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EXTRINSIC HYPERSPHERES IN MANIFOLDS WITH SPECIAL

HOLONOMY

TILLMANN JENTSCH, ANDREI MOROIANU AND UWE SEMMELMANN

Abstract. We describe extrinsic hyperspheres and totally geodesic hypersurfaces in mani-
folds with special holonomy. In particular we prove the nonexistence of extrinsic hyperspheres
in quaternion-Kähler manifolds. We develop a new approach to extrinsic hyperspheres based
on the classification of special Killing forms.
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1. Introduction

A submanifold of a Riemannian manifold is called an extrinsic sphere if it is totally umbilical
and has non-zero parallel mean curvature vector field. This concept was introduced by Nomizu
and Yano in [15] as a natural analogue to ordinary spheres in Euclidean spaces. Extrinsic
spheres have been studied intensively during the last fifty years. In several cases it was shown
that extrinsic spheres have to be Euclidean spheres and partial classifications were obtained.

In this article we will only consider the case of extrinsic hyperspheres, i.e. extrinsic spheres
of codimension one. In general, the existence of extrinsic hyperspheres seems to impose strong
restrictions on the geometry of the ambient manifold, e.g. Chen and Nagano [6] showed
that a locally irreducible symmetric space admitting an extrinsic hyperspheres has to be of
constant curvature. However there are also interesting examples of extrinsic spheres which
are not isometric to ordinary spheres. In particular Sasakian manifolds appear as extrinsic
hyperspheres of Kähler manifolds (cf. [20]). Hence it is natural to ask for the existence of
extrinsic hyperspheres in manifolds with special holonomy, i.e. manifolds whose restricted
holonomy group is strictly contained in the corresponding special orthogonal group. By the
Berger-Simons holonomy theorem, we have to consider the following cases: The manifold
can be locally a Riemannian product, a locally symmetric space or its restricted holonomy
group is one of U(m), SU(m), Sp(m), Sp(m) ·Sp(1), G2 or Spin(7). Our first result concerns
quaternion-Kähler manifolds, i.e. Riemannian manifolds with restricted holonomy contained
in Sp(m) · Sp(1), with m ≥ 2. We prove the following

Theorem 1.1. A quaternion-Kähler manifold of non-vanishing scalar curvature does not
admit an extrinsic hypersphere.
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Similarly we show that there are no extrinsic hyperspheres in complete Riemannian prod-
ucts without one-dimensional factors and in complete manifolds with holonomy G2 or Spin7.
However we give non-complete examples, as metric cones over manifolds with special geomet-
ric structures, such as Sasakian, nearly Kähler or nearly parallel G2-structures. In fact every
manifold is an extrinsic hypersphere in its (non-complete) metric cone.

Our main observation in the proof is that a parallel form on the ambient manifold natu-
rally defines a so-called special Killing form on any extrinsic hypersphere. Then we use the
classification of special Killing forms (cf. [17]) and in particular the fact that these forms
define parallel forms on the metric cone. This gives a unified approach to the investigation
of extrinsic hyperspheres, which also reproves some of the known results in the local product
and Kähler case.

At some points we also use a remarkable theorem of Koiso (cf. [11] or Theorem 2.3). In
particular this theorem states that a complete Einstein manifold of non-constant sectional
curvature does not admit any extrinsic hypersphere which is itself Einstein and has positive
scalar curvature. As a striking consequence we note that, contrary to the general expectation,
it is not possible to construct new examples of 6-dimensional nearly Kähler manifolds as
totally umbilical hypersurfaces of complete nearly parallel G2-manifolds.

Finally we consider totally geodesic hypersurfaces in manifolds with special holonomy. We
first show that the problem of finding totally geodesic hypersurfaces in a locally reducible
manifold reduces to the same problem for one of the locally defined factors, see Theorem 4.2.
Our main result in the irreducible case is then the following

Theorem 1.2. There do not exist any totally geodesic hypersurfaces in

(1) locally irreducible Kähler-Einstein manifolds (including Calabi-Yau and hyperkähler
manifolds);

(2) Quaternion-Kähler manifolds
(3) manifolds with holonomy G2 or Spin(7).
(4) locally irreducible symmetric spaces of non-constant sectional curvature.

In particular, Theorems 1.1 and 1.2 imply that a complete quaternion-Kähler manifold
does not admit any (possibly non-complete) totally umbilical hypersurface.

