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Abstract—The last decades have seen a growing interest in
hash functions that allow some sort of tolerance, e.g. for the
purpose of biometric authentication. Among these, the syndrome
fuzzy hashing construction allows to securely store biometric
data and to perform user authentication without the need of
sharing any secret key. This paper analyzes this model, showing
that it offers a suitable protection against information leakage
and several advantages with respect to similar solutions, such
as the fuzzy commitment scheme. Furthermore, the design and
characterization of LDPC codes to be used for this purpose is
addressed.

I. I NTRODUCTION

The use of biometric passwords, such as fingerprints, irises,
etc, has been an important issue in recent years, both because
of the big advantages it may bring along and because of the
clearly non negligible privacy concerns and implementation
issues [1]. In fact, as far as privacy is concerned, the storage
of biometric data in clear is not an acceptable solution, but, on
the other hand, a secure storage cannot be easily implemented
as for traditional passwords by simply introducing an hash
function. This is due to the fact that the binary strings derived
from different acquisitions of the same biometric feature can
slightly change from each other, and the biometric feature
can slightly change itself. Therefore a certain threshold of
tolerance is needed to be able to identify legitimate from non
legitimate users, but this prevents the standard use of collision
resistant hash functions [2].

This problem has prompted researchers to devise other ways
to still be able to store and use securely biometric passwords:
while a selected survey of the literature can be found in [3] and
the references therein, we limit ourselves to point out some
of the most significant milestones. The idea behind most of
the methods that have been proposed is a combined use of
error correcting codes and hash functions, whose model is the
fuzzy commitment scheme [4], which we revisit below. This
has been later generalized to other types of metrics, such as
the set difference metric [5] and the edit distance metric [6].

In particular, the fuzzy vault [5] uses polynomial interpo-
lation in order to allow authentication based on the matching
of a sufficient number of features, while the fuzzy extractor
[6] is a further generalization which combines the previous
constructions with particular objects called random extractors.
These make the previous schemes stronger with respect to
information leakage, though they cannot prevent it [7], [8].

Briefly, privacy and implementation issues are still a concern
and our aim is to give a further contribution, by showing

that a syndrome based fuzzy hashing is actually feasible and
convenient as far as information leakage is concerned. First
of all, we address the design of codes to be used within this
context. We focus on LDPC codes and provide both theoretical
and numerical results concerning their design. Secondly, we
study the entropy of the fuzzy hashing output vectors and
compare it with the corresponding quantity of its input vectors.

The paper is structured as follows: in Section II we briefly
review the prototype of these methods, that is the fuzzy com-
mitment scheme, and the main issues concerning it. Section
III is devoted to the syndrome based construction which we
denote by fuzzy hashing. Section IV addresses the design of
codes to be used in this scheme, through both theoretical and
numerical tools. Section V is aimed at analyzing the entropy
of the output vectors, in order to assess the performance of
fuzzy hashing in terms of privacy.

II. PRIOR ART: THE PROTOTYPE

We briefly review here the prototype of most error cor-
recting based methods, that is the fuzzy commitment scheme
proposed by Juels and Wattenberg [4].

Suppose that we want to securely store a biometric vector
x ∈ F

n
q , whereFq is the Galois field of orderq, having length

n and lete be the maximum number of different symbols with
respect to the reference vectorx that we can tolerate in any
other acquisition of the same biometric feature.

According to the fuzzy commitment scheme, we must
choose a hash functionHa and a [n, k]-linear block code
C ⊂ F

n
q , able to correcte errors, and then store(Ha(rx), l),

whererx is a random codeword associated tox andl = x−rx.
Now, given another biometricy, we compute vectorz =

y − l and apply the decoding algorithm according to code
C. If decoding succeeds, this results in a codewordcz ∈ C,
and we computeHa(cz). If Ha(cz) equalsHa(rx), the value
previously stored, we grant access, otherwise we deny it.

In fact, if the hashes are the same, thencz = rx (apart from
a negligible probability of a hash collision), henced(cz , z) =
d(rx, z) ≤ e, whered(·) denotes the Hamming distance. Since
rx = x− l andz = y − l, it resultsd(rx, z) = d(x, y) ≤ e.

