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QUANTUM ISOMETRY GROUPS OF SYMMETRIC GROUPS

JAN LISZKA-DALECKI AND PIOTR M. SO LTAN

Abstract. We identify the quantum isometry groups of spectral triples built on the symmetric
groups with length functions arising from the nearest-neighbor transpositions as generators. It
turns out that they are isomorphic to certain “doubling” of the group algebras of the respective
symmetric groups. We discuss the doubling procedure in the context of regular multiplier
Hopf algebras. In the last section we study the dependence of the isometry group of Sn on
the choice of generators in the case n = 3. We show that two different choices of generators
lead to non-isomorphic quantum isometry groups which exhaust the list of non-commutative
non-cocommutative semisimple Hopf algebras of dimension 12. This provides non-commutative
geometric interpretation of these Hopf algebras.

1. Introduction and main results

Quantum isometry groups of non-commutative manifolds have been introduced in [10]. Given
a spectral triple (A ,H , D) one considers the category of all quantum families (in the sense of
[23, 16]) of orientation preserving isometries of (A ,H , D). When this category has a universal
object, it can be shown that this object is in fact a compact quantum group. This object is

denoted by Q̃ISO+(A ,H , D) and is called the quantum group of orientation preserving isometries
of (A ,H , D). We refer to [10, 3, 4] and also [6] for details of the theory of quantum isometry
groups and numerous examples.

This paper is devoted to the study of an example in the theory of compact quantum groups.
For each natural n we will find a universal compact quantum group coacting on the group al-
gebra of the symmetric group Sn satisfying certain additional property related to the theory of
non-commutative manifolds which corresponds to the concept of a smooth isometric group ac-
tion preserving orientation of an oriented Riemannian manifold ([10, 4, 3]). In recent papers
[5, 18] interesting interpretation of the universal quantum group acting isometrically on some
non-commutative manifold was discovered.

For the theory of compact quantum groups and their relation to Hopf algebras we refer e.g. to
the exposition [25]. In Section 3 we will use the language of multiplier Hopf algebras developed in
[21, 22].

The primary object of this paper is to give a full description of the quantum isometry groups

Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
, where Sn is the symmetric group and D is the Dirac operator given by

multiplication by the length function on Sn associated to the set
{
s1, . . . , sn−1

}
(1.1)

of generators of Sn; here and throughout the paper the symbol si will denote the transposition
(i, i + 1) with i ∈ {1, . . . , n − 1}. The length function, by definition, assigns to each element of
x ∈ Sn the minimal number of transpositions from (1.1) needed to write x as a product of these
elements.

Our work is a direct extension of the effort to compute the quantum isometry groups of spectral
triples associated to various group C∗-algebras initiated in [6] and continued e.g. in [1, 2]. The
simplest cases of S2 and S3 were already treated in [6, Sections 3 & 4]. Our main result concerns
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only the fixed set of generators (1.1). See however Section 4 for a result related to different sets
of generators.

Before continuing let us declare that all algebras considered in this paper are ∗-algebras overC. By an automorphism we shall always mean a ∗-automorphism. We will use some very basic
properties of C∗-algebras. For the theory of operator algebras (and in particular C∗-algebras) we
refer to classic texts like [7, 19, 12].

1.1. Isometries of the spectral triple on the symmetric group. The spectral triple
(C[Sn], ℓ

2(Sn), D
)

is very well behaved (mainly because C[Sn] is finite dimensional). The notion of a quantum group
acting isometrically on

(C[Sn], ℓ
2(Sn), D

)
can in this case be rewritten as in [6, Section 2]: letG = (A,∆A) be a compact quantum group and let α : C[Sn] → C[Sn] ⊗ A be a coaction of G onC[Sn] satisfying the Podleś condition, i.e. the set

α
(C[Sn]

)
(1⊗A) = span

{
α(x)(1 ⊗ a) x ∈ C[Sn], a ∈ A

}

is dense in C[Sn]⊗A (cf. [13, 17]).
The coaction α is isometric if

(1) for all x ∈ C[Sn] we have (τ ⊗ id)α(x) = τ (x)1, where τ is the canonical trace on C[Sn]
(i.e. the evaluation at the neutral element e ∈ Sn of an arbitrary x ∈ C[Sn] considered as
a function on Sn),

(2) we have α◦D̂ = (D̂⊗1)◦α, where D̂ is the operator D considered as a map C[Sn]→ C[Sn]
(instead of ℓ2(Sn)→ ℓ2(Sn)).

It is, in fact, easily seen that (2) implies (1).
In the formulation of the main theorem of this paper we will use the notion of doubling of

a multiplier Hopf algebra with invariant integrals. This notion is discussed in detail in Section
3. Let us mention here that this construction is analogous to the operation of taking semidirect
product by Z2 in group theory.

Theorem 2.6 of [6] states that there exists a universal object in the category of all compact quan-

tum groups acting isometrically on
(C[Sn], ℓ

2(Sn), D
)
and it is precisely Q̃ISO+

(C[Sn], ℓ
2(Sn), D

)
.

We will use this fact to prove the following:

Theorem 1.1. The quantum isometry group Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
of the spectral triple on

Sn is isomorphic to the finite quantum group obtained as doubling of the group algebra C[Sn]
with standard cocommutative Hopf algebra structure. In particular the C∗-algebra of continuous

functions on the quantum isometry group Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
is isomorphic to C[Sn]⊕C[Sn].

If {σ1, . . . , σn−1} and {τ1, . . . , τn−1} denote the generators (1.1) in the first and second copy ofC[Sn] inside C[Sn]⊕ C[Sn] respectively then the comultiplication ∆ of Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
is

given by

∆(σi) = σi ⊗ σi + τi ⊗ τn−i,

∆(τi) = σi ⊗ τi + τi ⊗ σn−i.

Let us note that the same phenomenon of the quantum isometry group being isomorphic to the
doubling of the original Hopf algebra was already observed in several cases (e.g. for singly generated
groups in [6, Section 3]; the same result for the infinite dihedral group D∞ was communicated to
us by A. Skalski), but is not of universal nature ([6, Section 5]).

The final remark of this section concerns possibly non-unital C∗-algebras. The notion of a
morphism of such C∗-algebras was introduced already in [23] and developed further in e.g. [24].
We refer the reader to the latter publication for the precise definition of the set Mor(C,B) of
morphisms between two arbitrary C∗-algebras C and B.

