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Abstract—The last decades have seen a growing interest inthat a syndrome based fuzzy hashing is actually feasible and
hash functions that allow some sort of tolerance, e.g. for # convenient as far as information leakage is concernedt Firs
purpose of biometric authentication. Among these, the symdme of all, we address the design of codes to be used within this

fuzzy hashing construction allows to securely store biomet . .
data and to perform user authentication without the need of context. We focus on LDPC codes and provide both theoretical

sharing any secret key. This paper analyzes this model, shing @nd numerical results concerning their design. Seconddy, w
that it offers a suitable protection against information leakage study the entropy of the fuzzy hashing output vectors and

and several advantages with respect to similar solutions,ush compare it with the corresponding quantity of its input west
as the fuzzy commitment scheme. Furthermore, the design and  The paper s structured as follows: in Section Il we briefly
characterization of LDPC codes to be used for this purpose is . .
addressed. review the prototype of these methods, that is the fuzzy com-
mitment scheme, and the main issues concerning it. Section
|. INTRODUCTION Il is devoted to the syndrome based construction which we

The use of biometric passwords, such as fingerprints, jriséenote by fuzzy hashing. Section IV addresses the design of
etc, has been an important issue in recent years, both lecauxles to be used in this scheme, through both theoretical and
of the big advantages it may bring along and because of themerical tools. Section V is aimed at analyzing the entropy
clearly non negligible privacy concerns and implementatioof the output vectors, in order to assess the performance of
issues([1]. In fact, as far as privacy is concerned, the georauzzy hashing in terms of privacy.
of biometric data in clear is not an acceptable solution, duat
the other hand, a secure storage cannot be easily implethente
as for traditional passwords by simply introducing an hash We briefly review here the prototype of most error cor-
function. This is due to the fact that the binary strings st recting based methods, that is the fuzzy commitment scheme
from different acquisitions of the same biometric featua@ c proposed by Juels and Wattenberg [4].
slightly change from each other, and the biometric feature Suppose that we want to securely store a biometric vector
can slightly change itself. Therefore a certain threshdid @ € F, whereF, is the Galois field of ordeg, having length
tolerance is needed to be able to identify legitimate from na and lete be the maximum number of different symbols with
legitimate users, but this prevents the standard use diooil respect to the reference vecterthat we can tolerate in any
resistant hash functions][2]. other acquisition of the same biometric feature.

This problem has prompted researchers to devise other wayéccording to the fuzzy commitment scheme, we must
to still be able to store and use securely biometric passsvordhoose a hash functiof/, and a[n, k]-linear block code
while a selected survey of the literature can be foundliinfig] aC' C Fy, able to correct errors, and then stor@,(r.), 1),
the references therein, we limit ourselves to point out sormerer, is a random codeword associatedstand! = x—r.
of the most significant milestones. The idea behind most of Now, given another biometrig, we compute vector =
the methods that have been proposed is a combined useyef | and apply the decoding algorithm according to code
error correcting codes and hash functions, whose modeeis tH. If decoding succeeds, this results in a codeward: C,
fuzzy commitment schemé&][4], which we revisit below. Thiand we computéd,(c;). If H,(c.) equalsH,(r;), the value
has been later generalized to other types of metrics, suchpagviously stored, we grant access, otherwise we deny it.
the set difference metric][5] and the edit distance mefrc [6 In fact, if the hashes are the same, then= r, (apart from

In particular, the fuzzy vault’[5] uses polynomial interpoa negligible probability of a hash collision), henégé:., z) =
lation in order to allow authentication based on the matghini(r,, z) < e, whered(-) denotes the Hamming distance. Since
of a sufficient number of features, while the fuzzy extractor, = z — ! andz =y — [, it resultsd(r,, z) = d(z,y) <e.