2. Preliminaries

Let (M̄, ḡ) be an (n + 1)-dimensional Riemannian manifold and let i : M ⊂ M̄ be a
submanifold with induced Riemannian metric g. The second fundamental form is defined as
II(X, Y ) = ∇̄XY − ∇XY where X and Y are vector fields tangent to M and ∇ resp. ∇̄
denote the Levi-Civita connections of g resp. ḡ. Let N be a normal vector field on M then
the shape operator ANX := (∇̄XN)T is related to the second fundamental form via

ḡ(II(X, Y ), N) = ḡ(ANX, Y ) ,

for any vector fields X, Y on M . A submanifold M ⊂ M̄ is said to be totally umbilical if
II(X, Y ) = g(X, Y )H , with H = 1

n
tr II denoting the mean curvature vector field of M in
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M̄ . Choosing a parallel unit length normal vector field N , this condition can be written as
II(X, Y ) = λ g(X, Y )N for some function λ on M . The manifold M is called totally geodesic
in M̄ if the equation II = 0 holds, corresponding to the special case λ = 0.

In this article we are especially interested in extrinsic hyperspheres, i.e. complete hyper-
surfaces such that II(X, Y ) = λg(X, Y )N for some real constant λ 6= 0.

Let M ⊂ M̄ be a totally umbilical hypersurface, with unit length normal vector field N ,
then the covariant derivative ∇̄ may be written as

(1) ∇̄XY = ∇XY + λg(X, Y )N, ∇̄XN = −λX ,

where X, Y denote vector fields tangent to M . For totally umbilical hypersurfaces the cur-
vature equations of Gauß and Codazzi take the following form:

R̄(X, Y, Z,W ) = R(X, Y, Z,W ) + λ2g(X ∧ Y, Z ∧W )

R̄(X, Y, Z,N) = X(λ) g(Y, Z) − Y (λ) g(X,Z) = (dλ ∧ Z)(X, Y )

where X, Y, Z,W are vector fields on M , and R̄ resp. R denote the Riemannian curvature
tensors of ḡ resp. g, and Z is identified with its dual 1-form using the metric g. Let the
curvature operator R on 2-vectors be defined by

g(R(X ∧ Y ), Z ∧W ) = −R(X, Y, Z,W ) ,

so that the curvature operator of the standard sphere is the identity. Then the Gauß equation
may also be written as R = R̄ + λ2 id . Hence the sectional curvatures K̄ resp. K of ḡ resp.
g are related by K = K̄ + λ2.

The following well-known lemma will be helpful below (cf. [11]).

Lemma 2.1. Let (Mn, g), n ≥ 2, be a totally umbilical hypersurface of an Einstein manifold
(M̄, ḡ). Then II = λgN , for some constant λ and a parallel unit length normal vector field
N , i.e. complete totally umbilical hypersurfaces in Einstein manifolds are extrinsic spheres.
Moreover,

λ2 =
scalg

n(n− 1)
−

scalḡ
n(n+ 1)

and scalg is constant. In particular the inequality (n + 1) scalg ≥ (n − 1) scalḡ holds, with
equality in the case of a totally geodesic hypersurface, i.e. for λ = 0.

Proof. LetM ⊂ M̄ be a totally umbilical hypersurface in M̄ . By definition we have II = λgN
for some function λ on M . Let {ei}, i = 1, . . . , n+1, with en+1 := N , be a local orthonormal
frame for TM̄ restricted to M . Then the Ricci curvature Ric of ḡ applied to a vector field X
tangent to M can be computed using the Gauß equation:
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Ric(X,X) =
∑n

i=1 R̄(X, ei, ei, X) + R̄(X,N,N,X)

=
∑n

i=1(R(X, ei, ei, X) + λ2[g(X, ei)
2 − g(X,X)g(ei, ei)]) + R̄(X,N,N,X)

= Ric(X,X) − λ2(n− 1)|X|2 + R̄(X,N,N,X)

In this equation we take the trace over an orthonormal base in TM and use the assumption
that (M̄, ḡ) is Einstein to obtain

n
scalḡ
n+ 1

= scalg − n(n− 1)λ2 +
scalḡ
n + 1

This proves the equation for λ2, the inequality and the characterization of the case of equality.
It remains to show that λ, and thus also scalg, is constant. This immediately follows from
the Codazzi equation. Indeed if we take the trace over a local orthonormal frame on M we
obtain for any vector field X on M

Ric (X,N) = (n− 1) dλ(X)·

Hence, dλ = 0 and we conclude that λ as well as scalg have to be constant on M .

