∣

∣

2

.

Using the “Weyl differencing”, Lemma 2.9, we have
∣

∣

∣

∣

∣

∑

n

Bne
(

hf(d2mn)
)

∣

∣

∣

∣

∣

2

≤

(

1 +
Y/d

Q

)

∑

|q|<Q

(

1−
|q|

Q

)

∑

n∼Y/d
n+q∼Y/d

Bn+qBne
(

h
(

f(d2m(n+ q))− f(d2mn)
))

,
(5.4)

where Q is a parameter to be chosen later and satisfies the condition

(5.5) Q ≤ Y/d.

Inserting the above into (5.3), we have, since XY = N and Q < Y/d,

(5.6) L2
d ≪ Nε









H2

Q

N2

d4
+
H

Q

N

d2

∑

h

∑

0<|q|<Q

∑

n∼Y/d
n+q∼Y/d

∣

∣

∣

∣

∣

Bn+qBn

∑

m∈I

e
(

h
(

f(d2m(n+ q))− f(d2mn
))

∣

∣

∣

∣

∣









.

The first term on the right-hand side of (5.6) is the contribution from q = 0 and I denotes the interval
defined by the conditions

m ∼ X/d, mn ∼ N/d2 and m(n+ q) ∼ N/d2.

Note that

d2

dm2

(

f(d2m(n+ q))− f(d2mn)
)

= d4(n+ q)2f ′′(d2m(n+ q))− d4n2f ′′(d2mn)

= d4qn0

(

2f ′′(d2n0m) + n0d
2mf ′′′(d2n0m)

)

,

by the mean-value theorem applied to the function f̃(x) = x2f ′′(d2xm), for some n0 between n and n+ q.
Using (1.5), it follows that

h
d2

dm2

(

f(d2m(n+ q))− f(d2mn)
)

≍ hd3|q|Y
f(N)

N2
.
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Hence, Lemma 2.3 gives

∑

m

e
(

h(f(d2n1m)− f(d2n2m))
)

≪ Xh1/2d1/2|q|1/2Y 1/2 f(N)1/2

N
+

N

h1/2d3/2|q|1/2Y 1/2f(N)1/2
.

Now inserting the above estimate into (5.6), summing over all the relevant variables and mindful of XY = N ,
we get that

(5.7) L2
d ≪ N2ε

(

H2N2

Qd4
+H5/2NQ1/2Y 1/2f(N)1/2d−5/2 +

H3/2N2Y 1/2

Q1/2f(N)1/2d9/2

)

.

To equalize the first two terms above, we set

(5.8) Q = H−1/3N2/3f(N)−1/3Y −1/3.

If the lower bound for Y in (5.2) holds, this choice of Q is in accordance with (5.5). It follows from (5.7)
that

L2
d ≪

N2ε

d2

(

H7/3N4/3f(N)1/3Y 1/3 +H5/3N5/3Y 2/3f(N)−1/3
)

≪
N2ε

d2

(

N11/3+7/3ηf(N)−2Y 1/3 +N10/3+5/3ηf(N)−2Y 2/3
)

,

since H ≤ N1+ηf(N)−1. Taking the square-root, we have the desired estimate in (5.1) provided that

(5.9)
N1/2+100η

f(N)1/4
≤ Y ≤

f(N)6

N5+100η
,

where we use that f(N) ≤ N .
If, instead of choosing Q as in (5.8), we simply set

(5.10) Q = Y/d

which certainly satisfies the requirement in (5.5), then from (5.7), repeating the above computations with
this choice of Q, we arrive at the estimate

L2
d ≪

N2ε

d2

(

N2Y −1H2 +NYH5/2f(N)1/2 +N2H3/2f(N)−1/2
)

≪
N2ε

d2

(

N4+2ηf(N)−2Y −1 +N7/2+5/2ηY f(N)−2 +N7/2+3/2ηf(N)−2
)

.

This gives the desired majorant in (5.1) if

(5.11)
N2+100η

f(N)2
≤ Y ≤

f(N)2

N3/2+100η
.

