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ABSTRACT. For every a < 8 in a left neighborhood [ag, 1] of 1, a group G(«, §)
is constructed, the growth function of which satisfies lim sup loglogboa.s () _

logr
log logbg(a,ﬂ) (T‘) . . . .
—Togr 8. When o = 3, this provides an explicit uncountable

collection of groups with growth functions strictly comparable. On the other hand,
oscillation in the case a < 3 explains the existence of groups with non comparable
growth functions. Some period exponents associated to the frequency of oscillation
provide new group invariants.

«

and lim inf

1. INTRODUCTION

The growth function br ¢(r) = |S”| of a group I' with finite generating set S was
introduced by Milnor [Mil] in relation with Riemannian geometry. The class bp(r)
of brs(r) under the equivalence relation associated to the order f(r) < g(Cr) for
some C' (written f 3 g) is independant of the generating set S, so that br(r) is a
group invariant.

For many groups, e.g. those containing a free semigroup, the growth function
is exponential. However, the growth function of a nilpotent group I' is polynomial
br(r) ~ r?T) where d(T') = Y k.rank(I',/Tx41) is the algebraic degree of nilpotency
of I = Iy associated to the filtration 'y, = [I'y, I'] ([Bas], [Gui], [Wol]). Conversely,
Gromov proved that polynomial growth implies virtual nilpotency ([Gro], see also
[Kle] and [ST] for an explicit version applying to finite groups). This implies in
particular that polynomial growth functions are indexed by integers d(I') and any
two are always comparable for 3.

In the eighties, Grigorchuk has shown some groups have intermediate growth, i.e.
faster than polynomial and slower than exponential. In [Gril], he considers a family
indexed by a Cantor set {0,1,2} of groups G, acting on a binary rooted tree.
Many of these groups satisfy growth inequalities of the form e™ = bg_ (1) = e’ for
exponents % < a < 8 < 1. On the other hand, for some sequences w, the growth of
G, is “close to” e". Grigorchuk also proved the existence of uncountable antichains
of growth functions (i.e. collections of pairwise non comparable such functions).
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Recently, Bartholdi and Erschler have computed the intermediate growth func-
tions of some groups related to the group G2y~ (see [BE]). More precisely, for
Iy =Z/2Z1x G2y and 1 = Iy 0x Go12), there are explicit exponents oy, < 1
accumulating to 1, such that their growth functions satisfy br, (r) & e™".

The purpose of the present article is to draw a panorama of growth behaviors in
the range ¢’ . The two main points are that on the one hand there is a neighborhood
of 1 in which any « is the growth exponent of some group, raising an explicit
uncountable family of groups for which the growth functions are strictly comparable,
and on the other hand, there are groups the growth function of which oscillates
between two distinct exponents o < (3, which explains non comparison phenomena.
More precisely:

Theorem 1.1. Let n ~ 0.8105 be the real root of X3 + X? + X — 2 and oy =

bgg)%l%)gn ~ 0.7674. Then for any ap < a < B < 1, there exists a group G(«a, 3) such

that:

loglog be(a,p)(7) loglog bg(a,s) (1)

lim inf = « and lim sup = 0.
log r log r
In particular, there exists a group G(«) such that lim W = a.

The groups G(«, ) will be explicitely described as F'1x G,, for appropriate se-
quence w = w(a, ). Note that the group G(ap) is precisely the group Iy =
727 1x Goi2)~ considered in [BE]. Also a better study of oscillation phenom-
ena provides uncountable antichains of growth functions satisfying a uniform upper
bound e’ for any 8 > a.

In order to ease notation, adopt the following:

Definition 1.2. Given a finitely generated group G, the upper logarithmic growth
ezponent &(G) and the lower logarithmic growth exponent a(G) are real numbers in
0, 1] defined as:
loglogb loglogb
a(G) = timsup 1Y) 14 (G = tim in 1210806 ()
log r logr

In case of equality, call logarithmic growth exponent the number o(G) = @(G) =

a(G).

For submultiplicative functions, inequality b(Cr) < b(r)¢ implies:

loglog b(C'r) < log log b(r) N log C

logr —  logr logr’
so that the logarithmic growth exponents of groups are independent of the choice
of a particular representative br g(r), i.e. the choice of generating set. Note that
if bg(r) = €™, then a(G) = a but the converse is not true, as shown by functions
e’ 1°87)” for any value of p. In particular, the growth functions of the groups studied
here are not computed, but only their logarithmic growth exponents.

The article is structured as follows. Sections 2 and 3 are devoted to the description
of the involved groups I'y,, and in particular the notion of activity of a representa-
tive word. Section 4 presents the three main tools of estimation for growth. The
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activity of words is studied in section 5 to derive precise growth estimates, i.e. con-
struct groups with a given logarithmic growth exponent. Oscillation phenomena are
studied in sections 7 and 8, which permits to explain the existence of antichains of
growth functions. Some explicit estimates on the frequency of oscillation are given.
A few comments and some questions conclude the article.

Note that close results have been obtained, but not yet published, by Bartholdi
and Erschler.

2. THE GROUPS INVOLVED

2.1. Definition. Following Grigorchuk [Gril], associate to each given sequence w =

wowiws . .. in {0,1,2}Y a group G, of automorphism of a binary rooted tree T
generated by four elements G, = (a,by,c,,d,), defined via the wreath product
isomorphism:

(1) Aut(T) ~ Aut(T) 1 Sy = (Aut(T) x Aut(T)) x So,

where Sy acts on the product by permuting components. The generator a = (1,1)e,
where ¢ is non-identity in Ss, is independent of w and only acts at the root of T'.
The three other generators are defined recursively by:

(2) bw = (ub(w(])a bcrw)u Cw = (UC(WO)u Cow)u dw = (ud(w(])u dcrw)7
where o is the shift of sequence ow = wiws ... and:
0 a 0 a 0 id
B [ 1]=|a | w|1]|=i ]|, |1 |=]a
2 id 2 a 2 a

The group G, is defined by the sequence w which rules the embeddings G, —
Gyw 1Sy, The following relations are easily checked:

(4) a> =02 = =d> = bycud, = id.

In particular, the group generated by b, c,,d, is a Klein group V = S5 x Sy and
each of the four generators has order 2 (unless w is constant), so they generate
G, as a quotient semigroup of €, = {a,b,, c,,d,}*, the free semigroup of words
in the generators with concatenation as product. Also note that conjugating by a
exchanges the components on the two subtrees, in particular:

(5) aby@ = (Dgw, u"(wp)), acua = (Cou, u(wp)), adya = (dgy, u’(wp)).

