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1 Umbilical submanifolds of Sn × R.

Bruno Mendonça & Ruy Tojeiro

Abstract

We give a complete classification of umbilical submanifolds of arbitrary dimen-

sion and codimension of Sn ×R, extending the classification of umbilical surfaces

in S2 × R by Rabah-Souam and Toubiana as well as the local description of um-

bilical hypersurfaces in Sn × R by Van der Veken and Vrancken. We prove that,

besides small spheres in a slice, up to isometries of the ambient space they come in

a two-parameter family of rotational submanifolds whose substantial codimension

is either one or two and whose profile is a curve in a totally geodesic S1 × R or

S2×R, respectively, the former case arising in a one-parameter family. All of them

are diffeomorphic to a sphere, except for a single element that is diffeomorphic

to Euclidean space. We obtain explicit parametrizations of all such submanifolds.

We also study more general classes of submanifolds of Sn×R and Hn×R. In par-

ticular, we give a complete description of all submanifolds in those product spaces

for which the tangent component of a unit vector field spanning the factor R is

an eigenvector of all shape operators. We show that surfaces with parallel mean

curvature vector in Sn×R and Hn×R having this property are rotational surfaces.

We also prove a Dajczer-type reduction of codimension theorem for submanifolds

of Sn × R and Hn × R.

1 Introduction

Roughly speaking, a submanifold of a Riemannian manifold is totally umbilical, or simply
umbilical, if it is equally curved in all tangent directions. More precisely, an isometric
immersion f : Mm → M̃n between Riemannian manifolds is umbilical if there exists a
normal vector field ζ along f such that its second fundamental form αf : TM × TM →
NfM with values in the normal bundle satisfies αf(X, Y ) = 〈X, Y 〉ζ for all X, Y ∈ TM .

Umbilical submanifolds are the simplest submanifolds after the totally geodesic ones
(for which the second fundamental form vanishes identically), and their knowledge sheds
light on the geometry of the ambient space.

Apart from space forms, however, there are few Riemannian manifolds for which
umbilical submanifolds are classified. Recently, this was accomplished for all three-
dimensional Thurston geometries of non-constant curvature as well as for the Berger
spheres in [14]. The richest case turned out to be that of the product spaces S2×R and
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H2 × R. For these manifolds, it was shown that, up to isometries of the ambient space,
umbilical nontotally geodesic surfaces come in a one-parameter family of rotational
surfaces, whose profile curves have been completely determined in terms of solutions of
a certain ODE.

A local description of umbilical hypersurfaces of Sn×R andHn×R of any dimension n
was given in [16] and [5], respectively. Again, the nontotally geodesic ones are rotational
hypersurfaces over curves in totally geodesic products S1 ×R and H1 ×R, respectively.

In this paper we give a complete classification of umbilical submanifolds of arbitrary
dimension and codimension of Sn × R. To state our result, for a given integer m ≥ 2
let φ : Sm+1 ×R → Rm+2 \ {0} be the conformal diffeomorphism given by φ(x, t) = etx.
Choose a closed half-line ℓ := {x̄} × [0,∞) ⊂ Rm+2 = Rm+1 × R with x̄ 6= 0. Let Mm

r,h

be the image by φ−1 of the m-dimensional sphere Sm
r,h in Rm+2 of radius r centered on ℓ

that lies in the affine hyperplane through (x̄, h) orthogonal to ℓ, with the origin removed
if h = 0 and r = d := |x̄|. Then we prove:

Theorem 1. The submanifold Mm
r,h is a complete umbilical submanifold of Sm+1 × R

for every r > 0 and h ≥ 0. Moreover, it has the following properties:

(i) It is diffeomorphic to Sm if (r, h) 6= (d, 0) and to Rm if (r, h) = (d, 0);

(ii) It lies in a totally geodesic hypersurface Sm × R ⊂ Sm+1 × R if and only if h = 0;

(iii) Mm
r,0 is homologous to zero in Sm × R if r < d and inhomologous to zero if r > d;

(iv) It is a rotational submanifold whose profile is a curve in a totally geodesic sub-
manifold S2 × R (respectively, S1 × R) if h 6= 0 (respectively, h = 0);

(v) Mm
r,h is not congruent to Mm

r′,h′ if (r, h) 6= (r′, h′).