[6] is a further generalization which combines the previous Converselyd(z,y) < e impliesd(z—1,y—1) = d(rz, z) <
constructions with particular objects called random ecttes. ¢, so that decoding results inc, = r, andH,(c.) = H,(ry).
These make the previous schemes stronger with respect ttn [2], we pointed out some of the main problems concern-
information leakage, though they cannot preventlit [7], [8] ing the use of this scheme, nhamely implementation issues and

Briefly, privacy and implementation issues are still a concesecurity issues. In particular, privacy concerns may aifise
and our aim is to give a further contribution, by showinghe biometric templates are not uniformly distributed i th

Il. PRIOR ART. THE PROTOTYPE
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ambient space, that is their entropy is not maximal. In théas ambient light or small movements of the subject) could
case, it may be feasible to infer froimnformation about-, result in significant differences between two images of the
and, therefore, endanger the security of the system. same biometric feature. So, it is a common procedure to
extract a set of representative features from the biomesia
through algorithms aimed at making them invariant to some

Starting from the fuzzy commitment principle, an alternarequent acquisition impairments. An example of this kirid o
tive scheme (here fuzzy hashing) can be devised, in whialgorithms will be considered in Sectiéq V.

syndromes are used in the place of codewords. Under a codingased on these premises, the code must be designed to
theory viewpoint, the two schemes are equivalent. Despise t o1k well with the vectors produced as output by the feature

the use of syndromes has several advantages in the cordsidg;&-racting algorithm. Typically, such vectors have length
context. The idea of storing the syndromeaofinstead of a he order ofl0k bits.

shift vector from a codeword, already appeared_in [6], where

it is considered as an example of a sketch construction. W, ting t ¢ lting f diff t bi tricomi
will show that the use of fuzzy hashing is advantageous witt. ecting two vectors resufting from different biometricoail-
tions from the same individual. In][9], the errors are nlede

) . i

respect to the classical fuzzy commitment scheme, also ) X . "

considering the characteristics of typical biometric data t?lzPZough a Binary S_ymmetnc _Channel (BSC) \.Nlth transition
probability p. We will adopt this approach in this paper.

In the fuzzy hashing scheme, an, k]-linear block code
C C F7, able to correct errors, is selected, and it is described In order to estimate the value pthat is best suited to model
through itsr x n parity-check matrixtf, with » = n—k. Given this application, we can assume that typical feature etinac
a biometric vector: to be stored, the paitH, (z), Hz) is used algorithms are used in the process. As it will be shown in
to represent, wereH, is a given hash function. When anothefhe next section, typical values of the percentage of dffer
biometric y is acquired and is compared with the value bits between the vectors representing two acquisitionsief t
Hax—Hy = H(xz—vy) = Hv is computed, that coincides withsame biometric range betwe&0% and30%. So, codes able
the syndrome associated to the difference vecterz —y.  to correct such high fractions of errors are needed, that is,

Then, syndrome decoding is applied &fv, according to We need long codes having very low ratg)( Just to give
the chosen cod€.. If y is taken from the same individual asan idea, a BCH code witha(= 2047, k£ = 100), that is, rate
z, thenv has Hamming weight equal td(z,y) < e and R~ 0.05,is able to correc379 errors, i.e. about9%. A BCH
it corresponds to a correctable error vector. So, syndrorfede with ¢ = 4095, k = 110), that is, rateR ~ 0.03, is able
decoding succeeds and correctly resultsvirThen, starting tO correct767 errors, that is almost the same percentage. A
fromwv andy’ x can be Computed, as well aﬁl(x) The latter similar value is reached by the BCH code haVimg:( 8191,
coincides with the stored one, so access is granted. Otserwit = 170), hence rate ~ 0.02, able to correcti533 errors.
syndrome decoding fails or reports a vector# v. In such This evidences that, for classical algebraic codes, inrdale
case.x’ = w4y # x is computed andi, (+') obtained. This maintain a given relative error correcting capability, trele
does not coincide with the stored value, so access is denigdte must be decreased as the code length increases. Further