Note also that the conditions (1) and (2) defining an isometric coaction of a compact quantum
group on

(C[Sn], ℓ
2(Sn), D

)
make sense for an arbitrary quantum family of maps. More precisely,

if C is any C∗-algebra and Ψ ∈ Mor
(C[Sn],C[Sn]⊗C

)
then we may say that Ψ defines a quantum

family of isometries of
(C[Sn], ℓ

2(Sn), D
)
if
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• (τ ⊗ id)Ψ(x) = τ (x)1, for all x ∈ C[Sn],

• Ψ◦D̂ = (D̂ ⊗ 1)◦Ψ.i

In particular one can take for C a C∗-algebra corresponding to a quantum semigroup S = (C,∆C).
Then, if Ψ is a coaction of S satisfying the Podleś condition, by results of [15] and [17, Theorem
2.1], we know that there exists a compact quantum group bS = (B,∆B) equipped with a quantum
semigroup morphism χ ∈ Mor(B,C) and a coaction bΨ of S on C[Sn] such that

Ψ = (id⊗ χ)◦bΨ.

Moreover bΨ also preserves τ . It is easy to show that this new coaction is an isometric coaction of
bS on

(C[Sn], ℓ
2(Sn), D

)
. All this shows that considering only compact quantum group coactions

is not really restrictive: all quantum semigroup coactions (even non-compact ones) satisfying the
Podleś condition can always be realized by compact quantum group coactions.

In the next section we obtain the full description of the isometry groups of the spectral triples
on symmetric groups discussed above. Then, in Section 3 we define the doubling procedure
and show that, in the special case of a group algebra, the resulting object is indeed a certain
doubling of the original. Moreover, when the procedure is applied to the standard cocommuta-
tive Hopf algebra structure on C[Sn], the doubling turns out to be precisely the quantum group

Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
. In the last section we deal with the question left open in [6] whether

the quantum isometry group depends on the choice of the set of generators. We show that for
two different generating sets for S3 we obtain two different Hopf algebras. By results of [9] these
exhaust the list of non-commutative non-cocommutative semisimple Hopf algebras of dimension
12.

2. Quantum isometry group of
(C[Sn], ℓ

2(Sn), D
)

Let G = (A,∆A) be a compact quantum group and let

α : C[Sn] −→ C[Sn]⊗A

be a coaction of G on C[Sn] satisfying the Podleś condition. Then, due to finite dimensionality
of C[Sn], the image of α is contained in the (algebraic) tensor product C[Sn] ⊗ A , where A is
the Hopf ∗-algebra canonically associated with G (cf. [13, 14, 25]. Moreover α is a coaction of the
Hopf ∗-algebra (A ,∆A ). In particular we have

(id⊗ ǫ)◦α = id, (2.1)

where ǫ is the counit of (A ,∆A ).
Now we shall make two assumptions on the coaction α:

• the coaction preserves the subspace spanned by elements of length 1, i.e. for any j ∈
{1, . . . , n− 1} there exist elements u1,j, . . . , un−1,j ∈ A such that

α(sj) =
n−1∑

i=1

si ⊗ ui,j . (2.2)

• the canonical trace τ on C[Sn] is preserved by α on elements of length 0 and 2:

(τ ⊗ id)α(sksl) =

{1 k = l,

0 otherwise.
(2.3)

From the above conditions we shall derive a number of properties of (A,∆A) which will help us
determine the quantum isometry group of the spectral triple described in Section 1. Note that
if α is an isometric coaction (as defined in Subsection 1.1) then it certainly satisfies these two
conditions.

iThese conditions make sense despite the fact that the image of the morphism Ψ might lie outside C[Sn] ⊗ C,
cf. [17].
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Let us denote by u the matrix


u1,1 · · · u1,n−1

...
. . .

...

un−1,1 · · · un−1,n−1


 .

All matrix elements of u are selfadjoint. This is because the generators {s1, . . . , sn−1} are selfad-
joint, so that for each j

n−1∑

i=1

si ⊗ u
∗
i,j = α(sj)

∗ = α(sj) =

n−1∑

i=1

si ⊗ ui,j .

Now the equality u∗i,j = ui,j follows from linear independence of {s1, . . . , sn−1}.

Proposition 2.1. The matrix u is unitary.

Proof. We have

(τ ⊗ id)α(sksl) = (τ ⊗ id)

(( n−1∑

i=1

si ⊗ ui,k

)( n−1∑

j=1

sj ⊗ uj,l

))

= (τ ⊗ id)

( n−1∑

i,j=1

sisj ⊗ ui,kuj,l

)

=

n−1∑

i,j=1

τ (sisj)ui,kuj,l =

n−1∑

i=1

ui,kui,l.

We also know that all elements ui,j are selfadjoint, so that by formula (2.3) we have

u
∗
u = 1. (2.4)

On the other hand we know that the matrix u is invertible and the inverse is given by

(id⊗ S)u =



S(u1,1) · · · S(u1,n−1)

...
. . .

...

S(un−1,1) · · · S(un−1,n−1)


 .

where S is the antipode of (A ,∆A ). Indeed, since α is a coaction, we have

n−1∑

i=1

si ⊗∆A (ui,j) = (id⊗∆A )α(sj)

= (α⊗ id)α(sj) =
n−1∑

i=1

α(si)⊗ ui,j =
n−1∑

i=1

n−1∑

k=1

sk ⊗ uk,i ⊗ ui,j.

Therefore

∆A (uk,j) =

n−1∑

i=1

uk,i ⊗ ui,j .

The defining properties of the antipode of a Hopf algebra now show that

n−1∑

i=1

S(uk,i)ui,j =

n−1∑

i=1

uk,iS(ui,j) = ǫ(uk,j)1.
The fact that

ǫ(uk,j) =

{
1 k = j,

0 otherwise

follows from (2.2) and (2.1). Therefore u is invertible with inverse (id⊗S)u and by (2.4) we have

u
−1 = u

∗.

�
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Let us note a very useful corollary of the proof of Proposition 2.1:

Corollary 2.2. For all i, j ∈ {1, . . . , n− 1} we have

∆A (ui,j) =

n−1∑

k=1

ui,k ⊗ uk,j ,

S(ui,j) = uj,i.

Before continuing our analysis of the coaction α let us recall the following simple fact:

Lemma 2.3. Let C be a C∗-algebra and take a, b ∈ C with a = a∗. Then amb = 0 for some

m ∈ N implies ab = 0.

