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GROWTH BEHAVIORS IN THE RANGE er
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Abstract. For every α ≤ β in a left neighborhood [α0, 1] of 1, a group G(α, β)

is constructed, the growth function of which satisfies lim sup
log log bG(α,β)(r)

log r
= α

and lim inf
log log bG(α,β)(r)

log r
= β. When α = β, this provides an explicit uncountable

collection of groups with growth functions strictly comparable. On the other hand,
oscillation in the case α < β explains the existence of groups with non comparable
growth functions. Some period exponents associated to the frequency of oscillation
provide new group invariants.

1. Introduction

The growth function bΓ,S(r) = |Sr| of a group Γ with finite generating set S was
introduced by Milnor [Mil] in relation with Riemannian geometry. The class bΓ(r)
of bΓ,S(r) under the equivalence relation associated to the order f(r) ≤ g(Cr) for
some C (written f - g) is independant of the generating set S, so that bΓ(r) is a
group invariant.

For many groups, e.g. those containing a free semigroup, the growth function
is exponential. However, the growth function of a nilpotent group Γ is polynomial
bΓ(r) ≈ rd(Γ) where d(Γ) =

∑

k.rank(Γk/Γk+1) is the algebraic degree of nilpotency
of Γ = Γ1 associated to the filtration Γk+1 = [Γk,Γ] ([Bas], [Gui], [Wol]). Conversely,
Gromov proved that polynomial growth implies virtual nilpotency ([Gro], see also
[Kle] and [ST] for an explicit version applying to finite groups). This implies in
particular that polynomial growth functions are indexed by integers d(Γ) and any
two are always comparable for -.

In the eighties, Grigorchuk has shown some groups have intermediate growth, i.e.
faster than polynomial and slower than exponential. In [Gri1], he considers a family
indexed by a Cantor set {0, 1, 2}N of groups Gω acting on a binary rooted tree.

Many of these groups satisfy growth inequalities of the form er
α

- bGω(r) - er
β

for
exponents 1

2
≤ α < β < 1. On the other hand, for some sequences ω, the growth of

Gω is “close to” er. Grigorchuk also proved the existence of uncountable antichains
of growth functions (i.e. collections of pairwise non comparable such functions).

Date: July 7, 2011. Supported by Swiss NSF grant 20-126689.
1

http://arxiv.org/abs/1107.1632v1


2 BRIEUSSEL

Recently, Bartholdi and Erschler have computed the intermediate growth func-
tions of some groups related to the group G(012)∞ (see [BE]). More precisely, for
Γ0 = Z/2Z ≀X G(012)∞ and Γk+1 = Γk ≀X G(012)∞ , there are explicit exponents αk < 1
accumulating to 1, such that their growth functions satisfy bΓk

(r) ≈ er
αk .

The purpose of the present article is to draw a panorama of growth behaviors in
the range er

α

. The two main points are that on the one hand there is a neighborhood
of 1 in which any α is the growth exponent of some group, raising an explicit
uncountable family of groups for which the growth functions are strictly comparable,
and on the other hand, there are groups the growth function of which oscillates
between two distinct exponents α < β, which explains non comparison phenomena.
More precisely:

Theorem 1.1. Let η ≈ 0.8105 be the real root of X3 + X2 + X − 2 and α0 =
log 2

log 2−log η
≈ 0.7674. Then for any α0 ≤ α ≤ β ≤ 1, there exists a group G(α, β) such

that:

lim inf
log log bG(α,β)(r)

log r
= α and lim sup

log log bG(α,β)(r)

log r
= β.

In particular, there exists a group G(α) such that lim
log log bG(α)(r)

log r
= α.

The groups G(α, β) will be explicitely described as F ≀X Gω for appropriate se-
quence ω = ω(α, β). Note that the group G(α0) is precisely the group Γ0 =
Z/2Z ≀X G(012)∞ considered in [BE]. Also a better study of oscillation phenom-
ena provides uncountable antichains of growth functions satisfying a uniform upper
bound er

β

for any β > α0.

In order to ease notation, adopt the following:

Definition 1.2. Given a finitely generated group G, the upper logarithmic growth
exponent α(G) and the lower logarithmic growth exponent α(G) are real numbers in
[0, 1] defined as:

α(G) = lim sup
log log bG(r)

log r
and α(G) = lim inf

log log bG(r)

log r
.

In case of equality, call logarithmic growth exponent the number α(G) = α(G) =
α(G).

For submultiplicative functions, inequality b(Cr) ≤ b(r)C implies:

log log b(Cr)

log r
≤ log log b(r)

log r
+

logC

log r
,

so that the logarithmic growth exponents of groups are independent of the choice
of a particular representative bΓ,S(r), i.e. the choice of generating set. Note that
if bG(r) ≃ er

α

, then α(G) = α but the converse is not true, as shown by functions
er

α(log r)p for any value of p. In particular, the growth functions of the groups studied
here are not computed, but only their logarithmic growth exponents.

The article is structured as follows. Sections 2 and 3 are devoted to the description
of the involved groups Γω, and in particular the notion of activity of a representa-
tive word. Section 4 presents the three main tools of estimation for growth. The
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activity of words is studied in section 5 to derive precise growth estimates, i.e. con-
struct groups with a given logarithmic growth exponent. Oscillation phenomena are
studied in sections 7 and 8, which permits to explain the existence of antichains of
growth functions. Some explicit estimates on the frequency of oscillation are given.
A few comments and some questions conclude the article.

Note that close results have been obtained, but not yet published, by Bartholdi
and Erschler.

2. The groups involved

2.1. Definition. Following Grigorchuk [Gri1], associate to each given sequence ω =
ω0ω1ω2 . . . in {0, 1, 2}N a group Gω of automorphism of a binary rooted tree T ,
generated by four elements Gω = 〈a, bω, cω, dω〉, defined via the wreath product
isomorphism:

Aut(T ) ≃ Aut(T ) ≀ S2 = (Aut(T )× Aut(T ))⋊ S2,(1)

where S2 acts on the product by permuting components. The generator a = (1, 1)ε,
where ε is non-identity in S2, is independent of ω and only acts at the root of T .
The three other generators are defined recursively by:

bω = (ub(ω0), bσω), cω = (uc(ω0), cσω), dω = (ud(ω0), dσω),(2)

where σ is the shift of sequence σω = ω1ω2 . . . and:

ub





0
1
2



 =





a
a
id



 , uc





0
1
2



 =





a
id
a



 , ud





0
1
2



 =





id
a
a



 .(3)

The group Gω is defined by the sequence ω which rules the embeddings Gω →֒
Gσω ≀ S2. The following relations are easily checked:

a2 = b2ω = c2ω = d2ω = bωcωdω = id.(4)

In particular, the group generated by bω, cω, dω is a Klein group V = S2 × S2 and
each of the four generators has order 2 (unless ω is constant), so they generate
Gω as a quotient semigroup of Ωω = {a, bω, cω, dω}∗, the free semigroup of words
in the generators with concatenation as product. Also note that conjugating by a
exchanges the components on the two subtrees, in particular:

abωa = (bσω, u
b(ω0)), acωa = (cσω, u

c(ω0)), adωa = (dσω, u
b(ω0)).(5)

Now following [BE], let ρ = 1∞ ∈ ∂T be the rightmost geodesic ray out of the
root of T . Note that bω, cω, dω fix ρ independently of ω. Denote X = ρGω the right
orbit of ρ under Gω. The permutational wreath product of Gω and another group
F over X is the group:

Γω = F ≀X Gω = (ΣXF )⋊Gω,

where ΣXF is the group of finitely supported functions ϕ : X → F , on which
Gω acts on the left by (g.ϕ)(x) = ϕ(xg), and in particular the supports satisfy
supp(g.ϕ) = supp(ϕ)g−1. The elements are denoted ϕg for ϕ ∈ ΣXF and g ∈ Gω.
The computation rule is (ϕ1g1)(ϕ2g2) = (ϕ1(g1.ϕ2))(g1g2). Throughout the present
article, assume the group F is finite.
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As a generating set, use Sω = {a} ⊔ {ϕfv|v ∈ {idGω , bω, cω, dω}, f ∈ F}. Note
that ρv = ρ, so [ϕf , v] = idΓω and the set {ϕfv} generates a finite subgroup in Γω,
which is abstractly isomorphic to F × V .