Conversely,d(x, y) ≤ e impliesd(x− l, y− l) = d(rx, z) ≤
e, so that decodingz results incz = rx andHa(cz) = Ha(rx).

In [2], we pointed out some of the main problems concern-
ing the use of this scheme, namely implementation issues and
security issues. In particular, privacy concerns may ariseif
the biometric templates are not uniformly distributed in the
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ambient space, that is their entropy is not maximal. In that
case, it may be feasible to infer froml information aboutrx
and, therefore, endanger the security of the system.

III. SYNDROME FUZZY HASHING

Starting from the fuzzy commitment principle, an alterna-
tive scheme (here fuzzy hashing) can be devised, in which
syndromes are used in the place of codewords. Under a coding
theory viewpoint, the two schemes are equivalent. Despite this,
the use of syndromes has several advantages in the considered
context. The idea of storing the syndrome ofx, instead of a
shift vector from a codeword, already appeared in [6], where
it is considered as an example of a sketch construction. We
will show that the use of fuzzy hashing is advantageous with
respect to the classical fuzzy commitment scheme, also by
considering the characteristics of typical biometric data.

In the fuzzy hashing scheme, an[n, k]-linear block code
C ⊂ F

n
q , able to correcte errors, is selected, and it is described

through itsr×n parity-check matrixH , with r = n−k. Given
a biometric vectorx to be stored, the pair(Ha(x), Hx) is used
to representx, wereHa is a given hash function. When another
biometric y is acquired and is compared withx, the value
Hx−Hy = H(x−y) = Hv is computed, that coincides with
the syndrome associated to the difference vectorv = x− y.

Then, syndrome decoding is applied onHv, according to
the chosen codeC. If y is taken from the same individual as
x, then v has Hamming weight equal tod(x, y) ≤ e and
it corresponds to a correctable error vector. So, syndrome
decoding succeeds and correctly results inv. Then, starting
from v andy, x can be computed, as well asHa(x). The latter
coincides with the stored one, so access is granted. Otherwise,
syndrome decoding fails or reports a vectorw 6= v. In such
case,x′ = w+ y 6= x is computed andHa(x

′) obtained. This
does not coincide with the stored value, so access is denied.

In the fuzzy commitment, the vectorl = x − rx is
stored. As some bits of the biometricx might be known
with high probability, this reveals some information on the
secret codewordrx. The same may occur in fuzzy hashing,
where the syndromeHx is stored, but only under the condition
x = q + rq, whereq is a correctable error vector andrq is
any codeword. In this case, syndrome decoding results inq;
so, some bits ofrq can still be guessed, starting from the
predictable bits ofx. However, especially for very low rate
codes, the probability thatx is within the decoding radius of
a codewordrq is very low, so fuzzy hashing provides better
security with respect to the classical fuzzy commitment.

IV. CODES FOR FUZZY HASHING

In order to design suitable codes to be included in the
fuzzy hashing scheme, we must consider the features of the
biometric vectors we work with. If we refer to fingerprints
or irises, a common acquisition will consist of a vector of
several thousands of bits. However, it would be unpractical
to apply fuzzy hashing directly on the plain acquisition, since
a number of impairments could jeopardize the identification
process. In fact, small changes in the acquisition conditions

(as ambient light or small movements of the subject) could
result in significant differences between two images of the
same biometric feature. So, it is a common procedure to
extract a set of representative features from the biometricdata
through algorithms aimed at making them invariant to some
frequent acquisition impairments. An example of this kind of
algorithms will be considered in Section V.

Based on these premises, the code must be designed to
work well with the vectors produced as output by the feature
extracting algorithm. Typically, such vectors have lengthon
the order of10k bits.

Another important aspect is the modeling of the errors
affecting two vectors resulting from different biometric acqui-
sitions from the same individual. In [9], the errors are modeled
through a Binary Symmetric Channel (BSC) with transition
probabilityp. We will adopt this approach in this paper.