Conversely, any umbilical nontotally geodesic submanifold of Sn × R with dimension
m ≥ 2 is, up to an isometry of the ambient space, an open subset of one of the following:

(i) a small sphere in Sn × {0};

(ii) Mm
r,0 for some r > 0 if n = m;

(iii) Mm
r,h for some r > 0 and h ≥ 0 if n = m+ 1;

(iv) Mm
r,h in a totally geodesic Sm+1 × R for some r > 0 and h ≥ 0 if n > m+ 1.

Moreover, we provide an explicit parametrization of all submanifolds Mm
r,h, r > 0,

h ≥ 0 (see Proposition 14 below) in terms of elementary functions. The precise meaning
of Mm

r,h being rotational is explained in Section 4.
In the process of proving Theorem 1, we have been led to study more general classes

of submanifolds with interest on their own.
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Let Qn
ǫ denote either Sn, Rn or Hn, according as ǫ = 1, ǫ = 0 or ǫ = −1, respectively.

Given an isometric immersion f : Mm → Qn
ǫ × R, let ∂

∂t
be a unit vector field tangent

to the second factor. Thus, for ǫ = 0 we just choose a unit constant vector field ∂
∂t

in
Rn+1. Then, a tangent vector field T on Mm and a normal vector field η along f are
defined by

∂

∂t
= f∗T + η. (1)

We denote by A the class of isometric immersions f : Mm → Qn
ǫ × R with the

property that T is an eigenvector of all shape operators of f . Our next result is a
complete description of all isometric immersions in class A. First note that trivial
examples are products Nm−1×R, where Nm−1 is a submanifold of Qn

ǫ , which correspond
to the case in which the normal vector field η in (1) vanishes identically. We call
these examples vertical cylinders. More interesting ones are constructed as follows. We
consider the case ǫ ∈ {−1, 1}, the case ǫ = 0 being similar.

Let g : Nm−1 → Qn
ǫ be an isometric immersion. Assume that there exists an or-

thonormal set of parallel normal vector fields ξ1, . . . , ξk along g. This assumption is
satisfied, for instance, if g has flat normal bundle. Thus, the vector subbundle E with
rank k of the normal bundle NgN of g spanned by ξ1, . . . , ξk is parallel and flat. Let
j : Qn

ǫ → Qn
ǫ × R and i : Qn

ǫ × R → En+2 denote the canonical inclusions, and let
k = i ◦ j. Here En+2 denotes either Euclidean space Rn+2 if ǫ = 1 or Lorentzian space
Ln+2 if ǫ = −1. Set ξ̃i = k∗ξi, 1 ≤ i ≤ k, ξ̃0 = g̃ := k ◦ g and ξ̃k+1 = i∗∂/∂t. Then the
vector subbundle Ẽ of N g̃N whose fiber Ẽ(x) at x ∈ Nm−1 is spanned by ξ̃0, . . . , ξ̃k+1 is
also parallel and flat, and we may define a vector bundle isometry φ : Nm−1×Ek+2 → Ẽ
by

φx(y) := φ(x, y) =

k+1
∑

i=0

yiξ̃i, for y = (y0, . . . , yk+1) ∈ Ek+2.

Now let
f : Mm := Nm−1 × I → Qn

ǫ × R

be given by

f̃(x, s) := (i ◦ f)(x, s) = φx(α(s)) =

k+1
∑

i=0

αi(s)ξ̃i(x), (2)

where α : I → Qk
ǫ × R ⊂ Ek+2, α = (α0, . . . , αk, αk+1), is a smooth regular curve such

that ǫα2
0 + α2

1 + . . .+ α2
k = ǫ and αk+1 has nonvanishing derivative. Notice that vertical

cylinders correspond to the case in which the curve α is the generator of Qk
ǫ ×R through

(1, 0, · · · , 0) ∈ Qk
ǫ .

Theorem 2. The map f defines, at regular points, an immersion in class A. Con-
versely, any isometric immersion f : Mm → Qn

ǫ ×R, m ≥ 2, in class A is locally given
in this way.
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A necessary and sufficient condition for a point (x, s) ∈ Mm = Nm−1 × I to be
regular for f is given in part (ii) of Proposition 11 below.