2.2. A short history. The groups Gω are commensurable with some groups intro-
duced by Aleshin -see [Ale], where automata techniques were used to solve Burnside’s
problem. The groups Gω and especially G(012)∞ have been widely studied under the
impulse of Grigorchuk, especially since they provide the essentially only known ex-
emples of groups of intermediate growth ([Bar1], [Bar2], [BS], [Bri], [Ers1], [Ers2],
[Ers3], [Gri1], [Gri2], [MP], [Zuk]). In particular, the best known estimates on the
growth of G(012)∞ are:

Theorem 2.1.

er
0.5207

- bG(012)∞
(r) - er

α0
.

The upper bound comes from [Bar1] (see also [MP]) and the lower bound from
[Bri] (see also [Bar2], [Leo]). The estimation on the growth exponents of Gω is
tightly related to the contraction of the length of reduced words w = (w0, w1) under
the wreath product decomposition (1). If for all reduced words, |w0|+ |w1| is a large
contraction of |w|, the upper growth exponent is small. If for all pairs of reduced
words, |w| is a small dilatation of |w0|+ |w1|, the lower growth exponent is big. As
it turns out, the study of dilatation of pair of words is delicate to handle, explaining
the large gap between the upper and lower exponents of G(012)∞ .

In [BE], Bartholdi and Erschler have bypassed this problem, considering (among
others) the group F ≀X G(012)∞ , where F is any finite group, for which they prove:

Theorem 2.2. [BE]
bF ≀XG(012)∞

(r) ≈ er
α0 .

In short, if the upper estimates still apply, the use of permutational wreath prod-
uct permits to obtain a good lower bound from small dilatation of some pairs of
words. The techniques developed in [BE] are not restricted to the specific sequence
ω = (012)∞, and can provide a good understanding of growth of Γω for rotating
sequences ω, as explained below. The construction of an appropriate sequence ω(α)
or ω(α, β) will be the key point to prove Theorem 1.1.

3. A description of the groups

This section aims at giving description of the group Γω = F ≀X Gω.

Lemma 3.1. The group Γω = F ≀X Gω embeds cannonically into the finite permu-
tational wreath product Γσω ≀ S2. More precisely, the application Φ:

Γω →֒ Γσω ≀ S2

a 7→ (1, 1)a

vω 7→ (uv(ω0), vσω)

ϕf 7→ (1, ϕf)

is an injective morphism of groups.
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Any γ in Γω is decomposed γ = ϕg, with g ∈ Gω and ϕ : X → F . The
classical embedding Gω →֒ Gσω ≀ S2 provides a decomposition g = (g0, g1)σ. Also
the boundary of the tree can be decomposed into two components ∂T = ∂T0 ⊔ ∂T1
with Tt the tree descended from the first level vertex t. In particular, the orbit X
inherits this decomposition into X = X0 ⊔X1. Set ϕt = ϕ|Xt the restriction of ϕ to
the subset Xt of the orbit X . With these notations, the application Φ is given by:

Φ(γ) = (ϕ0g0, ϕ1g1)σ ∈ Γω ≀ S2.

In order to prove the lemma, it is sufficient to check that Φ(γγ′) = Φ(γ)Φ(γ′).

Proof. On the one hand, γγ′ = ϕgϕ′g′ = ϕ(g.ϕ′)gg′ = ψgg′, with ψ = ϕ(g.ϕ′). As
above set ψt = ψ|Xt , and as gg′ = (g0g

′
σ(0), g1g

′
σ(1))σσ

′, the embedding is:

Φ(γγ′) = (ψ0g0g
′
σ(0), ψ1g1g

′
σ(1))σσ

′.

On the other hand:

Φ(γ)Φ(γ′) = (ϕ0g0, ϕ1g1)σ(ϕ
′
0g

′
0, ϕ

′
1g

′
1)σ

′

= (ϕ0g0ϕ
′
σ(0)g

′
σ(0), ϕ1g1ϕ

′
σ(1)g

′
σ(1))σσ

′

= (ϕ0(g0.ϕ
′
σ(0))g0g

′
σ(0), ϕ1(g1.ϕ

′
σ(1))g1g

′
σ(1))σσ

′

There remains to check ψt = ϕt(gt.ϕ
′
σ(t)), and indeed for any y ∈ Xt ≃ X :

ψt(y) = ψ(ty) = (ϕ(g.ϕ′))(ty) = ϕ(ty)((g.ϕ′)(ty)) = ϕ(ty)ϕ′(ty.g)

= ϕ(ty)ϕ′(σ(t)(y.gt)) = ϕt(y)ϕ
′
σ(t)(y.gt) = ϕt(y)(gt.ϕ

′
σ(t))(y).

�

The embedding ψ : Γω →֒ Γσω ≀ S2 can also be used at the word level. Let us
describe the rewriting process of a given word of the form w = ai1k1ak2 . . . akra

i2 ,
for ki = ϕfivi in {ϕfv|v ∈ {id, bω, cω, dω}, f ∈ F}, which is said pre-reduced. Note
that any reduced representative word in Γω has this form.

Any such word can be rewritten w = ka1k2k
a
3k4 . . . kra

i3 or w = k1k
a
2 . . . kra

i4 ,
where ij ∈ {0, 1}. Note also that k = ϕfvω = (uv(ω0), ϕfvσω) = (uv(ω0), k) and k

a =
(k, uv(ω0)) and remind uv(ω0) ∈ {id, a}. This permits to rewrite w = (w0, w1)σ(w)
via the wreath product embedding, and w0, w1 appear as products of the type w0 =
aε1k2a

ε3k4 . . . kr and w1 = k1a
ε2 . . . aεr for εj ∈ {0, 1}. Now reduce w0, w1 to obtain

pre-reduced words in Sσω, by using the rule kia
0ki+1 = kiki+1 = ϕfiviϕfi+1

vi+1 =
ϕ(fifi+1)(vivi+1).

The rewritting process associates to w this representation w = (w0, w1)σ(w)
where σ(w) is the image of w in the quotient group S2 acting at the root.

The process can be iterated, which provides for any level p a representation w =
(w1, . . . , w2p)σp(w) with wi pre-reduced words in Sσpω and σp(w) ∈ Aut(T2(p)) =
S2 ≀ · · · ≀ S2 with p factors describes the action of w on the subtree T2(p) consisting
of the first p levels.

Definition 3.2. Given a pre-reduced word w in Sω, define T (w), called minimal
tree of w, to be the minimal regular rooted subtree of T such that for any leaf z in
∂T (w), one has |wz|pr ≤ 1 for the word wz obtained by iterated rewritting process,
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T (w) σ∅

σv σv

aεz σv wz aεz

wz aεz

∂T2 . . . . . . . . . . . . ϕ(x) . . . . . . . . . . . . ϕ(x) . . .

Figure 1. Description of the action of a word w via the minimal tree T (w)

where |w|pr is the number of factors ki = ϕfivi in a pre-reduced word wz. Remind
that a subtree T is rooted if it contains the root and regular if any vertex in T either
has its two descendants in T or none of them. Note that the leaves of ∂T (w) have

depth at most log2 |w| because w0, w1 have length ≤ |w|+1
2

.