�

Remark 2.2. Using a result of [13] on the existence of submanifolds with parallel second
fundamental form (e.g. totally umbilical submanifolds with λ = const), one can show that
in a complete manifold with real analytic metric every (possibly non-complete) submanifold
with parallel second fundamental is contained in a complete one. Further, we recall that every
Einstein metric is real analytic with respect to normal coordinates according to a theorem of
DeTurck and Kazdan, see [11]. It follows that in a complete Einstein manifold every totally
umbilical submanifold is an open part of an extrinsic sphere.

In general we will not assume that the ambient manifold M̄ has to be complete. However if
we assume completeness, as well as the Einstein condition for g and ḡ, the following theorem
of Koiso (cf. [11]) gives a rather strong restriction for extrinsic hyperspheres.

Theorem 2.3 (Koiso). Let (M, g) be a totally umbilical Einstein hypersurface in a complete
Einstein manifold (M̄, ḡ). Then the only possible cases are:

(a) g has positive Ricci curvature. Then g and ḡ have constant sectional curvature

(b) ḡ has negative Ricci curvature. If M̄ is compact or (M̄, ḡ) homogeneous, then g and ḡ
have constant sectional curvature

(c) g and ḡ have zero Ricci curvature. If (M̄, ḡ) is simply connected, then (M̄, ḡ) decomposes

as (M̃, g̃)× R, where (M̃, g̃) is a totally geodesic hypersurface in (M̄, ḡ) which contains M .

3. Extrinsic hyperspheres

In this section we will study totally umbilical submanifolds in ambient spaces with special
holonomy.
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3.1. Special Killing forms. Let i : M ⊂ M̄ be an n-dimensional extrinsic hypersphere
in a manifold (M̄, ḡ) with special holonomy. Except for the case of symmetric spaces, the
restriction of holonomy is directly linked to the existence of certain parallel differential forms
σ ∈ Ωk(M̄). The main tool in our investigation of extrinsic hyperspheres is the observation
that the pull-back forms i∗(Ny σ) and i∗σ are special Killing resp. ∗-Killing forms on M (cf.
[17]). Here and henceforth N denotes a unit normal vector field along M .

Lemma 3.1. Let i :M ⊂ M̄ be an n-dimensional extrinsic hypersphere and σ be a non-trivial
parallel k-form on M̄ and let γ := i∗(Ny σ) and β := i∗σ be the pull-back forms on M . Then
for every vector field X on M the following equations hold:

(i) ∇Xγ = 1
k
Xy dγ

(ii) ∇Xdγ = − kλ2X ∧ γ

(iii) ∇Xβ = − 1
n−k+1

X ∧ d∗β

(iv) ∇Xd
∗β = (n− k + 1)λ2 Xy β,

where the non-zero constant λ is given by (1). In particular, it follows that γ is coclosed and
β is closed. Moreover, the forms γ and β are related by

dγ = − k λ β, d∗β = − (n− k + 1)λ γ .

Furthermore, γ is a non-parallel k − 1-form on M .

Proof. Let i :M → M̄ the inclusion map of the extrinsic hypersphere M , then the differential
i∗ identifies TpM with a subspace of TpM̄ . We have i∗(∇XY ) = ∇̄XY − λg(X, Y )N , where
X, Y are vector fields tangent to M . Let X,X1, . . . , Xk be vector fields on M then

(∇Xi
∗σ)(X1, . . . , Xk) = X(σ(X1, . . . , Xk))−

∑
j σ(. . . , i∗(∇XXj), . . .)

= (∇̄Xσ)(X1, . . . , Xk) + λ
∑

j g(X,Xj) σ(. . . , N, . . .)

= λ (X ∧ i∗[Ny σ])(X1, . . . , Xk)

It immediately follows that i∗σ is closed. Moreover, contracting with X = ek and sum-
ming over a local orthonormal base {ek} of TM yields d∗(i∗σ) = −(n − k + 1) λ i∗[Ny σ] .
Substituting this into the equation for ∇Xi

∗σ proves (iii). Similarly we find

∇X i
∗(Ny σ) = ∇̄X(Ny σ) = (∇̄XN)y i∗σ = −λXy i∗σ .