The map f̃ is a partial tube over g̃ with type fiber α in the sense of [6] (see also
[7]). Geometrically, f̃(M) is obtained by parallel transporting the curve α in a product
submanifold Qk

ǫ ×R of a fixed normal space of g̃ with respect to its normal connection.
Theorem 2 extends to submanifolds with arbitrary codimension the main result

of [15], where the case of hypersurfaces was studied. That the preceding construction
coincides with the one in Theorem 1 of [15] in the hypersurface case was already observed
in Remarks 7-(ii) in that paper. Some important classes of hypersurfaces of Qn

ǫ × R,
ǫ ∈ {−1, 1}, that are included in class A are hypersurfaces with constant sectional
curvature [13], rotational hypersurfaces [10] and constant angle hypersurfaces (see, e.g.,
[15]; see also Corollary 4 below and the comments before it).

Let f : Mm → Qn
ǫ × R, ǫ ∈ {−1, 1}, be an isometric immersion, and set f̃ = i ◦ f ,

where i : Qn
ǫ × R → En+2 is the canonical inclusion. It was shown in [13] that if m = n

then f is in class A if and only if the vector field T in (1) is nowhere vanishing and f̃
has flat normal bundle. For submanifolds of higher codimension we have the following.

Corollary 3. The following assertions are equivalent:

(i) The vector field T in (1) is nowhere vanishing and f̃ has flat normal bundle;

(ii) f has flat normal bundle and is in class A;

(iii) f̃ is locally given as in (2) in terms of an isometric immersion g : Nm−1 → Qn
ǫ

with flat normal bundle and a smooth regular curve α : I → Qk
ǫ × R ⊂ Ek+2,

α = (α0, . . . , αk, αk+1), with α
′
k+1 nowhere vanishing.

Observe that the vector field T vanishes at some point if and only if f(Mm) is tangent
to the slice Qn

ǫ × {t} of Qn
ǫ × R through that point. If T vanishes on an open subset

U ⊂Mm then f(U) is contained in some slice.
Notice that a surface in class A has automatically flat normal bundle. Hence, by

Corollary 3, a surface in Qn
ǫ × R, ǫ ∈ {−1, 1}, is in class A if and only if it has flat

normal bundle as a surface in the underlying flat space En+2 (and is nowhere tangent to
a slice). By Theorem 2, any such surface is given by (2) in terms of a unit-speed curve
g : J → Qn

ǫ and a smooth regular curve α : I → Qk
ǫ ×R ⊂ Ek+2, α = (α0, . . . , αk, αk+1),

with α′
k+1 nowhere vanishing. Clearly, in this case the existence of an orthonormal set

of parallel normal vector fields ξ1, . . . , ξk along g is automatic for any 1 ≤ k ≤ n− 1.
In the case of a hypersurface f : Mn → Qn

ǫ × R, the vector field η in (1) can be
written as η = ρN , where N is a unit normal vector field along f . Then f is called
a constant angle hypersurface if the function ρ is constant on Mn. One possible way
to generalize this notion to submanifolds of higher codimension is to require the vector
field η to be parallel in the normal connection. It turns out that submanifolds with this
property also belong to class A, and this leads to the following classification of them,
extending Corollary 2 in [15].
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Corollary 4. Let f : Mm := Nm−1×I → Qn
ǫ ×R be given by (2) with α : I → Qk

ǫ ×R a
geodesic of Qk

ǫ ×R. Then f defines, at regular points, an immersion for which the vector
field η in (1) is parallel in the normal connection. Conversely, any isometric immersion
f : Mm → Qn

ǫ × R, m ≥ 2, such that T is nowhere vanishing and η is parallel in the
normal connection is locally given in this way.

Another important subclass of class A is that of rotational submanifolds in Qn
ǫ × R

with curves in totally geodesic submanifolds Qℓ
ǫ×R ⊂ Qn

ǫ ×R as profiles (see Section 4).
We obtain the following characterization of independent interest of them.