The tree T (w) allows a nice description of the action of a word w in Γω on
T . Indeed, the group element γ =Γω w is described by the following data. First
the minimal tree T (w), secondly the permutations σv ∈ S2 describing the action
at vertex v in the interior of T (w) and third the short words wz = aεzϕfzvza

δz for
z ∈ ∂T (w). The latter can be refined in the tree action aεzvza

δz as an automorphism
of Tz the subtree issued from the vertex z and the boundary function ϕ(x) = idF
for all x ∈ ∂Tz \ {zεz(1)ρ} and ϕ(zεz(1)ρ) = fz.

Call z ∈ ∂T (w) an active leaf if |wz|pr = 1, an inactive leaf if |wz|pr = 0, denote
S(w) the set of active leaves of w, and s(w) = #S(w) its size. Mind that if z is
inactive then wz = aεz ∈ S2 is just a permutation. Note also that regarding the
rules of rewritting process |ϕidF |pr = 1 so that an active leaf does not necessarily act
on the tree, nor its boundary (see figure 1).

However, it appears from the description above that the support of ϕ : X → F
associated to w is included in {zεz(1)ρ|z is an active leaf}. Call this set the support
a priori of ϕ, denoted suppap(ϕ). Note that for w = ai1ϕf1v1a . . . aϕfrvra

i2 , if i1, i2, vj
are kept fixed and (f1, . . . , fr) are taking all possible values, then any function with
support included in suppap(ϕ) can be obtained. In particular, the support a priori of
the function ϕ for the word w depends only on the image in the quotient Γω → Gω,
w 7→ g = ai1v1a . . . avra

i2 .

Remark 3.3. In order to clarify the notion of support a priori, let us introduce a
notion associated to the word combinatorics of the rewritting process of a fixed word
w. For z an active leaf of T (w), the rewritting process provides fz as a product of
terms f z′

i in wz′ (where z
′ is the first ascendant of z), which are themselves products

of terms f z′′

j in wz′′, etc. so eventually fz is a product of terms (fj)j∈J(z) for a subset
J(z) ⊂ {1, . . . , r}. Note that in this situation:

⊔

z∈S(w) J(z) = {1, . . . , r}.
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More generally, if y is a vertex of T , the rewritting process of w provides wy =

ai
y
1ϕfy

1
vy1a . . . aϕfy

ry
vyy rai

y
2 , and each factor f y

i is obtained as an ordered product:

f y
i =

∏

j∈I(y,i)
f y′

j ,(6)

where y′ is the first ascendant of y, and ⊔I(y, i) = {1, . . . , ry′} where the disjoint
union runs over all direct descendants y of y′ and i ∈ {1, . . . , ry}.

Now the graph with vertex set (f y
i )y∈T,i∈{1,...,ry} and edges pairs of elements ap-

pearing on different sides of all possible products (6) is a forest, called the ascendance
forest of w. It describes the combinatorics of the rewritting process of the word w.
It depends only on g = ai1v1a . . . avra

i2 . Precisely, this graph is a finite union of
trees rooted in fz for each z ∈ S(w) and with respective sets of leaves {fj|j ∈ J(z)}.
The ordered product fz =

∏

j∈J(z) fj shows that indeed, the function ϕ can take any

value at the point zεz(1)ρ.

Proposition 3.4. (Activity of a pre-reduced word) The activity s(w) of a pre-reduced
word w = ai1ϕf1v1a . . . aϕfrvra

i2 in Γω, Sω, which counts equivalently

(1) the size of the set S(w) of active leaves in the minimal tree T (w),
(2) the number of components (i.e. trees) in the ascendance forest of w,
(3) the size of the support a priori suppap(ϕ),
(4) the size of the inverted orbit O(g−1) of the word g−1 in the sense of [BE],

depends only on the word w = ai1v1a . . . avra
i2 in Gω and satisfies under rewritting

process w = (w0, w1)σ(w), with w0, w1 in Sσω:

s(w) = s(w0) + s(w1).

Also there exists a constant C depending only on #F such that:

#{γ ∈ Γω|∃w =Γω γ, s(w) ≤ s} ≤ Cs.

Proof. The equivalence of (1), (2) and (3), as well as the behavior of activity function
under rewritting process follow from the descriptions above. Proceed by induction
on r to show equivalence with (4). If w = ai1ϕf1v1a . . . aϕfrvra

i2 =F ≀Γ ϕg then
wϕfnvn = ϕ(g.ϕfn)gvn. The point g−1(1∞) is added to the support a priori of ϕ.
This shows suppap(ϕ) = {(ai1v1 . . . vkai2)−1(1∞)|k ≤ n} = O(g−1). Mind that the
inverse appears as a difference with [BE] notations, replacing gf by ϕg for elements
of F ≀G. Then ϕg = (g.f)g and g−1supp(f) = supp(ϕ).

There remains only to show that the number of elements described grows at most
exponentially fast with s(w). First check that 2s(w) ≥ #∂T (w) when s(w) ≥ 1, by
induction on s(w). If |w|pr = 1, then T (w) is just the root of T . Now if s(w) ≥ 2,
then s(w0), s(w1) ≥ 1 by pre-reduction of w, so that induction ensures 2s(wt) ≥
#∂T (wt), and the result follows from #∂T (w0)+#∂T (w1) ≥ #∂T (w) by construc-
tion of minimal trees. Now if s(w) ≤ s, the minimal tree T (w) has size ≤ 2s. There is
42s possibilities for T (w) (Catalan numbers), and then 2#interior(T (w)) ≤ 22s choices for
the interior permutations σv for interior vertices v and finally (22.4.#F )#∂T (w) ≤ C2s

choices for the boundary short words aεzϕfzvza
δz . �

Corollary 3.5. The relation between word activity and growth function is two-fold:
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(1) bΓω(r) ≥ #F s(w) for any |w| ≤ r.
(2) bΓω(r) ≤ Cmax{s(w)|r≥|w|}.

In particular, word activity governs the growth function.

Proof. Point (1) is clear from remark 3.3 and point (2) from proposition 3.4. �

4. Technics of estimation

4.1. Growth Lemma. The following lemma is used to estimate upper bounds on
the growth of activity hence on the growth of groups. It improves on previous
versions such as the Growth Theorem in [MP] and Lemma 4.3 in [BE] by keeping
track of the constants in terms of the bound on the sequence p(r) of variable depth
of recursion.

Lemma 4.1. Given η and a parameter λ ∈ [0, 1], set α = log(2)
log(2)−λ log(η)

, so that α

satisfies 2 =
(

2
ηλ

)α

.

Let ∆ : N → N be a function such that for any r there exists q(r) ≤ p(r) and
l1, . . . , l2p(r) integers such that, for a constant C:

(1) l1 + · · ·+ l2p(r) ≤ ηq(r)r + 2pC,
(2) ∆(r) ≤ ∆(l1) + · · ·+∆(l2p(r)),

(3) q(r)
p(r)

≥ λ.

Suppose moreover that p(r) ≤ P is bounded. Then ∆(r) ≤ Lrα for some constant
L = L(C, P ).

Assume given a trivial bound ∆(r) ≤ Kr. Then L can be chosen L = AP for A
depending only on C and K.

Proof. Choose R0 big, to be determined later. Choose R ≥ R0 large enough so that
the function:

∆∗∗(r) =

{ (

r − r
1
2

)α

if r ≥ R,

1 + r
R
(∆∗∗(R)− 1) if r ≤ R,

is concave (it is also non decreasing). Choose M large enough so that for all r ≥ M ,
ηq(r)

2p(r)
r ≥ R, and let L ≥ 1 be large enough so that ∆∗(r) = L∆∗∗(r) ≥ ∆(r) for all

r ≤ M . Let r > M , there exists p(r), q(r), li, with ∆(li) ≤ ∆∗(li) by induction, and
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using successively (2), induction, concavity of ∆∗, (1) and the choice of M :

∆(r) ≤ ∆(l1) + · · ·+∆(l2p)

≤ ∆∗(l1) + · · ·+∆∗(l2p)

≤ 2p∆∗
(

1

2p
(l1 + · · ·+ l2p)

)

≤ 2p∆∗
(

1

2p
(ηqr + 2pC)

)

= 2pL

((

η
q
p

2

)p

r + C −
(

ηq

2p
r + C

)
1
2

)α

,

= L

((

2
1
α
η

q
p

2

)p

r + 2
p
αC − 2

p
α

(

ηq

2p
r + C

)
1
2

)α

,

Now q
p
≥ λ ensures

(

2
1
α
η
q
p

2

)p

≤ 1, so:

∆(r) ≤ L

(

r + 2
p
αC − 2

p
α

(

ηq

2p
r + C

)
1
2

)α

≤ L
(

r − r
1
2

)α

= ∆∗(r).