This implies that i∗(Ny σ) is coclosed and that di∗(Ny σ) = −k λ i∗σ , completing also the
proof of equation (i). Finally we use the calculations above to conclude the proof of equations
(ii) and (iv):

∇Xdγ = − k λ∇Xβ = − k λ2X ∧ γ,

∇Xd
∗β = − (n− k + 1) λ∇Xγ = (n− k + 1) λ2Xy β .

Suppose, by contradiction, that γ is a parallel k − 1-form on M . Then dγ = 0, hence
β = − 1

k λ
dγ = 0 and thus γ = − 1

(n−k+1) λ
d∗β = 0. Therefore, σ|M = 0 which is not possible

since σ is a non-trivial parallel k-form on M̄ . We conclude that γ is not parallel. �
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Equations (i) and (ii) define a non-parallel special (k− 1)-Killing form γ. Complete mani-
folds admitting such forms were classified in [17]. It turns out that special Killing forms can
only exist on Euclidian spheres, Sasakian- and 3-Sasakian manifolds, nearly Kähler manifolds
in dimension 6 or nearly parallel G2-manifolds in dimension 7.

The classification is based on the fact that every special Killing (k − 1)-form ψ defines

a parallel k-form ψ̃ on the metric cone M̃ , i.e. the manifold M̃ = M × R+ with the cone
metric g̃ = t2g+ dt2. Recall that the metric cone is a non-complete manifold, which contains
the complete manifold M as an extrinsic hypersphere. The parallel form on M̃ is defined as
ψ̃ = 1

k
d(tkψ) = tk−1dt ∧ ψ + 1

k
tkdψ

It is important to note that this construction assumes a certain normalization in equations
(ii) and (iv), which in our case is equivalent to λ2 = 1. Clearly, after a constant rescaling of
the metric ḡ and replacing N with −N if necessary, one can even assume that λ = −1 in (1).

Returning to our situation, let i : M ⊂ M̄ be an n-dimensional extrinsic hypersphere and
σ be a non-trivial parallel k-form on M̄ . Restricted to the submanifold M ⊂ M̄ , we may
write σ with the notation from above as

σ = N ∧ i∗(Ny σ) + i∗σ = N ∧ γ + β .

where γ is a non-parallel special (k − 1)- Killing form such that dγ = kβ. Thus we obtain
that

σ̃ = tk−1dt ∧ γ + tk β ,

is a non-trivial parallel k-form on the cone M̃ . Obviously, the k-forms σ and σ̃ have the same
algebraic type. This implies that their stabilizer under the SO(n+ 1)-action on Λk has to be
the same.

It is well known that if (M, g) is complete, the metric cone M̃ has reducible holonomy
only if it is flat, in which case M is isometric to the standard sphere [7]. Moreover, if the
cone metric g̃ is Einstein, then it has to be Ricci flat. In particular, the metric cone can be
symmetric only if it is flat. Indeed an irreducible symmetric space is Einstein, thus the cone
is then Ricci flat and also flat. Similarly, the metric cone can not be a quaternion-Kähler
manifold, since these manifolds are automatically Einstein. Thus the scalar curvature of the
cone vanishes and the holonomy is reduced to Sp(m), i.e. the cone is in fact hyperkähler.

According to the the Berger list, there remain five cases of irreducible cones M̃ admitting
parallel forms: Kähler, Calabi-Yau, hyperkähler manifolds, and manifolds with holonomy G2

resp. Spin(7), in dimensions 7 resp 8. It follows that M has a Sasakian, Einstein-Sasakian,
3-Sasakian, nearly Kähler or nearly parallel G2 structure, respectively.