2.1. Implications of the relation s2
i = e. Fix i ∈ {1, . . . , n− 1}. We have

α(si)
2 = α(s2

i ) = e⊗ 1,
which means

n−1∑

j,k=1

sjsk ⊗ uj,iuk,i = e⊗ 1
and can be rewritten as

n−1∑

j=1

s2
j ⊗ uj,iuj,i +

∑

j<k

(sjsk ⊗ uj,iuk,i + sksj ⊗ uj,iuk,i) = e⊗ 1
Note that the only relations in Sn holding between products of two generators are

s2
i = e for all i ∈ {1, . . . , n− 1},

sisj = sjsi for all i, j ∈ {1, . . . , n− 1} with |i− j| > 1.
(2.5)

Remembering that the elements of a group taken as elements of the group algebra are linearly
independent we get the following relations:

∑

j

u2
j,i = 1, (2.6a)

uj,iuj+1,i = 0 = uj+1,iuj,i, 1 ≤ j ≤ n− 2, (2.6b)

uj,iuk,i + uk,iuj,i = 0, |j − k| > 1. (2.6c)

Relation (2.6a) follows, in fact, from the unitarity of u proved in Proposition 2.1. Applying the
antipode to (2.6b) and (2.6c) we get

ui,j+1ui,j = 0 = ui,jui,j+1, 1 ≤ j ≤ n− 2, (2.7a)

ui,kui,j + ui,jui,k = 0, |j − k| > 1. (2.7b)

2.2. Implications of the relation sisj = sjsi for |i− j| > 1. Now we take i, j ∈ {1, . . . , n− 1}
such that |i− j| > 1. Then α(si)α(sj) = α(sj)α(si). Therefore

( n−1∑

k=1

sk ⊗ uk,i

)( n−1∑

l=1

sl ⊗ ul,j

)
=

( n−1∑

m=1

sm ⊗ um,j

)( n−1∑

p=1

sp ⊗ up,i

)
,

i.e.
n−1∑

k,l=1

sksl ⊗ uk,iul,j =

n−1∑

m,p=1

smsp ⊗ um,jup,i.
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Recalling (2.5) and the linear independence of the generators in the group algebra we get

n−1∑

k=1

uk,iuk,j =

n−1∑

k=1

uk,juk,i, (2.8a)

uk,iuk+1,j = uk,juk+1,i, (2.8b)

uk+1,iuk,j = uk+1,juk,i, (2.8c)

uk,iul,j + ul,iuk,j = uk,jul,i + ul,juk,i, |k − l| > 1. (2.8d)

Both sides of (2.8a) are equal to 0 by unitarity of u. Moreover multiplying (2.8b) from the left
by uk,i and using (2.7b) and (2.6b) we obtain

u2
k,iuk+1,j = uk,iuk,juk+1,i = −uk,juk,iuk+1,i = 0.

By Lemma 2.3, uk,iuk+1,j = 0 and both sides of (2.8b) are actually 0. We can do the same trick
starting with (2.8c) thus

uk,iuk+1,j = 0 = uk,juk+1,i, (2.9a)

uk+1,iuk,j = 0 = uk+1,juk,i (2.9b)

for all k ∈ {1, . . . , n− 2}.
Applying the antipode to (2.9a), (2.9b) and (2.8d) yields

uj,k+1ui,k = 0 = ui,k+1uj,k, (2.10a)

uj,kui,k+1 = 0 = ui,kuj,k+1, (2.10b)

uj,lui,k + uj,kui,l = ui,luj,k + ui,kuj,l, |k − l| > 1. (2.10c)

Putting k = i and l = j in equations (2.8d) and (2.10c) and subtracting them we get

ui,iuj,j = uj,jui,i,

ui,juj,i = uj,iui,j
(2.11)

whenever |i− j| > 1.

2.3. Implications of the relation sisi+1si = si+1sisi+1. We now fix i ∈ {1, . . . , n − 2}. We
have α(si)α(si+1)α(si) = α(si+1)α(si)α(si+1), which reads

( n−1∑

j=1

sj ⊗ uj,i

)( n−1∑

k=1

sk ⊗ uk,i+1

)( n−1∑

l=1

sl ⊗ ul,i

)

=

( n−1∑

p=1

sp ⊗ up,i+1

)( n−1∑

q=1

sq ⊗ uq,i

)( n−1∑

r=1

sr ⊗ ur,i−1

)

in coordinates. Thus∑

j,k,l

sjsksl ⊗ uj,iuk,i+1ul,i =
∑

p,q,r

spsqsr ⊗ up,i+1uq,iur,i+1.

It is easy to see there is only one three letter word representing the element x = sqsq+1sq+2. It
follows that

uq,iuq+1,i+1uq+2,i = uq,i+1uq+1,iuq+2,i+1. (2.12)

Similarly, there is only one three letter word representing the element x = sq+2sq+1sq. Thus

uq+2,iuq+1,i+1uq,i = uq+2,i+1uq+1,iuq,i+1. (2.13)

Multiplying both sides of (2.12) from the left by uq,i and using (2.7a) we obtain

u2
q,iuq+1,i+1uq+2,i = uq,iuq,i+1uq+1,iuq+2,i+1 = 0,

so again, by Lemma 2.3 (and again by (2.12)), we have

uq,iuq+1,i+1uq+2,i = 0 = uq,i+1uq+1,iuq+2,i+1. (2.14)
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Similarly, starting from (2.13), we find that

uq+2,iuq+1,i+1uq,i = 0 = uq+2,i+1uq+1,iuq,i+1. (2.15)

Applying the antipode to (2.14) and (2.15) yields

ui,q+2ui+1,q+1ui,q = 0 = ui+1,q+2ui,q+1ui+1,q, (2.16a)

ui,qui+1,q+1ui,q+2 = 0 = ui+1,qui,q+1ui+1,q+2. (2.16b)

These are, of course, not all the relations on matrix elements of u that follow from the braid
relations on the generators (1.1). We shall return to this problem in Subsection 2.4.

2.4. Determination of Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
.

Proposition 2.4. The only potentially non-zero elements of the matrix u are on the diagonal and

anti-diagonal.

Proof. Take k ∈ {2, . . . , n− 2}. We will now show that u1,k = 0. First of all, by (2.6a), we have

u1,k =

n−1∑

i=1

u2
i,k−1u1,k.

Now (2.10b) shows that the sum above has at most two non-zero terms:

u1,k = u2
1,k−1u1,k + u2

2,k−1u1,k.

Furthermore, by (2.7a), the first of these terms is zero, so

u1,k = u2
2,k−1u1,k.

Multiplying both sides of this relation from the right by u2,k+1 we get

u1,ku2,k+1 = u2,k−1(u2,k−1u1,ku2,k+1),

which is zero by (2.16b). Thus
u1,ku2,k+1 = 0. (2.17)

Now, again by (2.6a), we have

u1,k =

n−1∑

i=1

u1,ku
2
i,k+1

and the sum contains only one the term (by (2.10b) and (2.7a)):

u1,k = u1,ku
2
2,k+1 = (u1,ku2,k+1)u2,k+1.

But by (2.17) the product in parentheses is zero, so u1,k = 0.
Applying the antipode we also find that

uk,1 = 0, 2 ≤ k ≤ n− 2.

Using the same technique to treat elements in the last row of u we also conclude that

uk,n−1 = un−1,k = 0, 2 ≤ k ≤ n− 2.

This means that

u =




u1,1 0 · · · 0 u1,n−1

0
...

