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Abstract 

This article discusses partition function of monatomic ideal gas which is given in Statistical Physisc at Physics Department, 

Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia. Students in general are not familiar 

with partition function. This unfamiliarness was detected at a problem of partition function which was re-given in an 

examination in other dimensions that had been previously given in the lecture. Based on this observation, the need of a 

simple but comprehensive article about partition function in one-, two-, and three-dimensions is a must. For simplicity, a 

monatomic ideal gas is chosen. 
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Abstrak 

Artikel ini membahas fungsi partisi Gas ideal monoatomik yang diberikan di kuliah fisika Statistik pada Program Studi 

Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Indonesia. Peserta kuliah pada 

umumnya tidak terbiasa dengan bahasan fungsi partisi. Ketidakbiasaan ini teramati pada soal tentang fungsi partisi ketika 

diberikan kembali dalam ujian dengan dimensi yang berbeda dari yang telah diberikan sebelumnya dalam kuliah. 

Berdasarkan pengamatan ini terdapat kebutuhan akan adanya sebuah artikel mengenai fungsi partisi dalam kasus satu-, 

dua-, dan tiga-dimensi. Gas ideal monoatomik dipilih agar sederhana. 

 

Kata Kunci: fisika statistik, fungsi partisi, gas ideal monoatomik 

 

1. Introduction 

Partition function for monatomic ideal gas is 

commonly discussed for three-dimensional case [1], but it 

is also interesting, in analogy and mathematical point of 

view, to discuss it in one- or two-dimension. Partition 

function can be viewed as volume in n-space occupied by 

a canonical ensemble [2], where in our case the canonical 

ensemble is the monatomic ideal gas system. 

In order to understand this work reader must 

already familiar with Γ -integral and its relation with 

factorial !n  [3]. 

 

2. Theory 

In general, a system of particles which obeys 

Maxwell-Boltzmann statistics, has a definition for 

partition function as: 
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When there are jG∆  energy states within the macrolevel 

then Equation (1) will turn into 
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Energy of each particle, using the principle of quantum 

mechanics for single particle in a box, is given by [4] 
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For 3-D case as illustrated in Figure 1(a), it can be written 

that 
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then number of states of particles which have quantum 

number between jn  and jj nn ∆+  or have energy 

between jε  and jj εε ∆+  is 
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Substitution Equation (5) into Equation (2) will give: 
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Figure 1. n-space for case of: (a) one-, (b) two-, and (c) 

three-dimensional monatomic ideal gas. 

 

By using Equation (3) into Equation (6) and write the 

result in continuous form 
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The Γ -integral and its relation will give immediately the 

result of Equation (7) in a form of 
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Then, the next is 2-D case as illustrated in Figure 1(b). 

This case will give: 
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then number of state of particles which have quantum 

number between jn  and jj nn ∆+  or have energy 

between jε  and jj εε ∆+  is 
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Substitution Equation (10) into Equation (2) will give 
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Following previous steps for 3-D case, but by using 1−A  

instead of 3/2−V , we can arrive at: 
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This gives 
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Finally by following the similar steps we can obtain that 

for 1-D case as illustrated in Figure 1(c) 
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then number of state of particles which have quantum 

number between jn  and jj nn ∆+  or have energy 

between jε  and jj εε ∆+  is 

 

jj nG ∆=∆ )1(
. (15) 

 

Substitution Equation (15) into Equation (2) will give 
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Then following similar steps for 3- and 2-D case but by 

using 2−L  instead of 3/2−V , it is obtained that: 
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This gives 
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Equation (7), (12), and (17) can be solved using the 

following relations [3] 
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3. Results and Discussions 

It can be seen from Equation (8), (13), and (18) 

that there is a regularity in writing the partition function 

of monatomic ideal gas for 1-, 2-, and 3-D case as shown 

in Table 1. 

 

Table 1. Comparison of partition function of monatomic 

ideal gas for 1-, 2-, and 3-D case. 

 

Case Partition function 
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We can then say that the partition function of monatomic 

ideal gas can be written in general form, which is 
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where D , which is the dimension, can have value of 1, 2, 

or 3. Then thermodynamics property that similar to 

pressure p  in 3-D case can also be defined in 2- and 1-D 

case. This property usually derived from Helmholtz free 

energy F , which is related to partition function through 
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and then 
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Table 2. Comparasion of pressure-like thermodynamics 

properties for monatomic ideal gas for 1-, 2-, and 3-D 

case. 

 

Case 
Pressure-like 

properties 

Unit (SI) 

1-D 
L

NkT
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2-D 
A

NkT
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We can then write a bit more generality the equation in 

Table 2 as follows: 

( )DD

D

V

NkT

L

NkT
p ==)(  (26) 

Where 
( )1LL ≡  and ( ) DD LV =  is the volume of the D-

dimensional domain occupied by the gas. Physically, 
( ) Fp ≡1  is a just a “force” exerted at the two endpoints 

of a segment of length L; ( ) τ≡2p  is the surface tension 

exerted along the closed line which is the boundary of the 

area A where the gas is confined; and ( ) pp ≡3  is the 

well-known outward-pointing pressure of the gas, exerted 

at its two dimensional boundary.  

 

Table 3. Equation of state for monatomic ideal gas for 1-, 

2-, and 3-D case. 

 

Case Equation of state 

1-D NkTFL =  

2-D NkTA =τ  

3-D NkTpV =  

 

Table 3 shows us the equation of state of monatomic ideal 

gas for 1-, 2-, and 3-D case. The 3-D case is the most 

familiar form for the students, while this form is already 

taught since at senior high school. 
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Problems usually arise when the students do not 

understand where Equation (4), (9), and (14) are 

originated from and also why Equation (3) is needed. In 

this case the role of lecture is very important to guide 

them in the lecture. 

It can be illustrated for 3-D case that Equation (4) 

is actually 
8
1  volume of a sphere with radius jn  and 

Equation (5) is 
8
1  volume of a shell of the sphere with 

radius jn  and thickness jn∆ . Figure 1(a) shows the 

illustration. The number 
8
1  appears since we consider 

only positive value of xn , yn , and zn , which lies only in 

one octane or 
8
1  of total volume of the sphere, as this 

approach of explanation is suggested [1]. 

Following the approach for 2-D case as illustrated 

in Figure 1(b), Equation (9) is area with positive value of 

xn  and yn  and radius jn , and Equation (10) is area of a 

ring with radius jn  and thickness jn∆ . The number 
4
1  

arise since we consider only one quadrant or 
4
1  or the 

total area. 

Then, finally for 1-D case as illustrated in Figure 

1(c), Equation (14) is length of jn  and Equation (15) is a 

region with thickness jn∆ . Since xn is replaced by 

jn then it has already only positive value. 

 So, perhaps it is also necessary to give an 

common picture about relation of jn  with xn , yn , and 

zn  in case of 1-, 2-, and 3-D case and also the factor 1, 
4
1 , 

and 
8
1 . Table 4 gives the illustration. 

 

Table 4. Expression of jn  and the factor in front of 

Equation (5), (9), and (14) for 1-, 2-, and 3-D case 

respectively. 

 

Case nj Factor 

1-D 
22

xj nn =  1 

2-D 
222

yxj nnn +=  4
1  

3-D 
2222

zyxj nnnn ++=  8
1  

 

 

4. Conclusion 

The partition function of monatomic ideal gas 

system for 1-, 2-, and 3-D case has been reviewed and 

compared. General formulation has also been shown. 

Brief and simple explanation how theses partition 

functions derived is also given in order to help the 

students to understand it with olny few efforts. 
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