In order to estimate the value ofp that is best suited to model
this application, we can assume that typical feature extraction
algorithms are used in the process. As it will be shown in
the next section, typical values of the percentage of different
bits between the vectors representing two acquisitions of the
same biometric range between10% and30%. So, codes able
to correct such high fractions of errors are needed, that is,
we need long codes having very low rate (R). Just to give
an idea, a BCH code with (n = 2047, k = 100), that is, rate
R ≈ 0.05, is able to correct379 errors, i.e. about19%. A BCH
code with (n = 4095, k = 110), that is, rateR ≈ 0.03, is able
to correct767 errors, that is almost the same percentage. A
similar value is reached by the BCH code having (n = 8191,
k = 170), hence rateR ≈ 0.02, able to correct1533 errors.

This evidences that, for classical algebraic codes, in order to
maintain a given relative error correcting capability, thecode
rate must be decreased as the code length increases. Further-
more, since very long codes are needed to match the length of
biometric vectors, their decoding may also yield complexity
issues, although recent algorithms can improve the decoding
complexity [10]. A smarter choice is represented by modern
iteratively decoded error correcting codes, characterized by
capacity achieving performance. Within such class of codes,
the choice of Low-Density Parity-Check (LDPC) codes [11]
seems the natural one. Actually, the use of LDPC codes in this
context has already been proposed in [2], [9], [12], but the code
design was not addressed in those works. In summary, fuzzy
hashing with LDPC codes brings the following advantages:

• Fuzzy hashing allows to reduce the amount of stored data,
with respect to the fuzzy commitment, sincer < n.

• Fuzzy hashing allows to reduce the predictability of the
stored strings, as shown at the end of the previous section.

• LDPC codes have higher error correction capabilities with
respect to classical algebraic codes. Moreover, the relative
error correction performance of LDPC codes, for a fixed
rate, remains almost constant as the code length increases.

• LDPC codes allow to reduce the size of the code repre-
sentation, by exploiting the sparse nature ofH .



A. Code Design

We are interested in almost regular codes, since they allow
an easier implementation with respect to irregular ones; so,
we fix the column weight of the matrixH to be equal to
an integerdv. The row weight, for the code rate values here
of interest, cannot be constant as well. However, it will be
minimally dispersed around its mean〈dc〉 = dv/(1 − R). If
we suppose that (as it occurs for all the code examples we
consider):

k

n
= R <

1

dv + 1
, (1)

the matrixH can have rows with only the following two values
of weight: dv anddv + 1. In this case,r − k · dv rows have
weightdv and the remainingk · dv rows have weightdv + 1.

We can describe the column and row weight distributions
of the matrix H through the polynomialsλ(x) and ρ(x),
representing respectively the variable node and check node
degree distributions of the associated Tanner graph [11]. Since
we adopt the edge perspective,λi (ρi) denotes the fraction of
ones in the parity-check matrixH which are in columns (rows)
of weighti. Based on the hypotheses above, for the considered
ensemble of codes it results:

λ(x) = xdv−1,

ρ(x) = [1−R(1 + dv)]x
dv−1 +R(1 + dv)x

dv . (2)

Starting from (2), we can estimate the asymptotic performance
(that is, for n → ∞) of LDPC codes in the considered
ensemble, over the BSC, by applying the density evolution
method [11].

In particular, as an example of LDPC decoding algorithm
for the BSC channel, we can refer to Gallager’s A algorithm
[13] and estimate its convergence threshold through density
evolution [14]. By doing so, and considering the variable and
check node degree polynomials given by (2), we have obtained
the results reported in Table I, where the threshold values
computed fordv = 3, 4, 5 are provided, for code rates ranging
between0.1 and0.01.

TABLE I
THRESHOLD VALUES FOR THE CONSIDEREDLDPC CODES ENSEMBLES

UNDER GALLAGER ’ S A DECODING

R dv = 3 dv = 4 dv = 5

0.1 0.159 0.078 0.045
0.09 0.163 0.079 0.045
0.08 0.166 0.08 0.046
0.07 0.169 0.081 0.046
0.06 0.173 0.083 0.047
0.05 0.177 0.084 0.048
0.04 0.18 0.085 0.048
0.03 0.184 0.087 0.049
0.02 0.188 0.088 0.05
0.01 0.192 0.089 0.051

As we observe from the table, the choice of a small value
of dv (like 3) should be preferred. On the other hand, the
asymptotic performance under Gallager’s A decoding does not
appear to be very good. For example, in order to reach an error

correcting capability of19%, for dv = 3, a code rate as low
as 0.02 seems to be needed, that is similar to what required
by a BCH code with length8191.