0

[
u2,2 ··· u2,n−2

..

.
. . .

..

.
un−2,2 ··· un−2,n−2

] 0
...

0
un−1,1 0 · · · 0 un−1,n−1




(2.18)

Consider now the sub-matrix u
′ of u chosen as indicated in (2.18). Then the technique used to

deal with the first and last columns and rows of u applies in exactly the same way to u
′ (note

that the sum of squares of elements of rows/columns of u′ is clearly equal to 1). Thus we can
proceed by induction and, depending on the parity of n, arrive at either a 2 × 2 or 1 × 1 matrix.
In both cases it is comprised solely of diagonal and anti-diagonal elements. �
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We now know that the matrix u must have the following special form depending on the parity
of n:

n = 2p+ 1 n = 2p

u =




a1 b1
a2 b2

. . . . .
.

ap bp
bp+1 ap+1

. .
. . . .

b2p−1 a2p−1

b2p a2p




u =




a1 b1
. . . . .

.

ap−1 bp−1

c

bp+1 ap+1

. .
. . . .

b2p−1 a2p−1




where {a1, . . . , a2p, b1, . . . , b2p} (and {a1, . . . , ap−1, ap+1, . . . , a2p−1, b1, . . . , bp−1, bp+1, . . . , b2p−1, c}
respectively) are certain elements of A . We will use these symbols until the end of this section.

In the notation introduced above, the formula for the coaction α simplifies to:

α(si) = si ⊗ ai + sn−i ⊗ bn−i (2.19)

(valid for for all i if n = 2p+ 1, and for i 6= p for n = 2p). In the situation n = 2p, i = p we have

α(sp) = sp ⊗ c.

Let us investigate some consequences of this new formula for α in the case n = 2p. We have
α(spsp+1sp) = α(sp+1spsp+1), so

spsp+1sp⊗ cap+1c+ spsp−1sp ⊗ cbp−1c = sp+1spsp+1 ⊗ ap+1cap+1

+ sp−1spsp+1 ⊗ bp−1cap+1 + sp+1spsp−1 ⊗ ap+1cbp−1 + sp−1spsp−1 ⊗ bp−1cbp−1.

This formula simplifies by (2.14) and (2.15) to read

spsp+1sp ⊗ cap+1c+ spsp−1sp ⊗ cbp−1c

= sp+1spsp+1 ⊗ ap+1cap+1 + sp−1spsp−1 ⊗ bp−1cbp−1.

Applying the same reasoning to the formula α(sp−1spsp−1) = α(spsp−1sp) we get

spsp−1sp ⊗ cap−1c+ spsp+1sp ⊗ cbp+1c

= sp−1spsp−1 ⊗ ap−1cap−1 + sp+1spsp+1 ⊗ bp+1cbp+1.

Thus we obtain:

cap+1c = ap+1cap+1, (2.20a)

cbp−1c = bp−1cbp−1,

cap−1c = ap−1cap−1, (2.20b)

cbp+1c = bp+1cbp+1.

Before stating the next theorem let us adopt the following convention: in the case of even
n = 2p we will define ap and bp as

ap = ca2
1, bp = cb21. (2.21)

Since a2
1 + b21 = 1 we have ap + bp = c. Note that with this definition of ap and bp formula (2.19)

applies universally — regardless of parity of n. From now on whenever we refer to either
{
a1, . . . , an−1

}
or

{
b1, . . . , bn−1

}

we mean the elements on the diagonal/anti-diagonal of u (in case of odd n) or the elements on
the diagonal/anti-diagonal of u with ap or bp (as defined in (2.21)) instead of c (in case of even
n).

Theorem 2.5.

(1) For any i, j ∈ {1, . . . , n− 1} we have aibj = bjai = 0,
(2) for any j ∈ {1, . . . , n− 1} the elements a2

i and b2i are central projections in A,

(3) we have a2
1 = a2

2 = · · · = a2
n−1 and b21 = b22 = · · · = b2n−1 = 1− a2

1,
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(4) the elements of {a1, . . . , an−1} and {b1, . . . , bn−1} satisfy
(a) aiai+1ai = ai+1aiai+1 and bibi+1bi = bi+1bibi+1 for all i ∈ {1, . . . , n− 1},
(b) aiaj = ajai and bibj = bjbi whenever |i− j| > 1.

Proof. Ad (1). Let us first look at the case n = 2p+ 1. We have for i ∈ {1, . . . , n− 2}

ai = ai(a
2
i+1 + b2i+1) = aia

2
i+1 + aib

2
i+1

and since aibi+1 = 0 (by (2.9a) and (2.6b)), we get

ai = aia
2
i+1. (2.22)

Similarly for k ∈ {2, . . . , n− 1} we have

ak = aka
2
k−1. (2.23)

Consider now the product aibj for some i, j ∈ {1, . . . , n− 1}. We have several cases

• i = j < n− 1: then aibj = aia
2
i+1bi = 0 because ai+1bi = 0,

• i = j = n− 1: then aibj = aia
2
i−1bi = 0 because ai−1bi = 0,

• |i− j| = 1: then aibj = 0 by either (2.9), (2.10), (2.7a) or (2.6b),
• i < j − 1: then aibj = aia

2
i+1bj = · · · = aia

2
i+1 · · ·a

2
j−1bj = 0 because a2

j−1bj = 0,

• i > j + 1: then aibj = aia
2
i−1bj = · · · = aia

2
i−1 · · ·a

2
j+1bj = 0 because a2

j+1bj = 0.

A similar reasoning (or usage of the antipode) leads to the conclusion that bjai is also zero. This
proves (1) in the case of odd n.

In the case of n = 2p equations (2.22) and (2.23) are verified in an analogous manner for

i ∈
{
1, . . . , p− 2

}
, k ∈

{
2, . . . , p− 1

}

and

i ∈
{
p+ 1, . . . , n− 2

}
, k ∈

{
p+ 2, . . . , n− 1

}
.

It follows that the only products which might potentially be non-zero are

◮ product between elements from {ap−1, ap+1} and {bp−1, bp+1},
◮ products of any ai with bp and any bi with ap.

Before addressing these products let us quickly see that a2
1 and b21 commute with c. If p > 2

then it obviously follows from the first equation of (2.11). Now we prove this for p = 2, or in other
words, a1 = ap−1. Since a

2
p−1 + b

2
p−1 = 1, it is enough to prove that a2

p−1c = ca2
p−1. Remembering

that c2 = 1 we compute using (2.20b)

a2
p−1 = ap−1c

2ap−1c = ap−1c cap−1c

= ap−1cap−1 cap−1 = cap−1c cap−1 = ca2
p−1.