Now following [BE], let p = 1 € 9T be the rightmost geodesic ray out of the
root of T'. Note that b, ¢, d, fix p independently of w. Denote X = pG,, the right
orbit of p under G,. The permutational wreath product of G, and another group
F over X is the group:

FMIFZXGMI(E)(F)NGW,

where Xx F' is the group of finitely supported functions ¢ : X — F, on which
G, acts on the left by (g.9)(x) = ¢(zg), and in particular the supports satisfy
supp(g.¢) = supp(p)g~t. The elements are denoted g for p € XxF and g € G.,.
The computation rule is (p191)(¢292) = (©1(91-92))(g192). Throughout the present
article, assume the group I’ is finite.
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As a generating set, use S, = {a} U {psv|v € {idg,, by, cu, du}, f € F}. Note
that pv = p, so [¢f,v] = idr, and the set {¢;v} generates a finite subgroup in I',,
which is abstractly isomorphic to F' x V.

2.2. A short history. The groups G, are commensurable with some groups intro-
duced by Aleshin -see [Ale], where automata techniques were used to solve Burnside’s
problem. The groups G,, and especially G(012)~ have been widely studied under the
impulse of Grigorchuk, especially since they provide the essentially only known ex-
emples of groups of intermediate growth ([Barl], [Bar2], [BS], [Bri], [Ersl], [Ers2],
[Ers3], [Gril], [Gri2], [MP], [Zuk]). In particular, the best known estimates on the
growth of G(gi2)~ are:

Theorem 2.1.

105207
€ N bG(om)oo (r)Ze

o0

The upper bound comes from [Barl] (see also [MP]) and the lower bound from
[Bri] (see also [Bar2], [Leo]). The estimation on the growth exponents of G, is
tightly related to the contraction of the length of reduced words w = (wg, w;) under
the wreath product decomposition (1). If for all reduced words, |wg|+ |w;] is a large
contraction of |w|, the upper growth exponent is small. If for all pairs of reduced
words, |w| is a small dilatation of |wg| + |w;]|, the lower growth exponent is big. As
it turns out, the study of dilatation of pair of words is delicate to handle, explaining
the large gap between the upper and lower exponents of G gi2)~.

In [BE], Bartholdi and Erschler have bypassed this problem, considering (among
others) the group F'1x G(p12)~, where I’ is any finite group, for which they prove:
Theorem 2.2. BE]

bFZXG(om)oo (T) ~e

In short, if the upper estimates still apply, the use of permutational wreath prod-
uct permits to obtain a good lower bound from small dilatation of some pairs of
words. The techniques developed in [BE] are not restricted to the specific sequence
w = (012)*, and can provide a good understanding of growth of T, for rotating
sequences w, as explained below. The construction of an appropriate sequence w(a)
or w(a, B) will be the key point to prove Theorem 1.1.

3. A DESCRIPTION OF THE GROUPS

This section aims at giving description of the group I'y, = F 1x G..

Lemma 3.1. The group I', = F 1x G, embeds cannonically into the finite permu-
tational wreath product Iy, 1 Sy. More precisely, the application ®:

Fw — Fcrcu ! S2

a — (L,1)a
vy — (u’(wo), Vow)
or = (1,05)

s an injective morphism of groups.
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Any v in ', is decomposed v = g, with ¢ € G, and ¢ : X — F. The
classical embedding G, < G, ! Sy provides a decomposition g = (go, g1)o. Also
the boundary of the tree can be decomposed into two components 01 = 0Ty U T}
with T; the tree descended from the first level vertex t. In particular, the orbit X
inherits this decomposition into X = Xy U X;. Set ¢, = ¢|x, the restriction of ¢ to
the subset X; of the orbit X. With these notations, the application ® is given by:

®(7) = (¢og0, P191)0 € T 1.5,
In order to prove the lemma, it is sufficient to check that ®(v7') = ®(7)®(v).

Proof. On the one hand, 77" = pg¢'q’ = ¢(g9.¢')g9" = ¥gg’, with ¢ = p(g.¢'). As
above set 1y = ¢|x,, and as 99" = (909, (o), 919,(1))00"; the embedding is:

() = (Y09095(0)» V19195(1)) 00"
On the other hand:

P(P(Y) = (w00, 191)0(2090, ©191)0"
(<P09090;(o)92r(0)7 @19190;(1)93(1))‘70'/
= (900(90-902(0))9092(0)7@1(91-%02(1))919;(1))00'
There remains to check v; = ¢ (9t-¢;(t))a and indeed for any y € X; ~ X:

Yiy) = Y(ty) = (p(g.¢")(ty) = o(ty)((9-¢")(ty)) = p(ty)¢'(ty.g)
= oty (a()(y-9:) = 0:(V) oy (Y-9:) = () (98- L0y (W)
O

The embedding v : I', — Ty, 1S5 can also be used at the word level. Let us
describe the rewriting process of a given word of the form w = a*kiak, . .. ak,a®,
for k; = @pv; in {psv|v € {id, by, ¢y, d,}, f € F}, which is said pre-reduced. Note
that any reduced representative word in I'y, has this form.

Any such word can be rewritten w = kSkokSky ... kya'® or w = kkS ... k.a™,
where i; € {0,1}. Note also that k = v, = (u”(wo), PfUow) = (1’ (wp), k) and k* =
(k,u”(wp)) and remind u"(wp) € {id,a}. This permits to rewrite w = (wp, w;)o(w)
via the wreath product embedding, and wg, w; appear as products of the type wg =
a® koaky ...k, and wy = kya®? ... a°" for ; € {0,1}. Now reduce wp, w; to obtain
pre-reduced words in S, by using the rule k;a’kiy1 = kikip1 = Cf VP Vigl =
P firr) (Vilis1)-

The rewritting process associates to w this representation w = (w,w;)o(w)
where o(w) is the image of w in the quotient group Sy acting at the root.

The process can be iterated, which provides for any level p a representation w =
(wy, ..., wp)o,(w) with w; pre-reduced words in S,r, and o,(w) € Aut(Tz(p)) =
Sy -+ 1Sy with p factors describes the action of w on the subtree T5(p) consisting
of the first p levels.

Definition 3.2. Given a pre-reduced word w in S, define T'(w), called minimal
tree of w, to be the minimal regular rooted subtree of T such that for any leaf z in
JT(w), one has |w,|, <1 for the word w, obtained by iterated rewritting process,
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FIGURE 1. Description of the action of a word w via the minimal tree T'(w)

where |w],, is the number of factors k; = ¢y,v; in a pre-reduced word w,. Remind
that a subtree T is rooted if it contains the root and regular if any vertex in 71" either
has its two descendants in 7" or none of them. Note that the leaves of 0T (w) have

depth at most log, |w| because wq, w; have length < ‘w'TH

The tree T'(w) allows a nice description of the action of a word w in I',, on
T. Indeed, the group element v =p_ w is described by the following data. First
the minimal tree T'(w), secondly the permutations o, € Sy describing the action
at vertex v in the interior of T'(w) and third the short words w, = a*p; v,a’ for
z € 9T (w). The latter can be refined in the tree action a®*v,a% as an automorphism
of T, the subtree issued from the vertex z and the boundary function ¢(z) = idp
for all x € OT,, \ {ze.(1)p} and ¢(ze.(1)p) = f..