However, despite making reference to Gallager’s A algo-
rithm provides a first tool for designing the codes, we must
consider that such decoding algorithm is not among the most
effective ones. In fact, Gallager’s A algorithm is a majority-
based algorithm exploiting a fixed decision thresholdb. For
example, adopting a variableb (as in Gallager’s B algorithm)
gives a first performance improvement. Furthermore, several
improved versions of these algorithms have been proposed in
the literature, that are able to outperform Gallager’s original
algorithms [15], [16], [17]. Finally, the classical Sum Product
Algorithm (SPA) [18], based on the Belief Propagation princi-
ple, can also be applied on the BSC, even though, in absence
of soft-information from the channel, the initial likelihood
associated to each bit can assume only two opposite values.

Despite this, the SPA is able to significantly improve the
error correction performance with respect to that predicted in
Table I, as we will show in the next section, by providing
some examples of practical codes.

B. Examples

In this subsection we consider some examples of LDPC
codes having parameters of interest in the fuzzy hashing
context. For this purpose, we designed the codes, through the
Progressive Edge Growth (PEG) algorithm [19], by imposing
an almost constant column and row weight distribution of their
parity-check matrices.

In detail, we first fixed the column weightdv. Then,
we imposed the lower triangular form for the parity-check
matrices, in such a way as to facilitate encoding, especially for
very long codes. This introduces a last column having weight
1, and some columns having weight< dv. However, their
incidence with respect to the total number of columns is very
small. Then, the PEG algorithm has been used to optimize the
length of the local cycles within the Tanner graph associated
to each code, while keeping the row weight distribution as
much concentrated as possible.

So, the characteristics of the codes we have designed are
well overlaid with those fixed in the previous subsection. The
codes mentioned above have been used to perform Montecarlo
simulations over the BSC, based on SPA decoding.

A first set of results is reported in Fig. 1, where LDPC codes
havingn = 9600 andk = 1000 (hence, rate≈ 0.1) have been
considered. We have designed two codes with different column
weight: dv = 3 anddv = 5. As we observe from the figure,
the simulation confirms that the code withdv = 3 has better
performance, in the waterfall region, with respect to the code
havingdv = 5. This was expected on the basis of the results of
density evolution. However, we also observe that the code with
dv = 5 has a better performance in the error floor region, so
its Bit Error Rate (BER) and Frame Error Rate (FER) curves
tend to intersect with those of the first code. So, the choice
of dv = 3 is suitable if a failure rate on the order of10−4 or
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Fig. 1. Performance of rate0.1 LDPC codes withdv = 3 anddv = 5.

more is acceptable; otherwise, the choice ofdv = 5 should be
preferred.

The performance improvement due to the SPA is evident:
both codes are able to achieve a rather low error rate for a
percentage of bit errors around20%, or even more.
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Fig. 2. Performance of LDPC codes withdv = 3 and rate0.05, 0.02.

In order to further increase the error correcting capability
of these codes, it is necessary to reduce their rate. To provide
some examples in this sense, we have consideredk = 800 and
designed two further LDPC codes, havingdv = 3 and rate0.05
and0.02 (that is,n = 16000 andn = 40000), respectively.

As we observe from their simulated performance, reported
in Fig. 2, by using the SPA these codes are able to reach very
low error rates for a percentage of bit errors around30% and
even more. Also in this case, the performance improvement
due to the SPA with respect to the theoretical performance
referred to Gallager’s A algorithm is evident.

These results confirm that LDPC codes are well suited for
the application in the considered context, in which a high
correction capability is needed. Furthermore, we can observe
that, in this study, we have limited ourselves to consider
almost regular codes, in order to keep their implementation
complexity low. However the adoption of irregular LDPC
codes can result in a further performance improvement.