(2.24)

Note that the same technique shows also that a2
p+1 and b2p+1 commute with c, i.e.

a2
p+1c = ca2

p+1. (2.25)

We now return to products of the first type described above. We have by (2.20b) (or (2.20a))
and (2.24) (or (2.25))

ap±1 = c2ap±1c
2 = c cap±1c c

= cap±1c ap±1c = ap±1ca
2
p±1c

= ap±1a
2
p±1c

2 = a3
p±1.

(2.26)

Now we have
ap±1 = ap±1(a

2
p±1 + b2p±1) = a2

p±1 + ap±1b
2
p±1.

By (2.26), ap±1b
2
p±1 = 0, or taking adjoints of both sides, b2p±1ap±1 = 0. Therefore, by Lemma

2.3 we have
bp±1ap±1 = 0. (2.27)

Starting with
ap±1 = (a2

p±1 + b2p±1)ap±1
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we obtain
ap±1bp±1 = 0. (2.28)

Applying the antipode to (2.27) and (2.28) we find that

ap±1bp∓1 = 0 and bp∓1ap±1 = 0.

Having established that
a2

1c− ca
2
1 = b21c− cb

2
1 = 0

we easily see that not only

apbr = ca2
1br = 0, 1 ≤ r ≤ n− 1,

but also
brap = brca

2
1 = bra

2
1c = 0, 1 ≤ r ≤ n− 1.

This finishes the proof of (1).
Ad (4). Take first i ∈ {1, . . . , n− 2} such that i, i+1 6= n

2 (if this conditions is applicable). The
formula α(sisi+1si) = α(si+1sisi+1) leads to

sisi+1si ⊗ aiai+1ai + sisi+1sn−i ⊗ aiai+1bn−i

+ sisn−i−1si ⊗ aibn−i−1ai + sisn−i−1sn−i ⊗ aibn−i−1bn−i

+ sn−isi+1si ⊗ bn−iai+1ai + sn−isi+1sn−i ⊗ bn−iai+1bn−i

+ sn−isn−i−1si ⊗ bn−ibn−i−1ai + sn−isn−i−1sn−i ⊗ bn−ibn−i−1bn−i

= si+1sisi+1 ⊗ ai+1aiai+1 + si+1sisn−i−1 ⊗ ai+1aibn−i−1

+ si+1sn−isi+1 ⊗ ai+1bn−iai+1 + si+1sn−isn−i−1 ⊗ ai+1bn−ibn−i−1

+ sn−i−1sisi+1 ⊗ bn−i−1aiai+1 + sn−i−1sisn−i−1 ⊗ bn−i−1aibn−i−1

+ sn−i−1sn−isi ⊗ bn−i−1bn−iai + sn−i−1sn−isn−i−1 ⊗ bn−i−1bn−ibn−i−1.

Since by (1) all products between ai’s and bj’s are zero, all the middle terms on both sides are
equal to 0. Thus we obtain

sisi+1si ⊗ aiai+1ai + sn−isn−i−1sn−i ⊗ bn−ibn−i−1bn−i

= si+1sisi+1 ⊗ ai+1aiai+1 + sn−i−1sn−isn−i−1 ⊗ bn−i−1bn−ibn−i−1.

We have explicitly ruled out the possibility i = n
2 , so sisi+1si 6= sn−isn−i−1sn−i in all cases except

when i+ 1 = n− i, which means that n = 2p+ 1 and i = p. Therefore, by linear independence of
group elements inside C[Sn], we obtain

aiai+1ai = ai+1aiai+1 and bn−ibn−i−1bn−i = bn−i−1bn−ibn−i−1.

when i 6= n−1
2 .

In the case n = 2p+ 1, i = p we obtain a seemingly weaker relation

apap+1ap + bp+1bpbp+1 = ap+1apap+1 + bpbp+1bp, (2.29)

but applying to both sides the antipode yields

apap+1ap + bpbp+1bp = ap+1apap+1 + bp+1bpbp+1. (2.30)

Comparing (2.29) and (2.30) we obtain

apap+1ap = ap+1apap+1 and bp+1bpbp+1 = bpbp+1bp.

The last case to consider is the case n = 2p and i = p− 1 or i = p. This we easily obtain from
(2.20) by putting in c = ap + bp and using the fact that products between ai’s and bj’s are zero.

The commutativity of ai and aj (as well as bi with bj) for |i− j| > 1 follows from (2.11).
Ad (2) and (3). Take any i, j ∈ {1, . . . , n− 1}. We have

aj = aj(a
2
i + b2i ) = aja

2
i and aj = (a2

i + b2i )aj = a2
i aj . (2.31)

Since ai clearly commutes with all bj’s we see that a2
i is central for all i. Since b2i = 1 − a2

i , the
elements b2i are also central. Putting j = i in (2.31) we get ai = a3

i , so a
2
i is a projection (and

thus so is b2i ). This proves (2).
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Using (2.31) once for (i, j) and once for (j, i) we find that

a2
j = a2

ja
2
i = a2

i

which finishes the proof of (3). �

Equipped with the conclusion of Theorem 2.5 we easily see that the subalgebra of A generated
by the entries of u is a quotient of the direct sum C[Sn]⊕C[Sn]. Let α : C[Sn]→ C[Sn]⊗

(C[Sn]⊗C[Sn]
)
be given by

α(si) = si ⊗ σi + sn−i ⊗ τn−i, (2.32)

where σ1, . . . , σn−1 are the generators s1, . . . , sn−1 in the first copy of C[Sn] inside C[Sn]⊕ C[Sn]
and by τ1, . . . , τn−1 are the same generators in the second copy. Then α is a coaction ofK =

(C[Sn]⊕ C[Sn],∆
)

(2.33)

with

∆(σi) = σi ⊗ σi + τi ⊗ τn−i,

∆(τi) = σi ⊗ τi + τi ⊗ σn−i

on C[Sn]. We will show in Subsection 2.5 that this coaction is isometric in the sense described in
Subsection 1.1. Moreover, by Theorem 2.5, for any isometric α of G = (A,∆A) there is a unique
Φ: C[Sn]⊕ C[Sn]→ A such that

Φ(ai) = σi and Φ(bi) = τi, 1 ≤ i ≤ n− 1.

Finally Φ is easily seen to be a quantum group morphism and to satisfy

α = (id⊗ Φ)◦α. (2.34)

It follows that K is the universal compact quantum group coacting isometrically on the spectral
triple

(C[Sn], ℓ
2(Sn), D

)
.

In the next section we will describe a different way to obtain the quantum group

Q̃ISO+
(C[Sn], ℓ

2(Sn), D
)
= K =

(C[Sn]⊕ C[Sn],∆
)

from C[Sn].