Call z € 0T (w) an active leaf if |w,|, = 1, an inactive leaf if |w,|,. = 0, denote
S(w) the set of active leaves of w, and s(w) = #S(w) its size. Mind that if z is
inactive then w, = a®* € Sy is just a permutation. Note also that regarding the
rules of rewritting process |pa,|,» = 1 so that an active leaf does not necessarily act
on the tree, nor its boundary (see figure 1).

However, it appears from the description above that the support of ¢ : X — F
associated to w is included in {ze.(1)p|z is an active leaf}. Call this set the support
a prioriof p, denoted supp™ (). Note that for w = a™ ¢ via...apsv.a™,if iy, s, v;
are kept fixed and (fi, ..., f.) are taking all possible values, then any function with
support included in supp™(p) can be obtained. In particular, the support a priori of
the function ¢ for the word w depends only on the image in the quotient I', — G,
w i g =a'via...av.a?.

Remark 3.3. In order to clarify the notion of support a priori, let us introduce a
notion associated to the word combinatorics of the rewritting process of a fixed word
w. For z an active leaf of T'(w), the rewritting process provides f, as a product of
terms ff/ in w, (where 2 is the first ascendant of z), which are themselves products
of terms ff” in w.», etc. so eventually f, is a product of terms (f;);e () for a subset
J(2) C{1,...,r}. Note that in this situation: | | g, /(2) ={1,....7r}.
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More generally, if y is a vertex of T, the rewritting process of w provides w, =
ait poia. . app vy ra’s, and each factor fY is obtained as an ordered product:

(6) =11 #.

JEI(ysi)
where ' is the first ascendant of y, and UI(y,i) = {1,...,r,} where the disjoint
union runs over all direct descendants y of ¥’ and i € {1,...,7,}.

Now the graph with vertex set (f)yeric(1,..r,} and edges pairs of elements ap-
pearing on different sides of all possible products (6) is a forest, called the ascendance
forest of w. It describes the combinatorics of the rewritting process of the word w.
It depends only on g = a“via...av,.a”. Precisely, this graph is a finite union of
trees rooted in f, for each z € S(w) and with respective sets of leaves { f;|j € J(2)}.
The ordered product f, =[] ied() fj shows that indeed, the function ¢ can take any

value at the point ze,(1)p.

Proposition 3.4. (Activity of a pre-reduced word) The activity s(w) of a pre-reduced
word w = a“(pflvla. i .acpfrvrai2 in Ly, S,, which counts equivalently

(1) the size of the set S(w) of active leaves in the minimal tree T'(w),

(2) the number of components (i.e. trees) in the ascendance forest of w,

(3) the size of the support a priori supp™(p),

(4) the size of the inverted orbit O(g™") of the word g=* in the sense of [BE],

depends only on the word w = a"vya. ..av.a” in G, and satisfies under rewritting
process w = (wg, wy)o(w), with wg, w1 N Sy, :

s(w) = s(wg) + s(wy).
Also there exists a constant C depending only on #F such that:
#{7 € Tw|Fw =r, 7,s(w) < s} < C°.

Proof. The equivalence of (1), (2) and (3), as well as the behavior of activity function
under rewritting process follow from the descriptions above. Proceed by induction
on r to show equivalence with (4). If w = a"ppvia...apsv.a2 =pr pg then
weg, vy = ©(g.¢4,)gv,. The point g~(1%°) is added to the support a priori of ¢.
This shows supp®(p) = {(a" vy ... vpa?) 1 (1°)|k < n} = O(¢g~'). Mind that the
inverse appears as a difference with [BE] notations, replacing ¢ f by ¢g for elements
of F1G. Then pg = (g.f)g and g~ "'supp(f) = supp(p).

There remains only to show that the number of elements described grows at most
exponentially fast with s(w). First check that 2s(w) > #0T(w) when s(w) > 1, by
induction on s(w). If |w|, = 1, then T'(w) is just the root of T. Now if s(w) > 2,
then s(wg), s(wy) > 1 by pre-reduction of w, so that induction ensures 2s(w;) >
#0T (w;), and the result follows from #0971 (wg) + #0901 (wy) > #0T'(w) by construc-
tion of minimal trees. Now if s(w) < s, the minimal tree T'(w) has size < 2s. There is
423 possibilities for T'(w) (Catalan numbers), and then 2#nterior(T(w)) < 925 choices for
the interior permutations ¢, for interior vertices v and finally (22.4.#F)#9Tw) < 023
choices for the boundary short words a®:¢ ;. v,a%. O]

Corollary 3.5. The relation between word activity and growth function is two-fold:
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(1) b, (r) = #F*" for any Jw| <.
(2) br (r) < Cmaxts@)irzful},

In particular, word activity governs the growth function.

Proof. Point (1) is clear from remark 3.3 and point (2) from proposition 3.4. O

4. TECHNICS OF ESTIMATION

4.1. Growth Lemma. The following lemma is used to estimate upper bounds on
the growth of activity hence on the growth of groups. It improves on previous
versions such as the Growth Theorem in [MP] and Lemma 4.3 in [BE] by keeping
track of the constants in terms of the bound on the sequence p(r) of variable depth
of recursion.

log(2)

Toa@) Moaqy)» S0 that a

Lemma 4.1. Given n and a parameter X € [0,1], set a =
satisfies 2 = (n%) )

Let A : N — N be a function such that for any r there exists q(r) < p(r) and
ly, ..., lop integers such that, for a constant C':

4+ gy < 0 4 20C,
A(r) S A(l) + -+ 4 Allgen ),
(3) 41 > )

Suppose moreover that p(r) < P is bounded. Then A(r) < Lr® for some constant
L=L(C,P).

Assume given a trivial bound A(r) < Kr. Then L can be chosen L = AY for A
depending only on C' and K.