We note that

f(N) ≥ N8/9+50η

implies

N2+100η

f(N)2
≤
N1/2+100η

f(N)1/4
≤

f(N)2

N3/2+100η
≤

f(N)6

N5+100η
.

Now joining the two Y -ranges in (5.9) and (5.11), we get the lemma. �
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6. Estimation of Kd

For small Y , we cannot directly exploit the smooth exponential sum over n with Hecke eigenvalue λ(n).
In this case, we treat λ(n) like an arbitrary coefficient and hence Kd like Ld, obtaining the following result.

Lemma 6.1. For every sufficiently small fixed η > 0, we have

(6.1) Kd ≪ N1−3ηd−1,

provided that f(N) ≥ N8/9+30η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(6.2)
N6+100η

f(N)6
≤ Y ≤

f(N)2

N1+100η
.

Proof. This can be proved in essentially the same way as Lemma 5.1, but with the roles of X and Y reversed.
Similarly as in Lemma 5.1, we get that Kd ≪ N1−3ηd−1, provided that

N2+100η

f(N)2
≤ X ≤

f(N)6

N5+100η
.

These inequalities are equivalent to (6.2) since XY = N . �

For large Y , we employ Lemma 3.1 to deduce the following.

Lemma 6.2. For every sufficiently small fixed η > 0, we have

Kd ≪ N1−3ηd−1,

provided that f(N) ≥ N3/4+10η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(6.3) Y ≥ N23/6+100ηf(N)−3.

Proof. We note that for every k ∈ N, we have

(6.4)
dk

dyk
hf
(

d2my
)

≍
hf(N)

yk

by (1.4). Thus, we may apply Lemma 3.1 with N replaced by Y/d and T = hf(N) to the sum over n,
provided that f(N) ≥ N3/4. Summing up the resulting estimate trivially over h and m, we obtain

(6.5) Kd ≪ H ·
X

d
·

(

Y 2/3+ε

d2/3
· (Hf(N))5/18 +

Y 5/6

d5/6
· (Hf(N))−5/18

)

.

Therefore, the lemma follows upon noting that H ≤ N1+ηf(N)−1, XY = N and f(N) ≥ N3/4+10η. �

Combining the above Lemmas 6.1 and 6.2, we arrive at the following conclusion.

Lemma 6.3. For every sufficiently small fixed η > 0, we have

Kd ≪ N1−3ηd−1,

provided that f(N) ≥ N29/30+100η, 1 ≤ H ≤ N1−γ+η, 1 ≤ d ≤ 2Y and

N6+100η

f(N)6
≤ Y ≤ 2N.

Proof. Clearly, the Y -ranges in Lemma 6.1 and 6.2 overlap if f(N) ≥ N29/30+100η. This proves Lemma
6.3. �

We point out that the condition (1.3) on f arises from Lemma 6.3.
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7. Proof of the main result

Proof of Theorems 4.1 and 1.1. We recall that Theorem 4.1 and hence Theorem 1.1, our main result, holds
if (4.6) is valid for any N ≥ 1 and 1 ≤ H ≤ N1+ηf(N)−1. Here f satisfies the conditions (a) - (e) in the
introduction, and η is sufficiently small, which we assume in the following. Furthermore, in Lemma 4.2 we
formulated some conditions on bilinear sums Kd and Ld under which (4.6) holds. In the following, we check
that these conditions are satisfied.

We choose the parameters u, v and z in Lemma 4.2 as follows.

u := N2+100ηf(N)−2,

v := 4N1/3,

z :=
[

f(N)N−1/2−100η
]

+ 1/2.

The parameters u, v and z, so chosen, indeed satisfy the conditions in (4.7) if f(N) ≥ N9/10+ε and η is
sufficiently small. Moreover, the conditions (4.10) and (4.11) hold by Lemmas 5.1 and 6.3 since

4N1/3 ≤
f(N)6

N5+100η
and

N6+100η

f(N)6
≤

f(N)

N1/2+100η

if f(N) ≥ N13/14+ε and η is sufficiently small. This completes the proof. �
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