3.2. Quaternion-Kähler manifolds. Let (M̄4m, ḡ) be a quaternion-Kähler manifold, i.e.
a Riemannian manifolds with (restricted) holonomy contained in Sp(m) · Sp(1). Since for
m = 1 the holonomy condition is empty, one usually assumes m ≥ 2. On quaternion-Kähler
manifolds one has a parallel 4-form σ, the so-called Kraines form. Its stabilizer is the group
Sp(m) · Sp(1) ⊂ SO(4m).
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Let M ⊂ M̄ be an extrinsic hypersphere. Thus it admits a special Killing form and
carries one of the special geometric structures mentioned above. Let us first assume that
M is Sasakian, but not Einstein. Then the cone M̃ is an irreducible Kähler manifold with
holonomy equal to U(2m). The parallel forms are powers of the Kähler form, whose stabilizers
contain U(2m). But for m ≥ 2 the unitary group U(2m) is not contained in Sp(m) · Sp(1).
Thus this case is not possible.

In the remaining cases, M is the standard sphere, Einstein-Sasakian, 3-Sasakian, nearly
Kähler, or nearly parallel G2, and is Einstein with positive scalar curvature scalg = n(n− 1).
If M̄ would be complete then we could apply the result of Koiso, i.e. Theorem 2.3, to rule out
these cases. However, even if M̄ is not complete, we may exclude the remaining possibilities.
Indeed, the cone over M has to be Ricci flat and Lemma 2.1 shows that scalḡ = 0. Thus the
holonomy of (M̄, ḡ) reduces further to Sp(m), which is a different case.

This proves Theorem 1.1.

�

3.3. Kähler manifolds. This case also includes Calabi-Yau and hyperkähler manifolds. It
is well known that a Kähler form σ ∈ Ω2(M̄) induces a Sasakian structure on any extrinsic
hypersphere M ⊂ M̄ . The Killing vector field of the Sasakian structure is given by ξ =
JN = Ny σ (cf. [20]). Non-complete examples are obtained as metric cones over Sasakian,
Einstein-Sasakian resp. 3-Sasakian manifolds.

However we do not know of any example of a complete Kähler manifold admitting an
extrinsic hypersphere.

3.4. Manifolds with holonomy G2 or Spin(7). Let (M̄, ḡ) be a manifold with holonomy
contained in G2 or Spin(7). Then M̄ carries a parallel 3- resp. 4-form σ and the 2- resp. 3-form
Ny σ defines a nearly Kähler resp. nearly parallel G2-structure on any extrinsic hypersphere
M ⊂ M̄ . These manifolds are Einstein with positive scalar curvature and we may use the
result of Koiso from Theorem 2.3 to exclude them as hypersurfaces of complete manifold M̄ .

Again there are non-complete examples M̄ , as metric cones over nearly Kähler resp. nearly
parallel G2-manifolds. Conversely it follows from [11, Eq. (2.3.b)] that any M̄ with holonomy
G2 or Spin(7) admitting an extrinsic hypersphere M is locally isometric to the cone over M .

More generally, it is an old and well known observation of Gray [8] that already the existence
of a nearly parallel G2-structure on M̄7 implies the existence of a nearly Kähler structure on
any totally umbilical hypersurface M ⊂ M̄ . However, as we have just seen, it is a striking
consequence of Koiso’s Theorem 2.3 that if M̄ is complete, then no new examples of nearly
Kähler manifolds can be produced in this way.

3.5. Local product manifolds. Let ḡ be a Riemannian product metric on M̄ = M̄1 × M̄2.
We assume that not both factors have dimension one. The volume forms volM1

, volM2
are

parallel forms on M̄ . Let M̄1 be the factor with a non-vanishing projection of the normal
vector N . Then Ny volM̄1

is different from zero and defines, as described above, a parallel form
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of degree dim M̄1 on the cone over M . However this form has a non-trivial kernel (the vectors
from TM̄2∩TM), which is at least one-dimensional and defines a parallel distribution on the
cone. Hence the cone is reducible and, if M is complete, we apply the theorem of Gallot [7] to
conclude that the cone is flat and M is isometric to the sphere. This result was first obtained
by M. Okumura [16] (using the Obata Theorem).

Finally we remark that if we do not require the completeness condition forM and M̄ , then
the situation is much more flexible and one can construct lots of examples by taking (M̄, ḡ)
to be a product of two Riemannian cones (M1 × R, t2g1 + dt2) and (M2 × R, s2g2 + ds2).
Indeed, such a product is always a Riemannian cone over the manifold M = M1 ×M2 × R

endowed with the incomplete Riemannian metric g := sin2 θ g1 + cos2 θ g2 + dθ2, as shown by
the formula (cf. [12])

(t2g1 + dt2) + (s2g2 + ds2) = r2(sin2 θ g1 + cos2 θ g2 + dθ2) + dr2, (s, t) = (r cos θ, r sin θ).