In the fuzzy commitment, the vector = x — r, iS more, since very long codes are needed to match the length of
stored. As some bits of the biometric might be known biometric vectors, their decoding may also yield compiexit
with high probability, this reveals some information on théssues, although recent algorithms can improve the degodin
secret codeword,. The same may occur in fuzzy hashingcomplexity [10]. A smarter choice is represented by modern
where the syndrom& z is stored, but only under the conditioniteratively decoded error correcting codes, charactdrizg
x = q + rq, Wheregq is a correctable error vector ang is capacity achieving performance. Within such class of cpdes
any codeword. In this case, syndrome decoding results inthe choice of Low-Density Parity-Check (LDPC) codesl[11]
so, some bits ofr, can still be guessed, starting from theseems the natural one. Actually, the use of LDPC codes in this
predictable bits ofr. However, especially for very low rate context has already been proposedin [2], [Q]] [12], but thaec
codes, the probability that is within the decoding radius of design was not addressed in those works. In summary, fuzzy
a codewordr, is very low, so fuzzy hashing provides bettehashing with LDPC codes brings the following advantages:
security with respect to the classical fuzzy commitment.

IIl. SYNDROME FUZZY HASHING

nother important aspect is the modeling of the errors

« Fuzzy hashing allows to reduce the amount of stored data,
IV. CODES FOR FUZZY HASHING with respect to the fuzzy commitment, since< n.

In order to design suitable codes to be included in thee Fuzzy hashing allows to reduce the predictability of the
fuzzy hashing scheme, we must consider the features of the Stored strings, as shown at the end of the previous section.
biometric vectors we work with. If we refer to fingerprints ¢ LDPC codes have higher error correction capabilities with
or irises, a common acquisition will consist of a vector of ~ respectto classical algebraic codes. Moreover, thevelati
several thousands of bits. However, it would be unpractical ~error correction performance of LDPC codes, for a fixed
to apply fuzzy hashing directly on the plain acquisitiomcsi rate, remains almost constant as the code length increases.
a number of impairments could jeopardize the identification « LDPC codes allow to reduce the size of the code repre-
process. In fact, small changes in the acquisition conuiitio ~ sentation, by exploiting the sparse naturefbf



A. Code Design correcting capability ofl9%, for d, = 3, a code rate as low

We are interested in almost regular codes, since they all@®0-02 seems to be needed, that is similar to what required
an easier implementation with respect to irregular ones; &y @ BCH code with lengti3191.
we fix the column weight of the matri¥] to be equal to  However, despite making reference to Gallager's A algo-

an integerd,. The row weight, for the code rate values herfithm provides a first tool for designing the codes, we must
of interest, cannot be constant as well. However, it will bgonsider that such decoding algorithm is not among the most
minimally dispersed around its medd.) = d,/(1 — R). If effective ones. In fact, Gallager's A algorithm is a majprit
we suppose that (as it occurs for all the code examples W@sed algorithm exploiting a fixed decision threshald=or

consider): example, adopting a variable(as in Gallager's B algorithm)
k R 1 1 gives a first performance improvement. Furthermore, sévera
n < dy + 1’ @) improved versions of these algorithms have been proposed in

the matrixH can have rows with only the following two valuesthe literature, that are able to outperform Gallager's igiy

- . e algorithms [15], [16], [1¥]. Finally, the classical Sum Brat
of \_/velght. dy andd, + 1.' !n this casey — & - d, rows have Algorithm (SPA) [18], based on the Belief Propagation prnc
weightd, and the remaining - d, rows have weightl, - 1. le, can also be applied on the BSC, even though, in absence
We can describe the column and row weight distributior. " bp X gn,

: . 6t soft-information from the channel, the initial likelibd
of the matrix 1 through the polynomials(x) and p(x), acfsociated to each bit can assume only two opposite values.