The last inequality holds when r is big enough so that:

2
p
α

(

ηq

2p
r + C

)
1
2

− 2
p
αC ≥ r

1
2 .

Observe that 2
ηλ

(

η
q
p

2

)
1
2

≥ √
2η > 1 so the latter is true when:

(
√

2η)
p
2 r

1
2 ≥ r

1
2 + 2

p
αC,

which holds when r ≥ aP0 = R0 = 2
2p
α C2

(
√
2η

p
2 −1)2

with a constant a0 depending only on

C. For P big, R = R0 and so M =
(

2
η

)P

R0 =
(

2
η
a0

)P

. It is sufficient to take

L∆∗∗(M) ≥ KM so L ≥ K
(

2
η
a0

)P

. �

4.2. Localization. The asymptotic behavior of the growth of Γω depends on the
asymptotic of ω. On the other hand, the description of a ball of a given radius in Γω

requires only some first terms of ω. The following lemma of localization is helpful
to study growth of groups Γω for non periodic sequences ω.

Lemma 4.2. Suppose that the sequence ω is not asymptotically constant, then the
ball BΓω(r) of radius r for the word norm with respect to the generating set Sω =
{a}⊔{ϕfv|v ∈ {idGω , bω, cω, dω}, f ∈ F} depends only on ω0ω1 . . . ωk for k = log2(r).
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The Cayley graph Cay(Γ, S) of a group Γ with generating set S is the colored
graph with vertices γ in Γ and edges (γ, γs) of color s in S. The ball BΓ(r) of radius
r is the subgraph obtained by restriction to vertices and ends of edges such that
|γ| ≤ r for the word norm for S.

Proof. The ball Bω(1) of Γω for the generating set Sω is independent of ω among
sequences that are not constant, it consists of the Cayley graph Cay(F × V, F × V )
together with an edge from the neutral element leading to the vertex a. By proposi-
tion 3.1, the ball BΓω(r) can be described using BΓσω(

r+1
2
) and the wreath product

recursion (2), i.e. ω0. Indeed, an element γ admits a reduced representative word
w = ai1k1ak2 . . . akr/2a

i2 and so γ = (γ0, γ1)ε
s with |γ0|, |γ1| ≤ r+1

2
by rewritting

process. By iteration, BΓω(r) is described by BΓ
σkω

( r
2k

+ 1) and ω0 . . . ωk. �

Remark 4.3. When ω = 0∞ is constant, the generator dω acts trivially on the rooted
tree T , hence is identity, so that the Klein group V degenerates into a group S2,
and Gω = 〈a, b0∞ |a2 = b2 = id〉 = D∞ is dihedral infinite. However, the whole
sequence ω is required to obtain this information. The group G̃0∞ obtained by
“finite information” (concretely as a limit group of G0k(012)∞ for instance) is in fact

the group G̃0∞ ≃ S2 ≀X G0∞ = 〈d0∞〉 ≀X 〈a, b0∞〉, which is metabelien of exponential
growth. It played a crucial role in Grigorchuk’s construction of antichains of growth
functions, cf. section 6 in [Gri1].

4.3. Asymptotic growth. Opposed to localization, the asymptotic behavior of the
growth depends only on the asymptotic of ω.

Proposition 4.4. For generating sets Sω = {a} ⊔ {ϕfv|v ∈ {id, bω, cω, dω}, f ∈ F},
the growth function of Γω = F ≀X Gω satisfies for all r:

bΓσω(
r − 1

2
) ≤ bΓω(r) ≤ 2bΓσω(

r + 1

2
)2.

Also by iteration:

bΓ
σkω

(
r

2k
− 1) ≤ bΓω(r) ≤ 22

k

bΓ
σkω

(
r

2k
+ 1)2

k

.

Proof. Let γ = ϕg belong to BΓω(r). It admits a minimal representative word
w =Γω γ of length r, which is uniquely described after rewritting process as w =
(w0, w1)σ(w) with |w0|, |w1| ≤ r+1

2
. Conclude that γ is determined by two elements

γ0, γ1 in BΓσω(
r+1
2
) and a permutation σ(w) in S2, which proves the upper bound.

Suppose ω0 6= 1 and let γ0 belong to BΓσω(
r−1
2
). It admits a minimal represen-

tative word w0 = ai1k1ak2a . . . akla
i2 of length ≤ r−1

2
. Set w = bωk̄

a
1bωk̄

a
2 . . . bωk̄

a
l b

i2
ω

if i1 = 1 and w = k̄1b
a
ωk̄2b

a
ω . . . b

a
ωk̄lb

i2a
ω if i1 = 0 of length ≤ r, where k̄j = ϕfjv

j
ω

for kj = ϕfjv
j
σω. Proposition 3.1 and relations (2) from section 2.1 guarantee that

w = (w0, w1)σ(w) for some w1, σ(w). Now if w =Γω w
′, then w0 =Γσω w

′
0, so that

BΓσω(
r−1
2
) injects into BΓω(r). (Note that when ω0 = 1, the same computation

works if bω is replaced by dω.) �
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5. Activity and growth

5.1. Activity of some words and lower bound on growth. Proposition 4.7 in
[BE] generalizes as:

Proposition 5.1. Denote:

A0 =





2 0 1
0 2 1
0 0 1



 , A1 =





2 1 0
0 1 0
0 1 2



 , A2 =





1 0 0
1 2 0
1 0 2



 .

There is C > 0 such that for any k, there is a word wk in Γω, Sω such that s(wk) ≥ 2k

and |wk| ≤ C||Aω0 . . . Aωk
||.

Proof. Consider the subsemigroup Ω′
ω = {abω, acω, adω}∗ ⊂ Ωω, and define the pull

back substitution ζ : Ω′
σω → Ω′

ω by:

ζ(abσω) = abωabω ζ(acσω) = acωacω ζ(adσω) = abωadωacω if ω0 = 0,
ζ(abσω) = abωabω ζ(acσω) = adωacωabω ζ(adσω) = adωadω if ω0 = 1,
ζ(abσω) = acωabωadω ζ(acσω) = acωacω ζ(adσω) = adωadω if ω0 = 2.

Such a pull back substitution is designed so that ζ(au) = (ua, au) when au is apre-
reduced word containing an even number of v’s (where v = d if ω0 = 0, v = c if
ω0 = 1 and v = b if ω0 = 2). Indeed, the following relations hold (take ω0 = 0,
similar otherwise):

ζ(ab) = abab = (ba, ab), baba = (ab, ba),
ζ(ac) = acac = (ca, ac), caca = (ac, ca),
ζ(ad) = abadac = (d, ada)a, badaca = (ada, d)a.

The pull back of vσω furnishes vω on both components of the wreath product. The
a’s behave conveniently under the parity condition.

Given a word w0 = au0 in Ω′
σkω, define by induction ζ(auk−1) = auk = wk ∈ Ω′

ω.
The initial word u0 can be chosen among the generators {bσkω, cσkω, dσkω} so that
ζ(au0) = avav for another generator v of Gσk−1ω, so that ζ(auk) always has an even
number of v’s, and the inverted orbit of auk can be studied by induction via:

ζ(auk−1) = auk = (uk−1a, auk−1) and uka = (auk−1, uk−1a).