Proof. Choose Ry big, to be determined later. Choose R > Ry large enough so that
the function:

ey =4 =) tr2 k&,
+L(A™(R) — 1) ifr <R,

is concave (it is also non decreasing). Choose M large enough so that for all r > M,
20 > R, and let L > 1 be large enough so that A*(r) = LA*(r) > A(r) for all

2p(r)

r < M. Let r > M, there exists p(r), q(r),l;, with A(l;) < A*(l;) by induction, and
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using successively (2), induction, concavity of A*, (1) and the choice of M:

2),
< AYh) A4+ A (l)

A
2PA <§(ll +~-~+l2p))

IA

IA

L1
2PA <§(nqr+2p0)>
ne ’ Uk 2\"
2\ q 3\ “
_ L((zi%) r42aC — 24 (%T—FC) ) ,

q\ P
Now % > )\ ensures (25%) <1, so:
)O[

[NIE

q
A(r) < L (r+250—2§ <%r+c>

< L (r — 7’%)& = A*(r).

The last inequality holds when r is big enough so that:

1
a 3
2 (%erC) —2aC > 2.

1

2
) > /21 > 1 so the latter is true when:

SIS

2

Observe that % ( 2
n

2p
which holds when r > af’ = Ry = _ 22" with a constant ag depending only on
P P
C. For P big, R = Ry and so M = (%) Ry = (%a(]) . It is sufficient to take
P
LA™(M)> KM so L> K (%a()) . O

4.2. Localization. The asymptotic behavior of the growth of I', depends on the
asymptotic of w. On the other hand, the description of a ball of a given radius in I',,
requires only some first terms of w. The following lemma of localization is helpful
to study growth of groups I',, for non periodic sequences w.

Lemma 4.2. Suppose that the sequence w is not asymptotically constant, then the
ball Br,(r) of radius r for the word norm with respect to the generating set S, =
{a}H{psv|v € {ida,, by, cuo, du}, f € F'} depends only on wows . . . wy, for k = log,(r).
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The Cayley graph Cay(I',S) of a group I' with generating set S is the colored
graph with vertices v in I" and edges (v, ys) of color s in S. The ball Br(r) of radius
r is the subgraph obtained by restriction to vertices and ends of edges such that
|v| < r for the word norm for S.

Proof. The ball B, (1) of I, for the generating set S, is independent of w among
sequences that are not constant, it consists of the Cayley graph Cay(F x V, F x V)
together with an edge from the neutral element leading to the vertex a. By proposi-
tion 3.1, the ball B, (r) can be described using Br,, (“') and the wreath product
recursion (2), i.e. wp. Indeed, an element v admits a reduced representative word
w = a"kyaks . ..ak,pa” and so v = (y0,71)e® with |y, 71| < 2 by rewritting
process. By iteration, Br,(r) is described by Br , (5 +1) and wy . .. ws. O

Remark 4.3. When w = 0% is constant, the generator d,, acts trivially on the rooted
tree T, hence is identity, so that the Klein group V' degenerates into a group Sy,
and G, = (a,by=|a® = V* = id) = D, is dihedral infinite. However, the whole
sequence w is required to obtain this information. The group Gg~ obtained by
“finite information” (concretely as a limit group of G (12~ for instance) is in fact
the group Goe =~ Sy 1y Goeo = (do) 1x (a, bo), which is metabelien of exponential
growth. It played a crucial role in Grigorchuk’s construction of antichains of growth
functions, cf. section 6 in [Gril].

4.3. Asymptotic growth. Opposed to localization, the asymptotic behavior of the
growth depends only on the asymptotic of w.

Proposition 4.4. For generating sets S, = {a} U{psv|v € {id, by, cn,d,}, f € F},
the growth function of T'y, = F 1x G, satisfies for all r:

r—1 r+1
bFo’w( 2 ) S brw(r> S Qbraw( 2 )2’
Also by iteration:
r
pakw(Q—k —1) <br,(r) < szbrak (2k + 1)

Proof. Let v = pg belong to Br,(r). It admits a minimal representative word
w =p, 7 of length r, which is uniquely described after rewritting process as w =
(wo, wy)o(w) with |w0\ lwi| < =, Conclude that 7 is determined by two elements
Y0,71 in Br,,(“}) and a permutatlon o(w) in Sy, which proves the upper bound.

Suppose wy # 1 and let 7, belong to Br,,, (5~ 1), It admits a minimal represen-
tative word wy = a*kiaksa . .. akja® of length < T2 Set w = by, k“b k2 b kl bi2
if iy, =1 and w = l%lb“ l%gb“ b2 Elbi2“ if 27 = 0 of length < r, where k = cpfjvi
for k; = ¢y vl,,. Proposition 3.1 and relations (2) from section 2.1 guarantee that
w = (wp, wy)o(w) for some wy,o(w). Now if w =p, w’, then wy =r,, w}, so that
Br, (1) injects into Br,(r). (Note that when wy = 1, the same computation

2
works if b,, is replaced by d,,.) O
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5. ACTIVITY AND GROWTH

5.1. Activity of some words and lower bound on growth. Proposition 4.7 in
[BE] generalizes as:

Proposition 5.1. Denote:

2 01 210 1020
AQ— 0 21 ,Al 010 ,AQI 120
001 01 2 10 2

There is C' > 0 such that for any k, there is a word wy, in Ty, S,, such that s(wy) > 2k
and |wg| < C||Aw, - - - Aw |-

Proof. Consider the subsemigroup Q/, = {ab,, ac,, ad,}* C €, and define the pull
back substitution ¢ : Q)  — € by:

((ab,y,) = ab,ab, ((acyy,) = acyac, ((ad,,) = abyad,ac, if wy =0,
((abyy,) = ab,ab, ((acy,) = adyac,ab, ((ad,,) = ad,ad, if wg=1,
((abyy,) = acyab,ad, ((ac,,) = acyac, ((ady,) = ad,ad, if wy = 2.

Such a pull back substitution is designed so that ((au) = (ua, au) when au is apre-
reduced word containing an even number of v’s (where v = d if wy = 0, v = ¢ if
wo = 1 and v = b if wy = 2). Indeed, the following relations hold (take wy = 0,
similar otherwise):

¢(ab) = abab = (ba, ab), baba = (ab, ba),
((ac) = acac = (ca, ac), caca = (ac, ca),
((ad) = abadac = (d, ada)a, badaca = (ada,d)a.

The pull back of v, furnishes v,, on both components of the wreath product. The
a’s behave conveniently under the parity condition.

Given a word wy = aug in Q, , define by induction ((aur—1) = au, = wy, € €U,
The initial word ug can be chosen among the generators {b,x,,, Cory, dory, } SO that
((aug) = avav for another generator v of G x-1,, so that ((aux) always has an even
number of v’s; and the inverted orbit of au, can be studied by induction via:

C(aug_1) = aup = (ugp_1a, aug_1) and uga = (aug_1, ug_1a).
Proposition 3.4 now ensures that:
s(auy) > s(aug_1) + s(ugp_1a) and s(uga) > s(up_1a) + s(aug_1),
which is integrated in s(auy) > 2.