V. ENTROPY ANALYSIS

In this section, we discuss the use of fuzzy hashing for
iris recognition and we study how the adoption of syndromes
affects some statistical properties of the biometric data.As
a feature extractor, we use the algorithm described in [20]
and available in [21], together with its associated matching
algorithm. In our simulations, we refer to the iris pattern
database known as CASIA V.1, provided by the Institute of
Automation of the Chinese Academy of Sciences.

According to [22], [23], we evaluate the discrimination
entropy over both the sets of iris templates and of their fuzzy
hashes. For this purpose, we first compute the distribution of
the normalized Hamming distances between all the couples of
patterns within the set (of images of the same iris or of images
of different irises). Then, we compute the meanµ and standard
deviationσ of the normalized Hamming distance distribution.
Finally, the discrimination entropy (also known as “Degrees
of Freedom” or DOF) is obtained asDOF = µ(1− µ)/σ2.

Applying fuzzy hashing to an iris recognition framework
is not straightforward, due to the high variability in the
irises acquisition phase. In fact, we must try to avoid all
the differences given not only by the measure variability (i.e
scale and rotation), but also by the eye variability, that can
significantly change the amount of visible iris and its shape.

The standard way to take these issues into account is to
compute a mask describing which bits in the iris template
are free from such occlusions. The masks, in general, have
a different number of set bits for each iris reading, resulting
into information patterns having different lengths, both in the
case they describe different irises and different readingsof the
same iris. This is not a problem in the case of the standard
matching algorithms, since we can take, as inputs for the
matching phase, the templates and masks of both the stored
iris and the one we want to check. Then, we can just compute
the intersection of the two masks and obtain the number of
different bits within the two templates among the ones chosen
by the masks intersection.

Instead, when we use syndromes, we cannot access the
reference template in clear; so, we must cope with different
lengths of the information patterns. One way is to treat the
matching channel as an error-and-erasure channel [12], where
erasures are given by the masks. Note that, in [12], the authors
use a different algorithm from that we consider here. In our
case, the large number of bits erased by the masks make
this approach unusable. In order to obtain a fixed length of
the information patterns, we compute, for each template bit
position i, the probabilitym(i) that such bit is not erased
by a mask. Then, we compute a pseudomask selecting the



bit positions corresponding to a value ofm(i) lower than a
threshold:m(i) ≤ mth. In our case, we fixmth = 2.4%.

We are aware that this approach makes us neglect some bits
that were not erased by their associated masks, but we have
verified that this has a very limited effect for the considered
algorithm. In fact, using all the selected bits in each template,
we obtain, between two different readings of the same iris, an
average Hamming distance of28.24%, a standard deviation
σ = 0.0435 and a discriminant entropy equal to107 bits.
Instead, using only the bits selected by the pseudomask, we
obtain an average Hamming distance of26.2%, a standard
deviationσ = 0.0486 and a discriminant entropy equal to81
bit. The explanation for this moderate variation, in terms of
discriminant entropy performance, is that the feature extraction
algorithm does not compute the masks in the best possible way
(for example the two eyelids are approximated with straight
lines and not with curves); so, when we take into account all
the bits in each template, we commit some errors that afflict
the result, that is, we take into account some bits that we
should actually erase.
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Fig. 3. Inter-class analysis of the Hamming distance for theconsidered set
of iris templates with and without fuzzy hashing.

In order to show that the use of fuzzy hashing is able to
increase the discriminant entropy, that is to provide a better
protection against information leakage, we estimate the DOF
on the set of plain templates, before and after the application
of fuzzy hashing. The latter is performed through the LDPC
code havingn = 9600, R = 0.1 and dv = 5, described in
the previous section. We compute the normalized Hamming
distance between each pair of templates created from different
irises and then estimate its probability density function.The
results, so obtained, are reported in Fig. 3.

The set of plain template vectors hasµ = 0.4897, σ =
0.0281, henceDOF = 316.5. After performing fuzzy hashing,
the values becomeµ = 0.4932, σ = 0.0166, DOF = 907.1.
This confirms the positive effect of fuzzy hashing.
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