Proposition 3.4 now ensures that:

s(auk) ≥ s(auk−1) + s(uk−1a) and s(uka) ≥ s(uk−1a) + s(auk−1),

which is integrated in s(auk) ≥ 2k.

To estimate the length of wk = ζ(wk−1), it is sufficient to count the numbers
|w|bω , |w|cω , |w|dω of generators bω, cω, dω appearing in w, since the total length is
controlled by |w| ≤ 2(|w|bω + |w|cω + |w|dω). The construction of the pull back
substitution ζ provides the relations:

Aω0





|wk−1|bσω

|wk−1|cσω

|wk−1|dσω



 =





|wk|bω
|wk|cω
|wk|dω



 ,
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for the matrices A0, A1, A2, and eventually by induction:

Aω0Aω1 . . . Aωk





|w0|b
σkω

|w0|c
σkω

|w0|d
σkω



 =





|wk|bω
|wk|cω
|wk|dω



 ,

so that |wk| ≤ C||Aω0 . . . Aωk
||. �

The matrices A0, A1, A2 are cyclic conjugates A1 = CA0C
−1 and A2 = C−1A0C =

CA1C
−1, so that Ak1

0 A
k2
1 A

k3
2 · · · = Ak1

0 CA
k2
0 CA

k3
0 . . . with

C =





0 1 0
0 0 1
1 0 0



 , A0C =





1 2 0
1 0 2
1 0 0



 .

The matrix A0C has caracteristic polynomial X3 −X2 − 2X − 4 with positive real
root 2

η
, and two complex conjugate roots of smaller absolute value, hence spectral

radius ρ(A0C) =
2
η
. (Remind that η is the positive root of X3 +X2 +X − 2.)

Examples 5.2. (1) For ω = (012)∞, the spectral radius theorem gives:

||Aω0 . . . Aωk
|| ≤ ||(A0C)

k+1|| ≤ Cρ(A0C)
k = C

(

2

η

)k

.

(2) For other periodic sequences, similar bounds are obtained, as for instance
ω = (001122)∞, then:

||Aω0 . . . Aωk
|| ≤ ||(A2

0C)
k+1
2 || ≤ Cρ(A2

0C)
k
2 ,

where the spectral radius ρ(A2
0) ≈ 5.63 is the positive root of X3 − 3X2 −

12X − 16.

Such estimates for periodic sequences are not usually sharp enough. The following
lemma is useful for the present purpose:

Lemma 5.3. Let ω = 0m1(012)n10m2(012)n2 . . . , with mi, ni → ∞. There exists a

constant C, such that for every ε > 0 and k =
∑j

i=1mi + 3ni big enough:

||Aω0 . . . Aωk
|| ≤ Cεkρ(A0)

∑
miρ(A0C)

3
∑

ni = Cεk2
∑

mi

(

2

η

)3
∑

ni

.

Proof. By the spectral radius theorem, there exists C such that ||Am
0 || ≤ Cρ(A0)

m

and ||(A0C)
3n|| ≤ Cρ(A0C)

3n, so:

||Aω0 . . . Aωk
|| ≤ ||Am1

0 (A0C)
3n1Am2

0 (A0C)
3n2 . . . ||

≤ ||Am1
0 ||.||(A0C)

3n1||.||Am2
0 ||.||(A0C)

3n2 || . . .
≤ Cjρ(A0)

∑j
i=1 miρ(A0C)

3
∑j

i=1 ni,

where j = o(k) since mi, ni → ∞. �

Note that if mi, ni are of the order log i, then j ≈ k
log k

, and if mi, ni are of the

order iθ, then j ≈ k
1

θ+1 .
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5.2. Activity of all words and upper bound on growth. Say a sequence ω =
ω0ω1ω2 . . . in {0, 1, 2}N is rotating if ωi+1 ∈ {ωi, ωi+1} mod 3 for all i. Remind that
η is the positive root of X3+X2+X − 2. Adapting [Bar1] to rotating sequences ω,
define a length on Gω by assigning weights to the generating set 〈a, bω, cω, dω〉. Set
||a|| = 1− η3 and:

if ω0 = 0, ||bω|| = η3, ||cω|| = 1− η2, ||dω|| = 1− η,
if ω0 = 1, ||bω|| = 1− η2, ||cω|| = 1− η, ||dω|| = η3,
if ω0 = 2, ||bω|| = 1− η, ||cω|| = η3, ||dω|| = 1− η2.

This defines a length on Gω for which the minimal representative words are pre-
reduced (η is chosen so that this is the case, see lemma 4.1 in [Bar1]), which is
obviously equivalent to the usual word length 1

C
|w| ≤ ||w|| ≤ C|w|, and designed so

that if ω1 = ω0 + 1, then:

εb(ω0)||a||+ ||bσω|| = η(||a||+ ||bω||),
εc(ω0)||a||+ ||cσω|| = η(||a||+ ||cω||),
εd(ω0)||a||+ ||dσω|| = η(||a||+ ||dω||),

where: εb





0
1
2



 =





1
1
0



 , εc





0
1
2



 =





1
0
1



 , εd





0
1
2



 =





0
1
1



 , and if ω0 =

ω1, then the factor η on the right-hand sides disappears.

This length on Gω can be extended to a function on the set of words in the
generating set 〈Sω〉 of Γω by ||ϕfv|| = ||v|| if v ∈ {bω, cω, dω} and ||ϕf id|| = 0. Note
that even though ||w|| is not a length on Γω it is still equivalent to the length of pre-
reduced words, i.e. 1

C
|w| ≤ ||w|| ≤ C|w|, because if w = ai1ϕf1v1aϕf2v2 . . . aϕfrvra

i2 ,
then ||w|| = ||w|| for w = ai1v1av2 . . . avra

i2 , which is bilipschitz equivalent to r.

The following statement generalizes Lemma 4.2 in [BE].

Lemma 5.4. Let w be a pre-reduced word of Γω, Sω with rewritting process giving
w = (w0, w1)ε

s, then:

||w0||+ ||w1|| ≤ ηq(ω0,ω1)||w||+ C,

where C = η||a||, q(ω0, ω1) = 0 if ω1 = ω0, q(ω0, ω1) = 1 if ω1 = ω0 + 1 and the
left-handside lengths are in Γσω, the right-hand side one in Γω.

Proof. The inequalities for w = (w0, w1)σ(w) in Gω and Gσω are obvious by con-
struction of the length ||.||, i.e. by choice of η. They still apply to pre-reduced words
in Γω and Γσω . �

In order to estimate the growth function from above, the word activity function

sω(r) = max{s(w)|w ∈ (Γω, Sω), |w| ≤ r}
will be usefull. However, it is smoother to estimate first the bilipschitz equivalent
auxiliary

∆ω(r) = max{s(w)|w is pre-reduced, ||w|| ≤ r}.
Fact 5.5. For any r, there exists l0, l1 integers such that:
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(1) ∆ω(r) ≤ ∆σω(l0) + ∆σω(l1), and
(2) l0 + l1 ≤ ηq(ω0,ω1)r + C.

By induction, there exists l1, . . . , l2p integers such that:

(1) ∆ω(r) ≤ ∆σpω(l1) + · · ·+∆σpω(l2p), and
(2) l1 + · · · + l2p ≤ ηq(ω0,...,ωp)r + 2p+1C, where q(ω0, . . . , ωp) is the number of i

such that ωi+1 = ωi + 1 mod 2.

Proof. The maximum is realized for a certain word w, for which the rewritting
process furnishes w = (w0, w1)σ(w) with l0 = ||w0|| and l1 = ||w1|| such that
l0 + l1 ≤ ηq(ω0,ω1)||w||+ C by lemma 5.4. Thus:

∆ω(r) = s(w) = s(w0) + s(w1) ≤ ∆σω(l0) + ∆σω(l1).