2.5. The coaction α. In this subsection we quickly verify that the coaction α of (2.33) defined
in (2.32) is isometric. Let θ be the automorphism of C[Sn] mapping si to sn−1 and let β be the
automorphism of C[Sn]⊕ C[Sn] given by

β(σi) = σn−i, β(τj) = τn−j

(so β is the automorphism θ acting in both copies of C[Sn] simultaneously). Moreover let ψ be
the algebra homomorphism

ψ : C[Sn]→ C[Sn]⊗
(C[Sn]⊕ C[Sn]

)

given on generators by
ψ(si) = si ⊗ σi.

Then
α(x) = ψ(x) + (θ ⊗ β)

(
ψ(x)

)
(2.35)

for all x ∈ C[Sn]. If D̂ is the Dirac operator of the spectral triple
(C[Sn], ℓ

2(Sn), D
)
considered as

a map C[Sn]→ C[Sn] (cf. Subsection 1.1) then we easily see that

ψ◦D̂ = (D̂ ⊗ 1)◦ψ.
Also, we clearly have D̂◦θ = θ◦D̂, so by (2.35) we get

α◦D̂ = (D̂ ⊗ 1)◦α.
Recall that in order to derive conditions on the matrix elements of u in Section 2 we only

assumed that the considered coaction preserves the subspace of elements of length 1 (Eq. (2.2)) and
the canonical trace τ is preserved under α on elements of length 0 and 2 (eq. (2.3)). Nevertheless,
the conclusion was that α is related to α via formula (2.34). Since α is isometric, it follows that
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the weaker conditions on α assumed in the beginning of Section 2 actually imply the stronger
condition of being an isometric coaction.

3. Doubling procedure

In this section we will describe a simple procedure which out of a regular multiplier Hopf algebra
with invariant functionals endowed with an order two automorphism produces a new regular
multiplier Hopf algebra with invariant functionals. This will be called the doubling procedure. The
name will be justified by the example presented in Subsection 3.2.

We refer to the standard sources [21, 22] for the theory of multiplier Hopf algebras and their
duality. For an algebra A (always over C) with non-degenerate product the symbol M (A ) will
denote the algebraic multiplier algebra of A (cf. [21]).

3.1. The procedure. Let (A ,∆) be a regular multiplier Hopf algebra with invariant functionals
(cf. [22] for the definition of such objects) and let θ : A → A be an automorphism of (A ,∆),
i.e. an automorphism of A such that

(θ ⊗ θ)◦∆ = ∆◦θ

(while it is quite easy to show that θ(A ) = A , on the left hand side one needs to consider the
unique extension of (θ⊗ θ) to a homomorphism M (A ⊗A )→M (A ⊗A )). The first important

fact is that the adjoint of the map θ on the linear dual of A restricts to a map Â → Â . Indeed,
this follows from the fact that if ϕ is a non-zero left invariant functional on A then so is, ϕ◦θ. By
the uniqueness of invariant functionals ϕ◦θ = cϕ for some non zero constant c. It follows that for
any a ∈ A

ϕ(a ·)◦θ = ϕ
(
cθ−1(a) ·

)
.

This way we define the dual of θ which is in fact an automorphism of (Â , ∆̂). We will denote this

automorphism by θ̂.
Now let us consider the special case when θ is an order-two automorphism. Let B be the

crossed product Â ⋊
θ̂
Z2. The algebra B can be identified with the algebra of matrices

{[
x y

θ̂(y) θ̂(x)

]
x, y ∈ Â

}
.

(see e.g. [20, Part I, Example 2.11] and [11, Remark before Proposition 7.5]). Note that the
mapping

ı : Â ∋ x 7−→

[
x 0

0 θ̂(x)

]
∈ B

is a non-degenerate homomorphism.ii Moreover there is a multiplier U of B such that U2 = 1 and

Uı(x)U = ı
(
θ̂(x)

)

for all x ∈ Â . Indeed, U =
(

0 11 0

)
. If C is another algebra with non-degenerate product equipped

with a non-degenerate mapping  : Â →M (C ) and an element V ∈M (C ) such that V 2 = 1 and

V (x)V = 
(
θ̂(x)

)

for all x ∈ Â then there exists a unique non-degenerate map Λ: B →M (C ) such that

Λ
(
ı(x)

)
= (x)

for all x ∈ Â and Λ(U) = V . Indeed, uniqueness of Λ is immediate, since any element of B is a

sum of elements of the form ı(x) with x ∈ Â and ı(y)U with y ∈ Â . On the other hand if  and
V are as above then the algebra generated inside M (C ) by the image of  and by V is clearly an
image of the matrix algebra B. Non-degeneracy of Λ follows from the non-degeneracy of  (the
image of Λ contains the image of ).

iiFor this one should use the local units of A , cf. [8, Proposition 2.6].
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Now consider C = B⊗B with  : Â ∋ x 7→ (ı⊗ ı)∆̂(x) and V = U ⊗U . Let the corresponding
unique map B →M (B ⊗B) be denoted by ∆B. It is straightforward that ∆B is a comultipli-
cation which makes B into a regular multiplier Hopf algebra. The counit and antipode of B are
given by

ǫB

([
x y

θ̂(y) θ̂(x)

])
= ǫ̂(x), SB

([
x y

θ̂(y) θ̂(x)

])
=

[
Ŝ(x) Ŝ(y)

θ̂
(
Ŝ(y)

)
θ̂
(
Ŝ(x)

)
]
,

where ǫ̂ and Ŝ are counit and antipode of (Â , ∆̂).iii

The regular multiplier Hopf algebra (B,∆B) is easily seen to admit invariant functionals: if ϕ̂

and ψ̂ are left and right invariant functionals on Â then

ϕB

([
x y

θ̂(y) θ̂(x)

])
= ϕ̂(x) and ψB

([
x y

θ̂(y) θ̂(x)

])
= ψ̂(x)

define invariant functionals on (B,∆B).

The doubling (Ã , ∆̃) of (A ,∆, θ) is by definition the multiplier Hopf algebra dual to (B,∆B).

One can easily see that (A ,∆) is a quotient of (Ã , ∆̃). In fact, the construction of the doubling
is fully analogous to the operation of semidirect product by Z2 in group theory. In particular it
does not lead out of the class of commutative multiplier Hopf algebras.

3.2. Example. Now let us apply the construction discussed above to the case of a group algebraC[G] of a discrete groupG with an order two automorphism θ. The dual Â of A is then the algebra

of finitely supported functions on G with comultiplication ∆̂ coming from group multiplication:

∆̂(f)(x, y) = f(xy)

for f ∈ Â and x, y ∈ G. The delta functions {δx}x∈G for a basis of Â and

∆̂(δx) =
∑

ab=x

δa ⊗ δb

where the possibly infinite sum clearly defines a multiplier of Â ⊗Â . Note that the multiplication

in Â is the usual pointwise multiplication of functions on G, so δx multiplied by δy is non-zero if
and only if x = y and then the product is δx.