representing respectively the variable node and check no % te this. the SPA is able to sianificantly i th
degree distributions of the associated Tanner graph [14¢eS espite this, the IS able to signiticantly improve the
error correction performance with respect to that prediate

we adopt the edge perspective,(p;) denotes the fraction of ; . ! -~
ones in the parity-check matré{ which are in columns (rows) Table[], as we wil shov_v in the next section, by providing
e examples of practical codes.

of weighti. Based on the hypotheses above, for the considergd"
ensemble of codes it results:

o dy—1
Al@) = ’ i1 4 In this subsection we consider some examples of LDPC
pe) =[1 = R+ dy)|lz® " + R(1+dv)z®.  (2) codes having parameters of interest in the fuzzy hashing

Starting from[[2), we can estimate the asymptotic perfoiganCONtext. For this purpose, we designed the codes, throwgh th
(that is, forn — oo) of LDPC codes in the considered”rogressive Edge Growth (PEG) algoritim][19], by imposing

ensemble, over the BSC, by applying the density evolutiéi almost constant column and row weight distribution ofrthe
method [1’1], ’ parity-check matrices.

In particular, as an example of LDPC decoding algorithm " detail, we first fixe_d the column weighd,. Then,
for the BSC channel, we can refer to Gallager's A algorithif€ imposed the lower triangular form for the parity-check
[13] and estimate its convergence threshold through densfatrices, in such a way as to facilitate encoding, espgdiail
evolution [14]. By doing so, and considering the variable ar’€'y long codes. This introduces a last column having weight
check node degree polynomials given By (2), we have obtain?edand some columns having weigkt d,,. However, their

the results reported in Tab[@ I, where the threshold valuisidence with respect to the total number of columns is very
computed ford, = 3,4, 5 are provided, for code rates rangin mall. Then, the PEG algorithm has been used to optimize the

B. Examples

between0.1 and0.01. ength of the local cycles within the Tanner graph assodiate
to each code, while keeping the row weight distribution as
TABLE | much concentrated as possible.
THRESHOLD VALUES FOR THE CONSIDEREDLDPC CODES ENSEMBLES I .
UNDER GALLAGER'SA DECODING So, the characteristics of the codes we have designed are
well overlaid with those fixed in the previous subsectione Th
L R [[d=3[dv=4]dv=5] codes mentioned above have been used to perform Montecarlo
01§ 0159 | 0078 | 0.045 simulations over the BSC, based on SPA decoding.
0.09 || 0.163 | 0.079 | 0.045 ) . .
008 1 0166 008 | 0046 A first set of results is reported in Fig. 1, where LDPC codes
0.07 || 0169 | 0.081 | 0.046 havingn = 9600 andk = 1000 (hence, ratex 0.1) have been
006 0173 | 0.083 | 0.047 considered. We have designed two codes with different colum

0.05 0.177 0.084 0.048

0.04 518 0.085 0048 Weight: dy = 3 and _dv = 5. As we obserye from the figure,
0031 0184 | 0.087 | 0.049 the simulation confirms that the code with = 3 has better
0.02 || 0.188 | 0.088 0.05 performance, in the waterfall region, with respect to thdeco
001 0192 | 0089 | 0.051 havingd, = 5. This was expected on the basis of the results of

density evolution. However, we also observe that the codle wi
As we observe from the table, the choice of a small valug = 5 has a better performance in the error floor region, so
of d, (like 3) should be preferred. On the other hand, thigs Bit Error Rate (BER) and Frame Error Rate (FER) curves
asymptotic performance under Gallager’'s A decoding doés niend to intersect with those of the first code. So, the choice
appear to be very good. For example, in order to reach an erobrd,, = 3 is suitable if a failure rate on the order o6~ or



These results confirm that LDPC codes are well suited for
the application in the considered context, in which a high
correction capability is needed. Furthermore, we can eeser
that, in this study, we have limited ourselves to consider
almost regular codes, in order to keep their implementation
complexity low. However the adoption of irregular LDPC
codes can result in a further performance improvement.