�

Proposition 5.6. Suppose ω is such that for all i, there exists p(i) ≤ P such that

q(ωi, . . . , ωi+p(i)) = q(i) and q(i)
p(i)

≥ λ, then:

log bΓω(r) ≤ AP rα, for α =
log(2)

log(2)− λ log(η)
.

In particular, if ω is p-periodic and q(ω0, . . . , ωp) = q, then log bΓω(r) ≤ Lrα for

α = log(2)
log(2)− q

p
log(η)

.

Proof. Set ∆(r) = sup{∆σpω(r)|p ∈ N}. Fact 5.5 provides the existence of l1+ · · ·+
l2p ≤ ηq(ω0,...,ωp)r + 2pC such that ∆(r) ≤ ∆(l1) + · · ·+∆(l2p), and so by lemma 4.1
there is a constant A such that ∆(r) ≤ AP rα, so that sω(r) ≤ AP rα (mind that
there is a trivial bound ∆(r) ≤ Kr because the activity is bounded by the word
length). Now corollary 3.5 shows log bΓω(r) ≤ AP rα. �

6. Precise growth estimates

The particular case of theorem 1.1 can now be derived. Recall that α0 is such

that 2 =
(

2
η

)α0

.

Theorem 6.1. For any α ∈ [α0, 1], there exists a sequence ω(α) such that α(Γω(α)) =
α, i.e.

lim
log log bΓω(α)

(r)

log r
= α.

Proof. Given α, take λ in [0, 1] such that 2 = ( 2
ηλ
)α. Consider a sequence of the form

ω = 0m1(012)n10m2(012)n2 . . . . Denote the ith period pi = mi+3ni and qi = 3ni the
number of steps of rotation of ω, and assume both tend to infinity. Suppose moreover
that qi

pi
≥ λ for each i and qi

pi
→ λ, so that

∑j
i=1 pi = kj and

∑j
i=1 qi = λkj + o(kj).
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Lemma 4.2 of localization allows to use proposition 5.6 for P depending on the
scale r. Indeed, bΓω(r) depends only on ω0, . . . , ωk for k = log2(r), for which pi ≤
P (k), so that:

log bΓω(r) ≤ AP (k)rα ≤ rα+ε,

as soon as P (k) ≤ ε logA(r). In particular, if ω is chosen such that P (k) =
o(log(r)) = o(k), the required upper bound holds: α(Γω) ≤ α.

Concerning lower estimates, the word wkj introduced in proposition 5.1 has length
bounded by (lemma 5.3):

|wkj | ≤ Cε′kj
2
∑j

i=1 pi

η
∑j

i=1 qi
≤ C2ε′kj

(

2

ηλ

)kj

≤
(

2

ηλ

)kj(1+ε)

.

Now lemma 3.5 ensures, for rj =
(

2
ηλ

)kj(1+ε)

:

r
α

1+ε

j = 2kj ≤ s(wkj) ≤ log bΓω(|wkj |) ≤ log bΓω

(

(

2

ηλ

)(1+ε)kj
)

= log bΓω(rj).

Interpolating for rj ≤ r ≤ rj+1 gives:

log b(r) ≥ log b(rj) ≥ r
α

1+ε

j = r
α

1+ε

j+1

(

2

ηλ

)−αpj

≥ r
α

1+ε

(

2

ηλ

)−αpj

≥ rα−2ε,

where the last inequality holds for large r since pj+1 ≤ P (k) = o(k) = o(log r). As
ε is arbitrary, α(Γω) ≥ α for any such sequence ω. �

Remark 6.2. Obviously, the computation of the exact growth exponent α(G) = α
does not imply that bG(r) ≃ er

α

. The precise estimates obtained with the proof
above are (for rj ≤ r ≤ rj+1):

C−(j+pj+e(j))rα ≤ log bω(r) ≤ rαApj+1,

where e(j) = (
∑j

i=1 qi)− λkj = o(j) is the error on the rationnal approximation of

λ by greater values. Taking pi of the order log i, and thus j of the order log r
log log r

, one
obtains for some A:

rα−
A

log log r ≤ log bω(r) ≤ rα+
A log log r

log r ,

and taking pi of the order iθ for 0 < θ < 1, thus j of order (log r)
1

θ+1 , one obtains:

rα−A(log r)
−

θ
θ+1 ≤ log bω(r) ≤ rα+A(log r)

−
1

θ+1
.

7. Oscillation phenomena

7.1. Groups with oscillating logarithmic growth exponents. The oscillation
of logarithmic exponents of growth function is the phenomenon that underlies the
construction of antichains of growth function in section 7 of [Gri1] and of “fast
intermediate” growth in [Ers3]. It was studied for its own interest in the second
chapter of [Bri]. Theorem 6.1 allows a better understanding.
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Theorem 7.1. For any α ≤ β ∈ [α0, 1], there exists a sequence ω(α, β) such that
α(Γω(α,β)) = α and α(Γω(α,β)) = β, i.e.

lim inf
log log bΓω(α,β)

(r)

log r
= α and lim sup

log log bΓω(α,β)
(r)

log r
= β.

To ease notations, bΓω(r) = bω(r) from now on.

Proof. Take ω(α, β) = ω(α)|0...m1
ω(β)|m1+1...n1

ω(α)|n1+1...m2
ω(β)|m2+1...n2

. . . for some
sequences mi, ni tending to infinity. Such a choice ensures that:

α ≤ α(Γω(α,β)) and α(Γω(α,β)) ≤ β.

Ifmi, ni tend to infinity sufficiently fast, these inequalities become equalities. Indeed,
take εi → 0, and construct ri, r

′
i such that:

log log b(ri)

log ri
≤ α + εi and

log log b(r′i)

log r′i
≥ β − εi.

By localization 4.2, left inequality holds for all ω|0...mi
= ω(α, β)|0...mi

and right
inequality for all ω|0...ni

= ω(α, β)|0...ni
with log2 ri = mi and log2 r

′
i = ni.

Assume by induction that mj , nj are constructed for j ≤ i and construct mi+1 =
log ri+1. Take ω′ = ω(α, β)|0...ni

ω(α)|ni+1.... By proposition 4.4 on asymptotic
growth:

bω′(r) ≤ 22
ni bσniω′(

r

2ni
+ 1)2

ni = 22
ni bσniω(α)(

r

2ni
+ 1)2

ni ≤ 22
ni bω(α)(r + 2ni+1)2

ni ,

so that:

log log bω′(r)

log r
≤ log log bω(α)(r + 2ni+1) + ni log 2

log r
≃ log log bω(α)(r)

log r
−→r→∞ α,

and there exists ri+1 as required. Set mi+1 = log2(ri+1).

Now construct ni+1 = log2(r
′
i+1). Take ω′′ = ω(α, β)|0...mi+1

ω(β)|mi+1+1.... Again
proposition 4.4:

bω′′(r) ≥ bσmi+1ω′′(
r

2mi+1
− 1) = bσmi+1ω(β)(

r

2mi+1
− 1) ≥ 1

2
bω(β)(r − 2mi+1+1)

1

2
mi+1 ,

so that:
log log bω′

i+1
(r)

log r
≥ log log bω(β)(r − 2mi+1+1)−mi+1 log 2

log r
−→r→∞ β,

and there exists r′i+1 and ni+1 = log2 r
′
i+1. �

7.2. Antichains of growth functions. The following result is a slight improve-
ment of Theorem 7.2 in [Gri1], which shows the existence of antichains of interme-
diate growth functions accumulating to er.

Theorem 7.2. For any α0 ≤ α < β ≤ 1, there exists uncountably many groups Γω

with pairwise non comparable growth functions (such a collection of groups is called
an antichain) satisfying α(Γω) = α and α(Γω) = β.