The functional
Â ∋ f 7−→

∑

x∈G

f(x)

is both left and right invariant. The crossed product algebra B defined in Subsection 3.1 is

isomorphic as an algebra with Â ⊕ Â with multiplication

(f, g)(u, v) =
(
fu+ gθ̂(v), fv + gθ̂(u)

)
,

where θ̂(u) = u◦θ for any u ∈ Â . The inclusion ı : Â →֒M (B) is given by f 7→ (f, 0), while the
multiplier U is (0, 1). Suppressing ı we can treat δx and δyU as an elements (δx, 0) and (0, δy) of
B. With this notation we have for any x, y ∈ G

∆B(δx) =
∑

ab=x

δa ⊗ δb, ∆B(δyU) =
∑

ab=y

δaU ⊗ δbU.

The set {δx}x∈G ∪ {δyU}y∈G is a basis of B.
Let h be the left and right invariant functional on B

h
(
(f, g)

)
=

∑

x∈G

f(x).

Now consider the functionals {ξx}x∈G and {ηy}y∈G defined by

ξx = h( · δx), and ηy = h( ·Uδy).

iiiTo see that ǫB and SB satisfy the desired properties one must use the simple fact that ǫ̂◦θ̂ = ǫ̂ and Ŝ◦θ̂ =

θ̂◦Ŝ = Ŝ.
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By construction they belong to Ã = B̂ and one immediately sees that they span this space.
Moreover it is easy to see that

ξx(δz) =

{
1 z = x,

0 otherwise,
ηy(δzU) =

{
1 z = y,

0 otherwise

and
ξx(Uδz) = 0 = ηy(δz)

for all x, y, z ∈ G.

Multiplication in Ã is dual to comultiplication in B. It follows from a simple computation that

ξxξy = ξxy, ξxηy = ηyξx = 0, ηxηy = ηxy.

Therefore Ã is, as an algebra, isomorphic to the direct sum of two copies of the group algebra of
G:

Ã ∼= C[G]⊕ C[G]
with {ξx}x∈G corresponding to the canonical basis of the first copy of C[G] and {ηy}y∈G corre-

sponding to the canonical basis of the second copy. Let us note that, in particular, Ã is unital.

We shall now describe the comultiplication on Ã . This is very simple, since the remark after

[22, Definition 4.4] says that for any ξ ∈ Ã = B̂ we have

∆̃(ξ) (Ξ⊗Θ) = ξ(ΞΘ).

for all Ξ,Θ ∈ B. Since

∆̃(ξx)(δy ⊗ δz) = h(δyδzδx) =

{
1 x = y = z,

0 otherwise,

∆̃(ξx)(δy ⊗ δzU) = h(δyδzUδx) = 0,

∆̃(ξx)(δyU ⊗ δz) = h(Uδyδzδx) = 0,

∆̃(ξx)(δyU ⊗ δzU) = h(δyUδzUδx) = h(δyδθ(z)δx) =

{
1 x = y = θ(z),

0 otherwise

and

∆̃(ηx)(δy ⊗ δz) = h(δyδzUδx) = 0,

∆̃(ηx)(δy ⊗ δzU) = h(δyδzδx) =

{
1 x = y = z,

0 otherwise,

∆̃(ηx)(δyU ⊗ δz) = h(δyUδzUδx) = h(δyδθ(z)δx) =

{
1 x = y = θ(z),

0 otherwise

∆̃(ηx)(δyU ⊗ δzU) = h(δyUδzδx) = 0

we have

∆̃(ξx) = ξx ⊗ ξx + ηx ⊗ ηθ(x),

∆̃(ηx) = ξx ⊗ ηx + ηx ⊗ ξθ(x).

If we still denote by θ the canonical extension of θ to an automorphism of Ã = C[G]⊕ C[G] then
we can write

∆̃(ξx) = ξx ⊗ ξx + ηx ⊗ θ(ηx),

∆̃(ηx) = ξx ⊗ ηx + ηx ⊗ θ(ξx).
(3.1)

Let us specify the situation further and take G = Sn. As in previous sections let us denote by
σ1, . . . , σn−1 the transpositions s1, . . . , sn−1 in the first copy of C[Sn] inside C[Sn]⊕C[Sn] and by
τ1, . . . , τn−1 the same transpositions in the second copy. Let θ be the automorphism of Sn given
by conjugation with the unique word of maximal length (on the considered generators). Then
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θ(σi) = σn−i and θ(τi) = τn−i for all i. In particular the formula (3.1) gives the comultiplication
∆ on C[Sn]⊕ C[Sn] obtained via the doubling procedure for θ as

∆(σi) = σi ⊗ σi + τi ⊗ τn−i,

∆(τi) = σi ⊗ τi + τi ⊗ σn−i.

This means that the matrix 


σ1 τ1
σ2 τ2

. . . . .
.

. .
. . . .

τn−2 σn−2

τn−1 σn−1




(in case n is even, the middle element of the matrix is σn

2
+ τn

2
) is a corepresentation of the finite

quantum group K =
(C[Sn]⊕ C[Sn],∆

)
. This completes the proof of Theorem 1.1.

4. The quantum isometry groups for S3 with different sets of generators

In [6, Section 4] quantum isometry groups of spectral triples on S3 were discussed. The two
spectral triples were related to two different sets of generators used to define the length function
on S3 and the corresponding Dirac operator.

In order to formulate the precise result of the work of Bhowmick and Skalski let us denote by
A the C∗-algebra C[S3]⊕C[S3] and let σ1, σ2 and τ1, τ2 denote the transpositions s1 and s2 in the
first and second copy of C[S3] inside A respectively (just as in Sections 1–3).

Then we have

(1) The quantum isometry group of S3 with the generating set {s1, s2} isK1 = (A,∆1),

whereiv

∆1(σ1) = σ1 ⊗ σ1 + τ1 ⊗ τ2, ∆1(τ1) = τ1 ⊗ σ2 + σ1 ⊗ τ1,

∆1(σ2) = σ2 ⊗ σ2 + τ2 ⊗ τ1, ∆1(τ2) = τ2 ⊗ σ1 + σ2 ⊗ τ2.

The coaction of K1 on C[S3] is given on generators by

α1(s1) = s1 ⊗ σ1 + s2 ⊗ τ2,

α1(s2) = s1 ⊗ σ2 + s1 ⊗ τ1.

(This is in full analogy to the cases n > 3 discussed in previous sections.)
(2) The quantum isometry group of S3 with the generating set {s1, s1s2, s2s1} isK2 = (A,∆2),

where

∆2(σ1) = σ1 ⊗ σ1 + τ1 ⊗ τ1, ∆2(τ1) = τ1 ⊗ σ1 + σ1 ⊗ τ1,

∆2(σ2) = σ2 ⊗ σ2 + τ1τ2τ1 ⊗ τ2, ∆2(τ2) = τ2 ⊗ σ2 + σ1σ2σ1 ⊗ τ2.