To estimate the length of wy, = ((wg_1), it is sufficient to count the numbers
|wlp, s |Wle,, |wla, of generators by, c,,d, appearing in w, since the total length is
controlled by |w| < 2(|w|p, + |w|e, + |wla,). The construction of the pull back
substitution  provides the relations:

[Wk—1]b,,, |wi s,
Awo |wk—1|cgw ‘wk‘cw 5
|Wk—1]dy, [wi|a,
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for the matrices Ag, Ay, Ao, and eventually by induction:

|w0|b(,kw | W],
Awkol e ’Awk ‘w0|00kw = |wk|cw )
lwola_, W a.,
so that |wi| < C||Ay, - - - Aw, - O

The matrices Ay, A, Ay are cyclic conjugates A; = CAC~tand Ay = C~1A,C =
CACY, so that AN AR AR ... — AMCARCAR . with

010 120
c=|001],4C=|102
100 100

The matrix AyC has caracteristic polynomial X? — X2 — 2X — 4 with positive real
root %, and two complex conjugate roots of smaller absolute value, hence spectral

radius p(AgC) = % (Remind that 7 is the positive root of X3 + X? + X —2.)
Ezxamples 5.2. (1) For w = (012)°°, the spectral radius theorem gives:

k
[Au - A ]| < 11(AGCY ]| < Co(A0C) = C (%) .

(2) For other periodic sequences, similar bounds are obtained, as for instance
w = (001122)>°, then:
kt1 k
[ Aw - Au |l S [I(A5C) =[] < Cp(A3C)2,

where the spectral radius p(A3) & 5.63 is the positive root of X3 — 3X? —
12X — 16.

Such estimates for periodic sequences are not usually sharp enough. The following
lemma is useful for the present purpose:

Lemma 5.3. Let w = 0™ (012)™0™2(012)". .., with m;,n; — oo. There exists a
constant C, such that for every e >0 and k = >_7_, m; + 3n; big enough:

9 3> n;
[Auy - - Au, || < CFp(Ag) =i p(AgC)3 2 = Cko2mi (5) _

Proof. By the spectral radius theorem, there exists C' such that ||Af'|| < Cp(Ap)™
and [|(AgC)*"|] < Cp(ApC)3™, so:

[ Awo - Aull < IJAT (A0C)P A2 (AoC)*2 .|
< [1AT LA™ [1AG™ (- (AC) ] -
< Cp(Ag) == p(AgC)P =,
where j = o(k) since m;, n; — oo. O
Note that if m;, n; are of the order logi, then j ~ %, and if m;, n; are of the

. . 1
order %, then j ~ k71,
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5.2. Activity of all words and upper bound on growth. Say a sequence w =
wowiws . .. in {0, 1,2} is rotating if w;y1 € {w;,w; +1} mod 3 for all i. Remind that
n is the positive root of X3 + X%+ X — 2. Adapting [Barl] to rotating sequences w,
define a length on G, by assigning weights to the generating set (a, by, c,,dy,). Set
l|la]| =1 —n?® and:

fwp =0, [Ibull =% lleall =1 =% |ldo][ =1 -
ifwo =1, [[bul| =1=n* Ileol| =1=n, |ldu|| =7’
ifwo =2, [Ibull=1=n, [l =7’ ldo|] =1 -

This defines a length on G, for which the minimal representative Words are pre-
reduced (n is chosen so that this is the case, see lemma 4.1 in [Barl]), which is
obviously equivalent to the usual word length £|w| < [Jw|| < C|w|, and designed so
that if wy; = wg + 1, then:

ev(wo)llall + 1bowll = n(llall + [|b.l]),
ec(wo)llall + llcaull = n(llall + [lcul]),
ea(wo)llall + |ldowl| = n(llal| + [|du|]),
0 1 0 1 0 0
where: ¢, | 1 | =1 1 |,ec| 1 | =0 J,eql 1 | =11 ],andifwy=
2 0 2 1 2 1

w1, then the factor n on the right-hand sides disappears.

This length on G, can be extended to a function on the set of words in the
generating set (S,) of I'y, by ||¢sv|| = ||v]| if v € {by, cu, dw} and ||prid|| = 0. Note
that even though ||w]| is not a length on T'y, it is still equivalent to the length of pre—
reduced words, i.e. F|w| < ||w|| < Clwl, because if w = a™ ¢y viapp,vs . . . apy,vra™,
then ||w|| = ||w|| for w = a"viavy . .. av,.a™, which is bilipschitz equ1valent to r.

The following statement generalizes Lemma 4.2 in [BE].

Lemma 5.4. Let w be a pre-reduced word of I'y,, S, with rewritting process giving
w = (wp, wy)e®, then:

[Jwol| + [ [wi]| < n™<V||w|| + C,
where C' = nl|a||, ¢(wo,w1) = 0 if w; = wp, q(wo,w1) = 1 if wg = wo + 1 and the
left-handside lengths are in Iy, the right-hand side one in T',.

Proof. The inequalities for w = (w,, w;)o(w) in G, and G, are obvious by con-
struction of the length ||.|[, i.e. by choice of . They still apply to pre-reduced words
inI', and I',,,. O

In order to estimate the growth function from above, the word activity function
su(r) = max{s(w)|lw € (I'y, S,), [w| < r}

will be usefull. However, it is smoother to estimate first the bilipschitz equivalent
auxiliary
A, (r) = max{s(w)|w is pre-reduced, ||w|| < r}.

Fact 5.5. For any r, there exists ly, ly integers such that:
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(1) Au(r) < Agullo) + Avu(ly), and
(2) l(] + ll < nq(wo,un),r + C.

By induction, there exists ly, ..., low integers such that:

(1) Aw(’/’) S Aopw(ll) + -t Agpw(ly)), CLTLd
(2) Iy + - A Iy < p@oen)y L PHLC yhere q(wy, . . ., w,) is the number of i
such that w;11 = w; +1 mod 2.