Moreover, if β < β ′ ≤ 1, such an antichain can be chosen so that bω(r) ≤ Cer
β′

for a constant C depending only on β, β ′ and not on ω.
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Lemma 7.3. Given α0 ≤ α < β ≤ 1, there exists an application ω from the set
F(N, {α, β}) of functions f : N → {α, β} to the Cantor space of infinite sequences
{0, 1, 2}N, and there exists sequences ri → ∞ and β−α

2
> εi → 0 such that:

(1) α(Γω(f)) = α and α(Γω(f)) = β,

(2)
log log bω(f)(ri)

log ri
≥ β − εi if f(i) = β,

(3)
log log bω(f)(ri)

log ri
≤ α + εi if f(i) = α.

Proof of theorem 7.2. There are uncountably many functions ξ : N × N → {α, β}
such that ξ(x, y) = α implies ξ(x, y+1) = β and ξ(x, y) = β implies ξ(x, y+1) = α.
Any bijection ϕ : N → N×N, provides an injection ξ 7→ fξ by fξ(i) = ξ ◦ϕ(i). Now
given ξ1 6= ξ2, if fξ1(i) < fξ2(i), there exists j > i such that fξ2(j) < fξ1(j). Lemma
7.3 ensures that bω(fξ1 )(r) and bω(fξ2 )(r) are not comparable. �

Proof of lemma 7.3. The proof of this lemma is a variation on the proof of theorem
7.1. Pick:

ω(f) = ω(f(0))|0...m0
ω(f(1))|m0+1...m1

ω(f(2))|m1+1...m2
. . .

for a sequence mi = log2(ri) increasing sufficiently fast. Mind that this guarantees a

uniform upper bound
log log bω(f)(r)

log r
≤ β+ε = β ′ for any ε and r big enough (depending

on ε).

Assume by induction mj and rj constructed for j ≤ i and consider:

ω′ = ω(f(0))|0...m0
. . . ω(f(i))|mi−1+1...mi

ω(α)|mi+1...,

ω′′ = ω(f(0))|0...m0
. . . ω(f(i))|mi−1+1...mi

ω(β)|mi+1....

As above, proposition 4.4 on asymptotic growth provides:

bω′(r) ≤ 22
mi bω(α)(r + 2mi+1)2

mi ,

bω′′(r) ≥ 1

2
bω(β)(r − 2mi+1)

1

2mi+1 ,

so that there exists ri+1, independent of (f(0), . . . , f(i)), such that:

log log bω′(ri+1)

log ri+1
≤ α + εi,

log log bω′′(ri+1)

log ri+1

≥ β − εi,

and this is true for any sequence ω coinciding with ω′, ω′′ on the mi+1 = log2 ri+1

first values. �

Remark 7.4. The idea behind the proof of theorem 7.1, is that the asymptotic be-
havior of the growth function bω(r) of the group Γω depends only on the asymptotic
of the defining sequence ω, whereas locally a ball of given radius depends only on
some first terms of ω. This permits to produce scales at which the growth function
is essentially er

α

and others at which it is essentially er
β

, thus explaining oscillation
between this two behaviors. Of course, the process can be used to produce a variety
of different behaviors at different scales, for instance scales Si at which Γω seems
to have growth er

γi for countably many αi ∈ [α0, 1], intertwined with scales Sj at
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which Γω seems to have growth oscillating between er
αj

and er
βj
. The only point is

to allow enough “time” so that the behavior at scale Si or Sj becomes visible, i.e.
functions mi, ni in the proofs above increasing sufficiently fast.

8. Frequency of oscillations

This section aims at studying the frequency of oscillations for groups of the type
Γω. The main question is to maximize the frequency of oscillation between two given
bounds, or equivalently to minimize the period.

8.1. Group invariants associated to oscillation. Given α < β and a Lipschitz
function b : N → N, define the upper set U(α, β) and lower set L(α, β) of b for α, β
to be:

U(α, β) = {s ∈ N| log log b(s)
log s

≥ β} and L(α, β) = {t ∈ N| log log b(t)
log t

≤ α}.

Note that log log b(s)
log s

≥ β is equivalent to log b(s) ≥ sβ and log log b(t)
log t

≤ α is equivalent

to log b(t) ≤ tα.

Property 8.1. Let α < β and b : N → N be a Lipschitz function, then:

(1) L(α, β) ⊔ U(α, β) ⊂ N, and the inclusion is strict if both upper and lower
sets are infinite.

(2) Assume α′ < α < β < β ′ then:

L(α′, β) ⊂ L(α, β) and U(α, β ′) ⊂ U(α, β),

and the inclusions are strict if both upper and lower sets are infinite.

Note that when b(r) = bΓ(r) is the growth function of a finitely generated group
Γ such that α(Γ) < α < β < α(Γ), then both upper and lower sets are infinite.

Property (1) allows to decompose U =
⊔∞

j=0 Uj and L =
⊔∞

j=0 Lj such that:

(1) Ui, Li are non empty,
(2) for any s ∈ Ui, then s ≥ max∪j≤i−1Lj and s ≤ min∪j≥iLj ,
(3) for any t ∈ Li, then t ≥ max∪j≤iUj and t ≤ min∪j≥i+1Uj.

Call this decomposition alternating (see figure 2).

In order to study oscillation, set si = minUi, s
′
i = maxUi, ti = minLi and

t′i = maxLi. The upper pseudo period function u is the partially defined si+1 = u(t′i)
and the lower pseudo period function l is the partially defined ti = l(s′i). In order to
investigate how small these functions can be, define:

uα,β = inf{ν|∃io, ∀i ≥ io, si+1 ≤ (t′i)
ν} and lα,β = inf{λ|∃io, ∀i ≥ io, ti ≤ (s′i)

λ}.
Equivalently:

uα,β = lim sup
i→∞

log si+1

log t′i
and lα,β = lim sup

i→∞

log ti
log s′i

.

The following fact provides estimates on the pseudo period functions that any
growth function of infinite group must satisfy.



GROWTH BEHAVIORS IN THE RANGE e
rα

19

β

α

si s′i si+1 s′i+1ti t′i

Ui

Li

Ui+1 Ui+1

Figure 2. Upper and lower sets U(α, β) and L(α, β) seen by draw-

ing the curve f(r) = log log b(r)
log r

.

Fact 8.2. Consider α < β and a function b : N → N, then:

(1) if b(r) is submultiplicative, uα,β ≥ 1−α
1−β

> 1,

(2) if b(r) is increasing, lα,β ≥ β
α
> 1.

Proof. Suppose log b(t) ≤ tα. Submultiplicativity implies log b(kt) ≤ ktα, so that

log b(kt) ≥ (kt)β forces ktα ≥ (kt)β hence kt ≥ t
β−α
1−β

+1. Now suppose log b(s) ≥ sβ,
then log b(t) ≤ tα forces tα ≥ sβ. �

By property (2), given α′′ < α′ < β ′ < β ′′, one has uα′′,β′′ ≥ uα′,β′ and lα′′,β′′ ≥
lα′,β′. This permits the:

Definition 8.3. The upper pseudo period exponent u(α, β) and the lower pseudo
period exponent l(α, β) of a function b(r) are:

u(α, β) = lim
α′ → α+

β ′ → β−

uα′,β′ , and l(α, β) = lim
α′ → α+

β ′ → β−

lα′,β′.

Remind notation α′ → α+ (respectively β ′ → β−) for α′ → α and α′ > α (respec-
tively β ′ → β and β ′ < β).

This definition is appropriate because it permits to define u(α(Γ), α(Γ)) and
l(α(Γ), α(Γ)) associated to the growth function bΓ(r) even though the upper and
lower sets U(α(Γ), α(Γ)) and L(α(Γ), α(Γ)) may be empty. Also:

Proposition 8.4. The upper and lower pseudo period exponents u(α, β) and l(α, β)
are group invariants.