Corollary 5. Let f : Mm → Qn
ǫ × R, ǫ ∈ {−1, 1}, be an isometric immersion. Then

the following assertions are equivalent:

(i) f is a rotational submanifold whose profile is a curve in a totally geodesic subman-
ifold Qn−m+1

ǫ × R ⊂ Qn
ǫ × R;

(ii) f is given as in (2) in terms of an umbilical isometric immersion g : Nm−1 → Qn
ǫ

(a geodesic circle, if m = 2);

(iii) there exists a normal vector field ζ along f such that

αf(X, Y ) = 〈X, Y 〉ζ for all X ∈ TM and Y ∈ {T}⊥, (3)

where T is the vector field defined by (1), and ζ is parallel in the normal connection
along {T}⊥ if m = 2.

Moreover, if ǫ = 1 then the preceding assertions are equivalent to f being given as in
(2) in terms of a totally geodesic isometric immersion g : Nm−1 → Qn

ǫ . This is also
the case if ǫ = −1 and f is assumed to be of hyperbolic type in (i) and g an equidistant
hypersurface in (ii).

Notice that in the hypersurface case, i.e., for n = m, the second fundamental form
satisfies (3) if and only if f has at most two principal curvatures, and if it has exactly
two then one of them is simple with T as an eigenvector.

A key step in the classification of umbilical submanifolds in Sn×R is the following re-
sult on reduction of codimension of isometric immersions into Qn

ǫ ×R. That an isometric
immersion f : Mm → Qn

ǫ × R reduces codimension to p, or has substantial codimension
p, means that f(Mn) is contained in a totally geodesic submanifold Qm+p−1

ǫ × R of
Qn

ǫ × R. We denote by ∇⊥ the normal connection of f and by N1(x) the first normal
space of f at x, i.e., the subspace of Nf

xM spanned by its second fundamental form.

Lemma 6. Let f : Mm → Qn
ǫ × R, ǫ ∈ {−1, 1}, be an isometric immersion. Let η be

the normal vector field defined by (1). Assume that L := N1+ span{η} is a subbundle of
NfM with rank ℓ < n + 1−m and that ∇⊥N1 ⊂ L. Then f reduces codimension to ℓ.
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Lemma 6 should be compared with its well-known counterpart for submanifolds of
space forms (see, e.g., [11]), in which case the corresponding condition for a submanifold
to reduce codimension is that its first normal spaces form a parallel subbundle of the
normal bundle. A necessary and sufficient condition for parallelism of the first normal
bundle of a submanifold of a space form in terms of its normal curvature tensor R⊥ and
mean curvature vector field H was obtained by Dajczer [8] (see also Chapter 4 of [9]).
The proof of Dajczer’s theorem can be easily adapted to yield the following result for
submanifolds of Qn

ǫ × R.

Theorem 7. Let f : Mm → Qn
ǫ ×R, ǫ ∈ {−1, 1}, be an isometric immersion. Let η be

the normal vector field defined by (1). Assume that L := N1+ span{η} is a subbundle of
NfM of rank ℓ < n+1−m. Then ∇⊥N1 ⊂ L if and only if the following two conditions
hold:

(i) ∇⊥R⊥|L⊥ = 0;

(ii) ∇⊥H ∈ L.

As an application of Theorem 7, in Subsection 5−1 we give a simple proof of The-
orem 1 in [3] on surfaces with parallel mean curvature vector in Qn

ǫ × R. By using this
result together with Corollary 5 we prove the following.

Corollary 8. Any surface f : M2 → Qn
ǫ × R, ǫ ∈ {−1, 1}, in class A with parallel

mean curvature vector is a rotational surface in a totally geodesic submanifold Qm
ǫ ×R,

m ≤ 4, over a curve in a totally geodesic submanifold Qs
ǫ × R, s ≤ 3.

In the case n = 2, the preceding corollary is a special case of Theorem 3 in [15], in
which hypersurfaces f : Mn → Qn

ǫ × R in class A with constant mean curvature and
arbitrary dimension n were classified. That for n = 2 they are all rotational surfaces
was pointed out in part (i) of Remarks 7 in that paper. Recently we learned that this
was independently proved in Theorem 1 of [4].