The manifold (M, g) is thus embedded as a totally umbilical hypersurface in (M̄, ḡ).

3.6. Locally symmetric spaces. Extrinsic spheres in locally symmetric spaces are well un-
derstood. It follows from results of Chen [3] that the real space forms are the only irreducible
locally symmetric spaces admitting extrinsic hyperspheres. Since every locally irreducible
symmetric space is a complete Einstein manifold, this result is also implied by Theorem 2.3
of Koiso. Moreover, any extrinsic hypersphere in a symmetric space is a symmetric subman-
ifold in the sense of [2, Ch. 9.3] (cf. [2, Proposition 9.3.1]). Therefore, if M̄ is a product
M̄1×· · ·×M̄k where M̄i are simply connected irreducible symmetric spaces, it follows from a
result of Naitoh [14] that any extrinsic hypersphere is of the form M1 × M̄2 × · · ·× M̄k where
M1 is an extrinsic hypersphere in a space M̄1 of constant curvature.

Similar results are true for certain classes of homogeneous spaces. In [18] Tojo proves
that compact normally homogeneous spaces admitting extrinsic hyperspheres have constant
sectional curvature. The same conclusion is proved by Tsukada in [19] for isotropy irreducible
homogeneous spaces admitting totally umbilical hypersurfaces.

4. Totally geodesic hypersurfaces

There are many examples of totally geodesic hypersurfaces in (possibly non-complete)
Einstein manifolds. In fact Koiso proves in [11] the following

Theorem 4.1. Let (M, g) be a real analytic Riemannian manifold with constant scalar curva-
ture. Then there exists a (possibly non-complete) Einstein manifold (M̄, ḡ) such that (M, g) is
isometrically embedded into (M̄, ḡ) as a totally geodesic hypersurface. Moreover, such (M̄, ḡ)
is essentially uniquely determined. More precisely, if (M̃, g̃) is a second Einstein manifold
which contains M as a totally geodesic hypersurface, then there exist open neighborhoods Ū
and Ũ of M in M̄ and M̃ , respectively, and an isometry I : Ũ → Ū with I|M = id.

In this section we will show that the Einstein manifold M̄n+1 given by Koiso’s Theorem 4.1
can never have special holonomy if (M, g) is locally irreducible. In fact, then M̄ is locally
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irreducible, too, because of Theorem 4.2. Thus we can apply Theorem 4.3 in order to obtain
that the restricted holonomy group of M̄ is given by SO(n + 1).

4.1. Local Products. We will first show that if (M̄, ḡ) is locally reducible and complete,
then the problem of finding totally geodesic hypersurfaces in M̄ reduces to the same problem
on one of the factors. More precisely, we will prove the following:

Theorem 4.2. Let (M̄, ḡ) be a complete, simply connected manifold with reducible holonomy,
and assume that (M, g) is a complete totally geodesic hypersurface of M̄ . Then M̄ can be
written as a Riemannian product (M̄, ḡ) = (M̄1, ḡ1)×(M̄2, ḡ2) such thatM is equal toM ′

1×M̄2,
where M ′

1 is a complete totally geodesic hypersurface of M̄1.

Proof. Since M̄ is complete, simply connected and has reducible holonomy, the de Rham
decomposition theorem shows that it is isometric to a Riemannian product M̄ = M̄1 × M̄2,
with ḡ = ḡ1 + ḡ2. The exponential function clearly satisfies

(2) expM̄
(x1,x2)

(X1, X2) = (expM̄1

x1
(X1), exp

M̄2

x2
(X2))

for all (x1, x2) ∈ M̄ and (X1, X2) ∈ T(x1,x2)M̄ .

Let M ⊂ M̄ be a totally geodesic hypersurface with unit length normal vector field N .
With respect to the decomposition TM̄ = TM̄1 ⊕ TM̄2, the vector field N can be written as
N = X1 +X2 at every point of M . If at some point x = (x1, x2) ∈ M one component, e.g.
X1, vanishes, then TxM = Tx1

M̄1×X⊥

2 , thus by (2)M = M̄1× expx2
(X⊥

2 ), where the second
factor is clearly a totally geodesic hypersurface in M̄2. In the following we will assume that
both components of N are different from zero.