Proof. The maximum is realized for a certain word w, for which the rewritting
process furnishes w = (wg,wi)o(w) with Iy = ||wg|| and {4 = [|w;]| such that
lo + 1 < n?@o«)||w|| + C by lemma 5.4. Thus:

Ay(r) = s(w) = s(wp) + s(wy) < Ay (lo) + Apu(lh)-
O

Proposition 5.6. Suppose w is such that for all i, there exists p(i) < P such that
q(Wi, . .., Wigp)y) = q(i) and f% > N\, then:

log(2)

] < APpe = :
08 br, (r) < ATr®, Jor o = o og ()

In particular, if w is p-periodic and g(wy, . ..,w,) = ¢, then logbr,(r) < Lr* for
_ log(2)
& Tog@- T log(n)”

Proof. Set A(r) = sup{Qyr,(r)|p € N}. Fact 5.5 provides the existence of I; + - - - +

there is a constant A such that A(r) < APr®, so that s,(r) < APr® (mind that
there is a trivial bound A(r) < Kr because the activity is bounded by the word
length). Now corollary 3.5 shows log b, (r) < APre. O

6. PRECISE GROWTH ESTIMATES

The particular case of theorem 1.1 can now be derived. Recall that ag is such
@0
that 2 = (%) :

Theorem 6.1. For any o € [, 1], there exists a sequence w(a) such that a(I'y)) =
Q, t.e.
loglogbr, .., (r)

lim = .
log r

Proof. Given a, take X in [0, 1] such that 2 = (n%)o‘ Consider a sequence of the form
w=0m(012)"0"2(012)"2. ... Denote the ith period p; = m;+ 3n; and ¢; = 3n; the
number of steps of rotation of w, and assume both tend to infinity. Suppose moreover
that £ > A for each ¢ and £ — A, so that > 2J_, p; = kj and > 27_, ¢; = Ak; + o(ky).
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Lemma 4.2 of localization allows to use proposition 5.6 for P depending on the

scale 7. Indeed, br,(r) depends only on wy,...,w; for k& = log,(r), for which p; <
P(k), so that:

log b, (r) < AWy < poe,

as soon as P(k) < elogy(r). In particular, if w is chosen such that P(k) =
o(log(r)) = o(k), the required upper bound holds: @(T',) < a.

Concerning lower estimates, the word wy,; introduced in proposition 5.1 has length
bounded by (lemma 5.3):

S s k; kj(14¢)
lwy, | < ce 2T e (2T < (2)T
g = nzgzl 4 nA - nA

kj(l-i-e)
Now lemma 3.5 ensures, for r; = (77%) :

o (1+e)k;
rjl+s — 9ok < s(wg,;) < logbr,, (Jwy,|) < logbr, ((?) ) = logbr, (r;).

Interpolating for r; <7 <17,y gives:

a e 2 —apj o 2 —Qapj;
logb(r) > logb(r;) > ;™ =ri}] (_/\) > piie (_) > po2e
n

where the last inequality holds for large r since p;+1 < P(k) = o(k) = o(logr). As
¢ is arbitrary, o(I',,) > « for any such sequence w. O

Remark 6.2. Obviously, the computation of the exact growth exponent o(G) = «
does not imply that bg(r) ~ ™. The precise estimates obtained with the proof
above are (for r; <r <r;.):

C~Utpiteli)pe < og by, (1) < roAPi+1,

where e(j) = (327_, ¢i) — Mk; = o(j) is the error on the rationnal approximation of
A by greater values. Taking p; of the order logi, and thus j of the order log)lgo ;r,
obtains for some A:

one

__ A Aloglogr
Ta log log r S log bw(lr‘) S 7,,04+ log r

and taking p; of the order i for 0 < § < 1, thus j of order (log 7“)9%1, one obtains:

9 1

,,,,oe—A(logT’) o+1 < lOg bw(’f’) < TOH‘AUOST) o+1 .

7. OSCILLATION PHENOMENA

7.1. Groups with oscillating logarithmic growth exponents. The oscillation
of logarithmic exponents of growth function is the phenomenon that underlies the
construction of antichains of growth function in section 7 of [Gril] and of “fast
intermediate” growth in [Ers3]. It was studied for its own interest in the second
chapter of [Bri]. Theorem 6.1 allows a better understanding.
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Theorem 7.1. For any a < 8 € [a, 1], there exists a sequence w(a, ) such that

a(Lya,p)) = a and a(Lya,p) = B, i.e.

loglogbr, ., , (r)
logr

loglogbr,, (r)

lim inf
logr

= 3.

= « and limsup

To ease notations, br, () = b,(r) from now on.

Proof. Take w(a, ) = w()0..m, W (B) pmr+1...009(Q) 141,029 (B) jmo41...ms - - - fOr some
sequences m;, n; tending to infinity. Such a choice ensures that:

o < a(Ty(a,p) and ®(Lya,g) < B

If m;, n; tend to infinity sufficiently fast, these inequalities become equalities. Indeed,
take ¢; — 0, and construct r;, r; such that:

log log b(r;) loglog b(r})

< a+e¢; and

> B —e;
log 7; logrl = f-e

By localization 4.2, left inequality holds for all wy m, = w(e,B)p..m, and right
inequality for all wjg._n, = w(a, B)(0..n, With log, r; = m; and log, 1} = n,.

Assume by induction that m;,n; are constructed for 7 < i and construct m;4; =
logrip1. Take w' = w(e, B)o..nw(Q)n+1.... By proposition 4.4 on asymptotic
growth:

bw/(r) S 22%‘ bo—"iw’(% + 1)27% _ 227% bo’niw(a)(% + 1)2”2 S 22%‘ bw(a) (T' + 2ni+1)2m"
so that:
log log b,/ (1) - log 10g byy(a) (1 4+ 2™+1) + n; log 2 N log 10g byy(a) (1)

log r - log r log r

r—00 Of,

and there exists r;y1 as required. Set m; 1 = logy(ris1).

Now construct n,,1 = logy(ri,;). Take w” = w(a, B)j0..mip W (B)mipi+1.... Again
proposition 4.4:

T T 1 - 1
b (T) - bamin"(Qmiﬂ a 1) - bami“w(ﬁ)(Qmiﬂ B 1) =z §bw(5)(r —2 l+1+1)2 R
so that:
loglog by, (r) _ loglog by (r — 2m+1%1) —m, 4 log 2
Z T—00 /87
log r log r
and there exists r; ; and n;.1 = logyri ;. O]

7.2. Antichains of growth functions. The following result is a slight improve-
ment of Theorem 7.2 in [Gril], which shows the existence of antichains of interme-
diate growth functions accumulating to e”.

Theorem 7.2. For any ay < a < 8 < 1, there exists uncountably many groups I,
with pairwise non comparable growth functions (such a collection of groups is called
an antichain) satisfying a(I'y,) = a and @(T',) = S.

Moreover, if B < ' < 1, such an antichain can be chosen so that b, (r) < Ce”
for a constant C' depending only on (3,5’ and not on w.
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Lemma 7.3. Given ag < a < 8 < 1, there exists an application w from the set
F(N, {c, 5}) of functions f : N — {a, B} to the Cantor space of infinite sequences
{0,1,2}N, and there exists sequences r; — oo and B%O‘ > g; — 0 such that:

(2) D) > 5 ey if f(i) = B,
(3) loglog by ) (i) <a+¢g; fo(z)

logr;

Q.