Proof. In order to show the exponents are not perturbed by change of generating
set, consider a function b′(r) such that there exists C with b( r

C
) ≤ b′(r) ≤ b(Cr).
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Then L(b′)(α′, β ′) = {t| log b′(t) ≤ tα
′} ⊂ {t| log b( t

C
) ≤ tα

′} = C{x| log b(x) ≤
Cα′

xα
′}. But given any α′′ > α′ and x large enough, one has Cα′

xα
′ ≤ xα

′′

, so that if
x large enough belongs to L(b′)(α′, β ′), then x belongs to CL(b)(α′′, β ′′). Similarly, for
any β ′′ < β ′, large enough y that belong to U (b′)(α′, β ′) also belong to 1

C
U (b)(α′′, β ′′).

This permits to deduce that there is a j such that:

log s
(b′)
i+1(α

′, β ′)

log t
′(b′)
i (α′, β ′)

≥
log s

(b)
j+1(α

′′, β ′′)− logC

log t
′(b)
j (α′′, β ′′) + logC

so that u
(b′)
α′,β′ ≥ u

(b)
α′′,β′′ for any α′ < α′′ < β ′′ < β ′, which implies u(b

′)(α, β) ≥
u(b)(α, β), and equality holds by symetry. Similar proof for l(α, β). �

Remark 8.5. Given α < β, one can similarly define the pseudo period exponent of
oscillations for a function b(r), by p(α, β) = lim pα′,β′ for pα′,β′ = lim sup log si+1

log si
, and

it is a group invariant for bΓ(r). However, it is not true a priori that replacing si by
ti, t

′
i or s

′
i would provide the same exponent.

8.2. Estimates on pseudo-period. Theorem 6.1 shows that for any γ ∈ [α0, 1]
there exists a group Γω(γ) such that:

1

Cε

rγ−ε ≤ log bω(γ)(r) ≤ Cεr
γ+ε,

where ε > 0 is arbitrary and Cε depends only on ε.

Suppose that log bω(t) = tα for some t. This fact depends only on (ωi)
m
i=0 for

m = log2 t by localization. Now consider the group Γω′ for the sequence ω′ =
ω0 . . . ωmω(γ)|m+1..., for some γ ≥ β > α. By proposition 4.4 on asymptotic growth,
one has:

log bω′(s) ≥ 1

2m
log bω(γ)(s− 2m+1 − log 2) ≥ 1

Cεt
(s− 2t)γ−ε,

so that for any β ′ < β and ε small enough:

min{s| log bω′(s) ≥ sβ
′} ≤ Cεt

1
γ−ε−β′ + o(t

1
γ−ε−β′ ).

Conversely suppose that log bω(s) = sβ for some s, which depends only on (ωi)
n
i=0

for n = log2 s, and consider the group Γω′′ for the sequence ω′′ = ω0 . . . ωnω(δ)|n+1...

for some δ ≤ α < β. As above, one has:

log bω′′(t) ≤ 2n(log bω(δ)(t + 2n+1) + log 2) ≤ Cεs(t + 2s)δ+ε,

so that for any α < α′ and ε small enough:

min{t| log bω′′(t) ≤ τα
′} ≤ Cεs

1
α′−δ−ε + o(s

1
α′−δ−ε ).

These two observations show the following (passing to the limits α′ → α, β ′ → β
and ε→ 0):

Proposition 8.6. Given α0 ≤ δ ≤ α < β ≤ γ ≤ 1, there exists a sequence

ω(α, β, γ, δ) = ω(δ)|0...m1ω(γ)|m1+1...n1ω(δ)|n1+1...m2ω(γ)|m2+1...n2 . . .
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such that the group Γω(α,β,γ,δ) satisfies:

u(α, β) ≤ 1

γ − β
and l(α, β) ≤ 1

α− δ
.

The choice of ω(α, β, γ, δ) guarantees α(Γω(α,β,γ,δ)) ≥ δ and α(Γω(α,β,γ,δ)) ≤ γ, but
these are probably strict inequalities.

Note that the construction of ω(α, β) in the proof of theorem 7.1 is a particular
instance of the above proposition with γ = β and δ = α. In this case, the upper
and lower pseudo period exponents are (a priori) infinite.

On the other hand, in order to minimize the upper and lower pseudo period
exponents for a fixed oscillation magnitude α < β, taking γ = 1 and δ = α0 gives
upper bounds (the lower bounds are trivial from fact 8.2):

1− α

1− β
≤ u(α, β) ≤ 1

1− β
and

β

α
≤ l(α, β) ≤ 1

α− α0
.

Since the estimates above are done for any t in L(α, β) and s in U(α, β), they
provide an upper bound for (any choice of definition in remark 8.5) pseudo period:

β(1− α)

α(1− β)
≤ p(α, β) ≤ 1

(1− β)(α− α0)
.

9. Comments and questions

9.1. Precise growth estimates. Theorem 6.1 provides the existence of many
groups with precise logarithmic growth exponents. However, it is not clear how
much their growth functions are regular. Indeed, the sequence ω(α) used to de-
fine Γω(α) has the form ω(α) = 0m1(012)n10m2(012)n2 . . . for some sequences mi, ni

tending to infinity (this permits to use lemma 5.3 to estimate the norm of a large
product of matrices). It is likely that the growth function bω(α)(r) oscillates around
er

α

with oscillations unseen by the logarithmic growth exponents.

It would be interesting to produce more regular growth functions, and in partic-
ular to know for which exponents α there is a group with precise growth function
bΓ(r) ≈ er

α

. Two directions seem interesting.

On the one hand, periodic sequences ω should be studied further. The technics
developped here provide some interesting estimates, as for instance (example 5.2 (2)
and proposition 5.6):

r0.8019 ≤ log b(001122)∞(r) ≤ r0.8684.

However, the specific norm defined in paragraph 5.2, which is very well suited for the
sequence ω = (012)∞, does not seem to be sufficient in general. Maybe considering
other norms (making full use of a given period, for instance (001122)) would provide
better upper estimates.

On the other hand, growth functions of random sequences ω would be interesting
to compute. A natural model is given by rotating sequences ωi+1 ∈ {ωi, ωi+1} with
probability p and 1−p respectively. The study of random product of matrices could
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give nice lower bounds via proposition 5.1, but on the other hand, an appropriate
version of the growth lemma 4.1 is needed.

Concerning the space of groups (Γω)ω∈Ω, it seems that the growth function is
minimal for the sequence (012)∞, but it is not proved. Also the growth function of
the group Gω might be quite different from that of Γω for a given sequence ω. For
instance Γ(01)∞ has exponential growth, whereas G(01)∞ has growth essentially e

r
log r

(see [Ers1]).

9.2. Oscillations. Groups with oscillating growth function appear by considering
different sequences ω at different scales, i.e. with highly non periodic sequences ω.
Is it true that oscillation does not occur if ω is periodic? In other terms, does the

sequence log log bΓ(r)
log r

converge for Γ = Γω with periodic ω, or for Γ an automata group?

The questions of amplitude and frequency naturally arise with the notion of os-
cillation. Theorem 7.1 provides a good description of amplitude (oscillation between
any two bounds α0 ≤ α < β ≤ 1), but is not satisfying regarding frequency, as the
upper and lower pseudo period exponents seem to be infinite. Conversely, in propo-
sition 8.6 the frequency is evaluated, but the exact amplitude is not known, though
one can believe the lower and upper logarithmic growth exponents of Γω(α,β,γ,δ) are
exactly α and β.

Submultiplicativity and increasing nature of the growth functions bΓ(r) impose
easy lower bounds on the pseudo period (fact 8.2). It is far from clear, especially
concerning the lower pseudo period, that these bounds are optimal. In other terms,
what are the values of the following functions of (α, β)?

u∞(α, β) = inf{uΓ(α, β)|Γ is a finitely generated group},
l∞(α, β) = inf{lΓ(α, β)|Γ is a finitely generated group},
p∞(α, β) = inf{pΓ(α, β)|Γ is a finitely generated group}.

Concerning the notion of period, is it true that the four definitions of pseudo period
exponents from remark 8.5 coincide for maximal frequency?
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