For every x = (x1, x2) ∈ M we write Nx = aN1 + bN2 where a and b are functions on M
and N1, N2 are unit vectors in Tx1

M̄1 and Tx2
M̄2 depending a priori on x2 and x1 respectively.

We will show later on that they actually do not depend on these variables.

Let ωi denote the restriction to M of the volume forms of the two factors of M̄ . Consider
the vector field H on M defined by g(H, ·) = ∗(∗ω1 ∧ ∗ω2) (the Hodge dual ∗ is that of M).
Up to a sign, depending on the orientation of M , one has H = bN1 − aN2. Since ωi are
parallel, H is a parallel vector field on M , so if ϕt denotes its flow, then ft(x) is a geodesic
for all x ∈M .

Let us fix some x = (x1, x2) ∈ M and consider the totally geodesic surfaces M1 = (M̄1 ×
{x2})∩M and M2 = ({x1}× M̄2)∩M of M̄1 and M̄2 respectively. The projection of TxM to
Tx1

M̄1 is onto, therefore the projection π1 :M → M̄1 is onto. Indeed, for every y1 ∈ M̄1 there
exists Y1 ∈ Tx1

M̄1 such that y1 = expM̄1

x1
(Y1), so by (2), y1 = π1(exp

M̄
(x1,x2)

(Y1, Y2)), where Y2
is chosen so that (Y1, Y2) ∈ TxM .

We will now show that aN1 only depends on x1. Indeed, the set of y2 ∈ M̄2 such that
(x1, y2) ∈ M is just M2, and for every vector Y2 ∈ Tx2

M2 we have ḡ(Y2, N) = 0, so 0 =
∇ḡ

Y2
N = ∇ḡ

Y2
(aN1) +∇ḡ

Y2
(bN2). Since the two terms in the right hand factor are tangent to

M̄1 and M̄2 respectively, they both vanish. In particular, ∇ḡ

Y2
(aN1) = 0, and since N1 has

unit length, a and N1 are both constant along M2. This fact, together with the previous
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observation that the projections of M on M̄1 and M̄2 are onto, show that there exist globally
defined functions a on M̄1, b on M̄2 and vector fields N̄1 on M̄1, N̄2 on M̄2, such that
Nx = a(x1)N̄1(x1) + b(x2)N̄2(x2) for all x = (x1, x2) ∈M .

We claim that N̄1 is parallel on M̄1. First, if X ∈ Tx1
M1, then X is orthogonal to N so

∇X(aN̄1) = 0 like before. Since N̄1 has unit length, this shows that X(a) = 0, so a is constant
along M1 and ∇XN̄1 = 0. It remains to check the parallelism in the direction of N̄1 itself.
Equation (2) shows that the geodesic expx1

(tbN̄1) is the projection in M̄1 of expx(tH), whose
tangent vector at every t is H . Thus the tangent vector of expx1

(tbN1) is (bN1)(expx1
(tbN1)),

showing that bN1 is parallel in the direction of N1. On the other hand, we have already seen
that b only depends on the second variable, so N1 is parallel at x1, and thus everywhere on M̄1.
Similarly, N2 is parallel on M̄2. By the de Rham theorem again, one can write M̄1 =M1×R,
ḡ1 = g1 + dt2, N1 = ∂/∂t and M̄2 = M2 × R, ḡ2 = g2 + ds2, N2 = ∂/∂s. From the above,
the functions a and b only depend on t and s respectively, but since a2 + b2 = 1, they are
both constant. This shows that identifying M̄ with R × (M1 × M2 × R) by the isometry
((t, x1), (s, x2)) 7→ (at+ bs, (x1, x2, bt− as)), N is identified to the unit tangent vector to the
R-factor, and thus M is isometric to the second factor M1 ×M2 ×R. This finishes the proof
of the theorem. �

4.2. Irreducible manifolds with totally geodesic hypersurfaces. Now we turn our
attention to the case where (M̄, ḡ) is locally irreducible. Recall that a hypersurface M of
a Riemannian manifold (M̄, ḡ) is called locally reflective if the geodesic reflection r in M
defines an isometry of a suitable open neighborhood U of M in M̄ . Then r is locally given
by r(exp(tNp)) = exp(−tNp) (where Np denotes the normal vector at p ∈M). Moreover, we
recall that a locally reflective submanifold is automatically totally geodesic (cf. [2]).