Proof of theorem 7.2. There are uncountably many functions £ : N x N — {«, 5}
such that &(z,y) = a implies £(x,y+ 1) = 5 and &(z,y) = [ implies {(z,y+1) = .
Any bijection ¢ : N — N x N, provides an injection £ — f¢ by fe(i) = £ o (7). Now
given & # &, if fe, (i) < fe,(4), there exists j > ¢ such that fe,(j) < fe (j). Lemma
7.3 ensures that b,(y, )(r) and by(y,,)(r) are not comparable. O

Proof of lemma 7.3. The proof of this lemma is a variation on the proof of theorem
7.1. Pick:

W(f) = w(f(o))|0---m0w(f(1))\mo+1...m1w(f(2))\m1+1...m2 s

for a sequence m; = log,(r;) increasing sufficiently fast. Mind that this guarantees a

log log by, (fy(7

uniform upper bound Tog 7 ) < f+4e = [ for any € and r big enough (depending

on g).

Assume by induction m; and r; constructed for j < ¢ and consider:

!/

W = w(.f(o))wmo cet w(f(i))|mi71+1~~~miw(a)‘mi+1m7
W' = w(f(0))0..mo - - W(f (D) pmist1m W (B)pmit1....
As above, proposition 4.4 on asymptotic growth provides:

bw, (’,") S 2277%‘ bw(a) (/r + 2mi+l)2mi ’
1 1
bwu (7”) Z ibw(g) (7‘ — 2mi+1> 2m1+1 ,

so that there exists r;;, independent of (f(0),..., f(i)), such that:
log log b (7i11)

S o+ Eiy
log i1
loglog b (7i41) > B¢,
log riy1
and this is true for any sequence w coinciding with w’,w” on the m;;; = logy 41
first values. O

Remark 7.4. The idea behind the proof of theorem 7.1, is that the asymptotic be-
havior of the growth function b, (r) of the group I',, depends only on the asymptotic
of the defining sequence w, whereas locally a ball of given radius depends only on
some first terms of w. This permits to produce scales at which the growth function
is essentially €™ and others at which it is essentially erﬂ, thus explaining oscillation
between this two behaviors. Of course, the process can be used to produce a variety
of different behaviors at different scales, for instance scales S; at which I',, seems
to have growth e for countably many «; € [ap, 1], intertwined with scales S; at
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which T, seems to have growth oscillating between "’ and e The only point is
to allow enough “time” so that the behavior at scale \S; or S; becomes visible, i.e.
functions m;, n; in the proofs above increasing sufficiently fast.

8. FREQUENCY OF OSCILLATIONS

This section aims at studying the frequency of oscillations for groups of the type
I',. The main question is to maximize the frequency of oscillation between two given
bounds, or equivalently to minimize the period.

8.1. Group invariants associated to oscillation. Given o < § and a Lipschitz
function b : N — N, define the upper set U(a, 5) and lower set L(a, 3) of b for «, 5
to be:
loglogb
U, B) = {s € N‘M

log s

log log b(t) <o)

logt = 7
Note that % > A is equivalent to logb(s) > s” and % < « is equivalent
to log b(t) < t°.

> 6} and L{e, ) = {t € N

Property 8.1. Let a < 8 and b : N — N be a Lipschitz function, then:

(1) L(er, B) UU(av, B) C N, and the inclusion is strict if both upper and lower
sets are infinite.
(2) Assume o/ < a < <[5 then:

L(d/,B) C L(«, B) and U(a, 8) C U(a, B),

and the inclusions are strict if both upper and lower sets are infinite.

Note that when b(r) = br(r) is the growth function of a finitely generated group
' such that o(I") < a < § < @(I"), then both upper and lower sets are infinite.

Property (1) allows to decompose U = | |72, U; and L =| |’ L; such that:

(1) U;, L; are non empty,
(2) for any s € U;, then s > maxU,<;_1L; and s < minU,>,L;,
(3) for any t € L;, then ¢t > maxU,<;U; and ¢t < minU;>;41U;.

Call this decomposition alternating (see figure 2).

In order to study oscillation, set s; = minU;, s, = maxU,;, t; = minL; and

t = max L;. The upper pseudo period function u is the partially defined s;; = u(t})
and the lower pseudo period function [ is the partially defined ¢; = [(s}). In order to
investigate how small these functions can be, define:

Ugp = IF{V|Tiy, Vi > i, 8041 < (1)} and 1, 3 = inf{\|Fi,, Vi > i,,t; < (s))}.

Equivalently:

) log s;11 ) logt;
Uq,p = limsup — and [, 3 = limsup

oo logt] isoo lOgs;

The following fact provides estimates on the pseudo period functions that any
growth function of infinite group must satisfy.



GROWTH BEHAVIORS IN THE RANGE e 19

s /\

—1
U 1 Ui
| |

FIGURE 2. Upper and lower sets U(a, §) and L(«, 3) seen by draw-

ing the curve f(r) = %

Fact 8.2. Consider a < 8 and a function b: N — N, then:

(1) if b(r) is submultiplicative, Uz > =% > 1,

L
(2) if b(r) is increasing, lo 5 > g > 1.

Proof. Suppose logb(t) < t*. Submultiplicativity implies logb(kt) < kt®, so that

log b(kt) > (kt)? forces kt® > (kt)? hence kt > 75+ Now suppose log b(s) > s°,
then log b(t) <t forces t* > sP. O

By property (2), given o’ < o < ' < ", one has uyr g7 > Uy g and lor g >
loy pr. This permits the:

Definition 8.3. The upper pseudo period exponent u(c, ) and the lower pseudo
period exponent l(a, B) of a function b(r) are:

U(Oé,ﬁ) = ,hm N U B and l(OA,ﬁ) = , lim N la/ﬁ/.
a — o a — o
f =B p= B

Remind notation o/ — o™ (respectively 8/ — 7) for o/ — « and o/ > « (respec-
tively ' — 5 and ' < ).

This definition is appropriate because it permits to define u(«(I"),@(T")) and
l(a(T"),@(I")) associated to the growth function br(r) even though the upper and
lower sets U(a(I'),@(I")) and L(a(T"),@(I")) may be empty. Also:

Proposition 8.4. The upper and lower pseudo period exponents u(«, ) and l(«a, )
are group invariants.

Proof. In order to show the exponents are not perturbed by change of generating
set, consider a function b'(r) such that there exists C' with b(5) < b'(r) < b(Cr).
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;Fhian Lo/, 5 = {t|logl/(t) < t*'} C {t|logb({) < ta//} = C{:);J/logb(x) <
C*z*}. But given any o’ > o and x large enough, one has C* 2% < x| so that if
x large enough belongs to L®)(«/, #'), then z belongs to CL® (o, 8”). Similarly, for
any 3" < (', large enough y that belong to U®)(o/, #') also belong to éU(b)(a”, p".