V. ENTROPY ANALYSIS

In this section, we discuss the use of fuzzy hashing for
iris recognition and we study how the adoption of syndromes
affects some statistical properties of the biometric das.

a feature extractor, we use the algorithm described_in [20]
and available in[[21], together with its associated mafghin

: : ; : ; ; algorithm. In our simulations, we refer to the iris pattern
0.40 0.35 0.30 0.25 0.20 0.15 0.10

—&—C(n=9600, R=0.1, &3) BER
—e— C(n=9600, R=0.1, &3) FER
—=—C(n=9600, R=0.1, &5) BER
—=— C(n=9600, R=0.1, &5) FER

10

o database known as CASIA V.1, provided by the Institute of
Automation of the Chinese Academy of Sciences.
Fig. 1. Performance of rate.1 LDPC codes withd, = 3 andd,, = 5. According to [22], [28], we evaluate the discrimination

entropy over both the sets of iris templates and of theiryuzz
hashes. For this purpose, we first compute the distributfon o

more is acceptable; otherwise, the choicelpt= 5 should be the normalized Hamming distances between all the couples of
preferred. patterns within the set (of images of the same iris or of insage

The performance improvement due to the SPA is evideR different irises). Then, we compute the mgaand standard
both codes are able to achieve a rather low error rate foidaviationo of the normalized Hamming distance distribution.
percentage of bit errors arour26%, or even more. Finally, the discrimination entropy (also known as “Degree
of Freedom” or DOF) is obtained d30F = pu(1 — u)/o?.

Applying fuzzy hashing to an iris recognition framework
is not straightforward, due to the high variability in the
irises acquisition phase. In fact, we must try to avoid all
the differences given not only by the measure variabilitg (i
scale and rotation), but also by the eye variability, that ca
significantly change the amount of visible iris and its shape

The standard way to take these issues into account is to
\ compute a mask describing which bits in the iris template
. are free from such occlusions. The masks, in general, have
a different number of set bits for each iris reading, resglti
into information patterns having different lengths, batttlie
case they describe different irises and different readafigse
same iris. This is not a problem in the case of the standard
TEE LeTAN0RT002] BER matching algorithms, since we can take, as inputs for the

, {—=—C(n=40000, R=0.02) FER .
10 ‘ ‘ ‘ ‘ ‘ ‘ matching phase, the templates and masks of both the stored
0.50 0.45 0.40 0.35 0.30 0.25 0.20
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—o6— C(n=16000, R=0,05) BE|
10°{ —e-— C(n=16000, R=0,05) FER

p iris and the one we want to check. Then, we can just compute
the intersection of the two masks and obtain the number of
Fig. 2. Performance of LDPC codes with, = 3 and rate0.05, 0.02. different bits within the two templates among the ones chose

by the masks intersection.

In order to further increase the error correcting capapilit Instead, when we use syndromes, we cannot access the
of these codes, it is necessary to reduce their rate. Togeovieference template in clear; so, we must cope with different
some examples in this sense, we have considere®00 and lengths of the information patterns. One way is to treat the
designed two further LDPC codes, havihig= 3 and rate).05 matching channel as an error-and-erasure channel [12}ewhe
and0.02 (that is,n = 16000 andn = 40000), respectively.  erasures are given by the masks. Note that, ih [12], the esitho

As we observe from their simulated performance, reportede a different algorithm from that we consider here. In our
in Fig.[2, by using the SPA these codes are able to reach vease, the large number of bits erased by the masks make
low error rates for a percentage of bit errors aro86® and this approach unusable. In order to obtain a fixed length of
even more. Also in this case, the performance improvemehe information patterns, we compute, for each template bit
due to the SPA with respect to the theoretical performanpesition i, the probabilitym(i) that such bit is not erased
referred to Gallager’s A algorithm is evident. by a mask. Then, we compute a pseudomask selecting the
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