IfM is a totally geodesic hypersurface of an Einstein manifold (M̄, ḡ), thenM has constant
scalar curvature according to Lemma 2.1. In this situation, N. Koiso has shown that M is a
locally reflective submanifold, cf. Remark 7 of [11].

Theorem 4.3. Let (M̄, ḡ) be a locally irreducible Riemannian manifold. If there exists an
n-dimensional locally reflective hypersurface M ⊂ M̄ , then the restricted holonomy group of
M̄ is equal to SO(n + 1). In particular, there are no totally geodesic hypersurfaces in locally
irreducible Einstein manifolds with special holonomy.

Proof. Let U be an open neighborhood of M in M̄ in which the geodesic reflection r in M is
defined. Clearly, it suffices to prove the theorem in case U = M̄ . Since r(p) = p for all points
p ∈M , we obtain an involutive Lie group homomorphism τ : SO(TpM̄) → SO(TpM̄) which is
given by τ(g) = dpr ◦ g ◦ dpr. Since dpr is the linear reflection in TpM and the normal vector
Np spans the whole normal space at p, the connected component of the fixed point group
under τ is equal to SO(TpM). Further, let G denote the restricted holonomy group of M̄ at
the point p ∈M . Then for every closed, null-homotopic curve α : [0, 1] → M̄ the curve r ◦ α
is again closed and null-homotopic. If g denotes the parallel displacement along α, then the
parallel displacement along r ◦α is given by τ(g) (because r is an isometry of M̄). We obtain
that τ(g) ∈ G for all g ∈ G. Let H denote the subgroup of G which is fixed under τ and H0



EXTRINSIC HYPERSPHERES IN MANIFOLDS WITH SPECIAL HOLONOMY 11

be its connected component. Set H̃ := H ∩ SO(TpM), then H0 ⊂ H̃ ⊂ H , hence (G, H̃) is
a Riemannian symmetric pair in the sense of [9, Ch. IV, §3]. In particular, any G-invariant
metric makes G/H̃ a Riemannian symmetric space. Moreover, there is a natural injective

map ι : G/H̃ → Sn which is given by [g] 7→ g(Np), where Sn is considered as the Euclidian

sphere of TpM̄ . We claim that ι is a totally geodesic map, i.e. ι maps geodesics of G/H̃ into
geodesics of Sn:

Let p := {x∧Np | x ∈ TpM} be the Cartan complement of k := so(TpM) in so(TpM̄). Then
so(TpM̄) = k⊕ p with dpτ(A) = A for all A ∈ k and dpτ(A) = −A for all A ∈ p. Let g denote
the Lie algebra of G, then the Cartan decomposition of g is given by (k ∩ g) ⊕ (p ∩ g). Let

γ be a geodesic of G/H̃ through the origin H̃. Then there exists some A ∈ p ∩ g such that
γ(t) = [exp(tA)] (cf. [2]). Therefore, ι(γ(t)) = exp(tA)Np, which is a geodesic line of Sn.

This shows that the dimension k of the symmetric space G/H̃ is less or equal n and the
orbit GNp is a k-dimensional totally geodesic submanifold of Sn, i.e. GNp is a standard
Euclidian sphere Sk ⊂ Sn. Then the linear subspace of TpM̄ which is spanned by GNp is
G-invariant and hence k = n, since G acts irreducibly on TpM̄ . It follows that dim(p ∩ g) =

dim(G/H̃) = n = dim(p) and thus p ⊂ g, therefore so(TpM̄) = [p, p] ⊕ p ⊂ g. We obtain
that actually g = so(TpM̄). Switching from Lie algebras to Lie groups, we conclude that the
connected component of G is equal to SO(TpM̄). The result now follows.

�

This also proves Theorem 1.2, since all ambient manifolds in question are Einstein with
special holonomy.

�
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Andrei Moroianu, CMLS, École Polytechnique, UMR 7640 du CNRS, 91128 Palaiseau,

France

E-mail address : am@math.polytechnique.fr

Uwe Semmelmann, Institut für Geometrie und Topologie, Fachbereich Mathematik, Uni-

versität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

E-mail address : uwe.semmelmann@mathematik.uni-stuttgart.de