This permits to deduce that there is a j such that:

/ b
log sgi)l(o/, 5 S log 85'—1)—1(0//’ pg") —log C
logt,") (o, )~ logt"(a, B") + log C
so that ug),:)ﬁ, > ug))ﬁ,, for any o/ < o’ < " < @, which implies u®)(a, ) >
u® (a, B), and equality holds by symetry. Similar proof for I(a, 3). O

Remark 8.5. Given o < 3, one can similarly define the pseudo period exponent of
oscillations for a function b(r), by p(a, 8) = limpy g for pa g = limsup %’ and
it is a group invariant for bp(r). However, it is not true a priori that replacing s; by
t;, t. or s, would provide the same exponent.

8.2. Estimates on pseudo-period. Theorem 6.1 shows that for any v € [ap, 1]
there exists a group I',(,) such that:

1
57“7_8 < log bw(,y) (7’) < CJ”H_E,

£

where € > 0 is arbitrary and C. depends only on ¢.

Suppose that logb,(t) = t* for some t. This fact depends only on (w;), for
m = log,t by localization. Now consider the group I',s for the sequence w' =
Wo - - - Wi (Y)|ma1..., for some v > § > a. By proposition 4.4 on asymptotic growth,
one has:

1

C.t

1
log b, (s) > o 10g by (5 — 2™ —log2) > ——(s — 2t)77°,

so that for any 3’ < 8 and ¢ small enough:
min{s|logb,(s) > sﬁl} < Catvfslfﬂ’ + O(tfiﬁ').

Conversely suppose that log b, (s) = s” for some s, which depends only on (w;)™,
for n = log, s, and consider the group I'y» for the sequence w” = wy . .. wWLwW()|ni1...
for some 0 < a < 8. As above, one has:

log by (t) < 2"(log bys) (t + 2") 4+ log2) < Ces(t + 25)°F,
so that for any o < o’ and & small enough:
min{t|log b, (t) < 7%} < C.s7=5= + o(s7=5=).

These two observations show the following (passing to the limits o/ — «, 5/ — 8
and € — 0):

Proposition 8.6. Given oy < < a < < v <1, there exists a sequence

w(e, B,7,0) = w(0)o.am@ (V) my+1..m @ () 1m0 (V) lmat1.ms -
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such that the group I'y(a,p,.5) satisfies:

1
a—90

u(a, B) < %ﬁ and (o, B) <

The choice of w(a, 3,7, 6) guarantees a(I'y(a,8,7.6)) = 6 and @(Lya,8,0,6) < 7, but
these are probably strict inequalities.

2

Note that the construction of w(c, 8) in the proof of theorem 7.1 is a particular
instance of the above proposition with v = § and § = «. In this case, the upper
and lower pseudo period exponents are (a priori) infinite.

On the other hand, in order to minimize the upper and lower pseudo period
exponents for a fixed oscillation magnitude o < 3, taking v = 1 and § = « gives
upper bounds (the lower bounds are trivial from fact 8.2):

1— 1 1
1—2 <u(a,p) < T3 and 5 <la,p) <

Since the estimates above are done for any ¢ in L(«a, 8) and s in U(q, ), they

provide an upper bound for (any choice of definition in remark 8.5) pseudo period:

Bl — ) 1
a=p) =" S TRy

o oa—og

9. COMMENTS AND QUESTIONS

9.1. Precise growth estimates. Theorem 6.1 provides the existence of many
groups with precise logarithmic growth exponents. However, it is not clear how
much their growth functions are regular. Indeed, the sequence w(«) used to de-
fine I'y(o) has the form w(a) = 0™1(012)"10™2(012)" ... for some sequences m;,n;
tending to infinity (this permits to use lemma 5.3 to estimate the norm of a large
product of matrices). It is likely that the growth function b, (r) oscillates around

e™ with oscillations unseen by the logarithmic growth exponents.

It would be interesting to produce more regular growth functions, and in partic-
ular to know for which exponents « there is a group with precise growth function
br(r) ~ ™. Two directions seem interesting.

On the one hand, periodic sequences w should be studied further. The technics
developped here provide some interesting estimates, as for instance (example 5.2 (2)
and proposition 5.6):

,,,,0.8019 S log b(001122)oo (,,,,) S 7,0.8684.

However, the specific norm defined in paragraph 5.2, which is very well suited for the
sequence w = (012)*°, does not seem to be sufficient in general. Maybe considering
other norms (making full use of a given period, for instance (001122)) would provide
better upper estimates.

On the other hand, growth functions of random sequences w would be interesting
to compute. A natural model is given by rotating sequences w; 1 € {w;,w; + 1} with
probability p and 1 — p respectively. The study of random product of matrices could
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give nice lower bounds via proposition 5.1, but on the other hand, an appropriate
version of the growth lemma 4.1 is needed.

Concerning the space of groups (I',),ecq, it seems that the growth function is
minimal for the sequence (012)*°, but it is not proved. Also the growth function of
the group G, might be quite different from that of I',, for a given sequence w. For

instance I'(g1)~ has exponential growth, whereas G g1)~ has growth essentially eToer
(see [Ersl]).

9.2. Oscillations. Groups with oscillating growth function appear by considering
different sequences w at different scales, i.e. with highly non periodic sequences w.
Is it true that oscillation does not occur if w is periodic? In other terms, does the

log log b : o
sequence %fﬁ) converge for I' = I', with periodic w, or for I an automata group?

The questions of amplitude and frequency naturally arise with the notion of os-
cillation. Theorem 7.1 provides a good description of amplitude (oscillation between
any two bounds ap < o < < 1), but is not satisfying regarding frequency, as the
upper and lower pseudo period exponents seem to be infinite. Conversely, in propo-
sition 8.6 the frequency is evaluated, but the exact amplitude is not known, though
one can believe the lower and upper logarithmic growth exponents of I'y(q g.,5) are
exactly a and .

Submultiplicativity and increasing nature of the growth functions br(r) impose
easy lower bounds on the pseudo period (fact 8.2). It is far from clear, especially
concerning the lower pseudo period, that these bounds are optimal. In other terms,
what are the values of the following functions of («, 3)?

Uso(, 5) = inf{ur(a, B)|I is a finitely generated group},
loo(a, B) = inf{lr(a, B)|I" is a finitely generated group},
P, B) = inf{pr(a, f)|I is a finitely generated group}.

Concerning the notion of period, is it true that the four definitions of pseudo period
exponents from remark 8.5 coincide for maximal frequency?
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