The coaction of K2 on C[S3] is given on generators by

α2(s1) = s1 ⊗ (σ1 + τ1),

α2(s2) = s2 ⊗ σ2 + s1s2s1 ⊗ τ2

(the elements s2 and s1s2s1 are, in this case, of length two).

ivPlease note that the formulas for comultiplication in this and the next case hinted upon in [6] are slightly
incorrect.
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In both cases we obtain a non-commutative and non-cocommutative Hopf algebra of dimension
12. By the results of [9] there are only two such Hopf algebras up to isomorphism. Our aim in
this section is to show that K1 is not isomorphic to K2. This, in particular, shows that the Hopf
algebras constructed by Fukuda in [9] have a (non-commutative) geometric origin. We will prove
that K1 is not isomorphic to K2 by assuming that indeed there is an automorphism ϕ of A such
that

(ϕ ⊗ ϕ)◦∆1 = ∆2◦ϕ (4.1)

and then showing that this leads to a contradiction.
Let µ be the multiplication map A⊗A→ A and define two linear maps T1, T2 : A→ A as

Ti = µ◦∆i, i = 1, 2. (4.2)

Denote by eσ and eτ the neutral elements of S3 sitting in the first and second copy of C[S3] inside
A. The set {

eσ, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1, eτ , τ1, τ2, τ1τ2, τ2τ1, τ1τ2τ1
}

(4.3)

is a basis of A. We have

T1(eσ) = eσ + eτ , T2(eσ) = eσ + eτ ,

T1(σ1) = eσ + τ1τ2, T2(σ1) = eσ + τ1τ2,

T1(σ2) = eσ + τ2τ1, T2(σ2) = eσ + τ2τ1,

T1(σ1σ2) = σ2σ1 + eτ , T2(σ1σ2) = σ2σ1 + eτ ,

T1(σ2σ1) = σ1σ2 + eτ , T2(σ2σ1) = σ1σ2 + eτ ,

T1(σ1σ2σ1) = eσ + eτ , T2(σ1σ2σ1) = eσ + τ1τ2

and the values of T1 and T2 on the remaining vectors of the basis (4.3) are zero.
As the map ϕ is multiplicative (i.e. ϕ◦µ = µ◦(ϕ⊗ ϕ)), from (4.1) and (4.2) we infer that

ϕ◦T1 = T2◦ϕ. (4.4)

Since eσ + eτ = 1 (the unit of A) we have ϕ
(
T1(σ1σ2σ1)

)
= 1 and by (4.4) T2

(
ϕ(σ1σ2σ1)

)
= 1.

This means that ϕ(σ1σ2σ1) differs from eσ by an element of kerT2. It is easy to check that

kerT2 = span
{
σ2 − σ1σ2σ1, eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1

}
.

Therefore

ϕ(σ1σ2σ1) = eσ + λ(σ2 − σ1σ2σ1) + comb(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1), (4.5)

where comb(· · · ) represents some linear combination of elements in parentheses. Furthermore

(σ1σ2σ1)
2 = eσ,

so that
ϕ(σ1σ2σ1)

2 = ϕ
(
(σ1σ2σ1)

2
)
= ϕ(eσ). (4.6)

But T1(eσ) = 1 as well, so T2

(
ϕ(eσ)

)
= ϕ

(
T1(eσ)

)
= 1. This means that also

ϕ(eσ) = eσ + λ′(σ2 − σ1σ2σ1) + comb′(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1). (4.7)

Inserting (4.5) and (4.7) into (4.6) we get

eσ + 2λ2eσ − λ
2(σ1σ2 + σ2σ1) + λ(σ1 − σ1σ2σ1) +

(
comb(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1)

)2

= eσ + λ′(σ2 − σ1σ2σ1) + comb′(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1).

Using linear independence of the group elements in the group algebra we find that λ = 0 and in
consequence λ′ = 0. This reduces (4.5) and (4.7) to

ϕ(σ1σ2σ1) = eσ + comb(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1),

ϕ(eσ) = eσ + comb′(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1).
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Clearly ϕ(eσ) is a projection and so must be comb′(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1). However, the
image of eσ under an automorphism cannot be a projection strictly bigger than eσ. In order to
see this we can realize A concretely as a multi-matrix algebra

A = C⊕M2(C) ⊕ C⊕ C⊕M2(C)⊕ C ⊂M8(C)
and use the fact that in an automorphism of a multi-matrix algebra leaves invariant the rank of a
matrix. It follows that comb′(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1) = 0 and

ϕ(eσ) = eσ.

The same argument, that the rank of the matrices σ1σ2σ1 and ϕ(σ1σ2σ1) must be equal to 4
(both σ1σ2σ1 and eσ are invertible in the first summand C[S3] in A), shows that the rank of
comb(eτ , τ1, τ2, τ1τ2, τ2, τ1, τ1τ2τ1) is zero, so that

ϕ(σ1σ2σ1) = eσ.

This means that σ1σ2σ1 − eσ belongs to the kernel of ϕ, so that ϕ cannot be an automorphism of
A.

In the paper [9] the list of all 12-dimensional semisimple Hopf algebras over algebraically closed
fields of characteristic different from 2 and 3 was given. Apart from commutative and cocommu-
tative ones there are only two non-commutative and non-commutative Hopf algebras in this class.
These two are denoted by A+ and A− respectively. As algebras they are both isomorphic to our
algebra A. The presentation of A± used in [9] is the following: A± is the algebra generated by
three elements a, b and c such that

c2 = c, a3 = b2 = 1, bab = a2, ac = ca, bc = cb.

The comultiplications of A± are

∆+(a) = ac⊗ a+ a(1− c)⊗ a2, ∆−(a) = ∆+(a),

∆+(b) = b⊗ b, ∆−(b) = bc⊗ b+ b(1− c)⊗ c(2c− 1),
∆+(c) = c⊗ c+ (1− c)⊗ (1− c), ∆−(c) = ∆+(c).

Consider the identification of A+ with A defined by

a←→ σ1σ2 + τ1τ2, b←→ σ1 + τ1, c←→ eσ.

This isomorphism of algebras is easily seen to be an anti-isomorphism of coalgebra between A+

and (A,∆2). This means that K2 is isomorphic to the Hopf algebra co-opposite to A+. Since the
isomorphism classes of A+ and A− are determined by their groups of group-like elements of the
respective Hopf algebras ([9]), we see that A± is isomorphic to its co-opposite Hopf algebra. In
particular K2 is isomorphic to A+ and consequently K1 is isomorphic to A−.
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suggestions.
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