In [2], the authors introduced the real quadratic form

Q(X, Y ) = 2〈α(X, Y ), H〉 − ǫ〈X, T 〉〈Y, T 〉

on a surface f : M2 → Qn
ǫ×R, as a generalization to higher codimensions of the Abresch–

Rosenberg real quadratic form defined in [1]. Extending the result in [1] for constant
mean curvature surfaces, they proved that the (2, 0)-part Q(2,0) of Q is holomorphic
for surfaces with parallel mean curvature vector field. This means that if (u, v) are
isothermal coordinates on M2, then the complex function

Q(Z,Z) = 2〈α(Z,Z), H〉 − ǫ〈Z, T 〉2

is holomorphic, where Z = 1√
2
( ∂
∂u
+i ∂

∂v
) and the metric onM2 is extended to a C-bilinear

map.
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The same authors observed in [3] that surfaces with parallel mean curvature vector
that are not contained in a slice of Qn

ǫ × R and for which Q(2,0) vanishes identically
belong to class A. They also proved that a surface f : M2 → Qn

ǫ with parallel mean
curvature vector field has vanishing Q(2,0) if either M2 is homeomorphic to a sphere or
if ǫ = −1, K ≥ 0 and K is not identically zero. By means of Corollary 8, we obtain the
following improvement of the conclusions in part 4 of both Theorems 2 and 3 of [3]:

Corollary 9. Let f : M2 → Qn
ǫ × R, ǫ ∈ {−1, 1}, be a surface with parallel mean

curvature vector. Suppose f(M2) is not contained in a slice of Qn
ǫ × R and either

(i) M2 is homeomorphic to a sphere, or

(ii) ǫ = −1, M2 is complete with K ≥ 0 and K is not identically zero.

Then f is a rotational surface (of spherical type in case (i)) in a totally geodesic sub-
manifold Qm

ǫ ×R, m ≤ 4, over a curve in a totally geodesic submanifold Qs
ǫ ×R, s ≤ 3.

We observe that, if f(M2) is contained in a slice Qn
ǫ × {t} of Qn

ǫ × R, then by
Theorem 4 in [17] either f is a minimal surface of an umbilical hypersurface of Qn

ǫ ×{t}
or it is a surface with constant mean curvature in a three-dimensional umbilical or totally
geodesic submanifold of Qn

ǫ × {t}. Moreover, if M2 is homeomorphic to a sphere, then
by Hopf’s Theorem it must be a totally umbilical 2-sphere of Qn

ǫ × {t}.
The paper is organized as follows. In the next section we recall the basic equations

of an isometric immersion into Qn
ǫ × R. In Section 3 we study submanifolds in class A

and prove Theorem 2 as well as Corollaries 3 and 4. Section 4 is devoted to rotational
submanifolds. In particular, Corollary 5 is proved. In Section 5 we prove Lemma 6 and
Theorem 7 on reduction of codimension of isometric immersions into Qn

ǫ × R. Then
we apply the latter to give a simple proof of Theorem 1 in [3] on surfaces with parallel
mean curvature vector in Qn

ǫ × R. We conclude this section with the proof of Corol-
lary 8. Finally, in the last section we prove Theorem 1 on the classification of umbilical
submanifolds of Sn × R.

2 Preliminaries

In this section we recall the fundamental equations of an isometric immersion f : Mm →
Qn

ǫ × R.
Using that ∂

∂t
is a parallel vector field in Qn

ǫ × R, we obtain by differentiating (1)
that

∇XT = Af
ηX (4)

and

αf (X, T ) = −∇⊥
Xη, (5)
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for all X ∈ TM . Here and in the sequel Af
η stands for the shape operator of f in the

direction η, given by

〈Af
ηX, Y 〉 = 〈αf(X, Y ), η〉 for all X, Y ∈ TM.

Notice that the vector field T is a gradient vector field. Namely, if ǫ ∈ {−1, 1} and
f̃ = i◦f , where i : Qn

ǫ ×R → En+2 denotes the canonical inclusion, then T is the gradient
of the height function h = 〈f̃ , i∗ ∂

∂t
〉. If ǫ = 0 then T is the gradient of h = 〈f, ∂

∂t
〉.

The Gauss, Codazzi and Ricci equations for f are, respectively (see, e.g., [12]),

R(X, Y )W = ǫ(X ∧ Y − 〈Y, T 〉X ∧ T + 〈X, T 〉Y ∧ T )W + Af

α(Y,W )X − Af

α(X,W )Y, (6)

(

∇⊥
Xα
)

(Y,W )−
(

∇⊥
Y α
)

(X,W ) = ǫ(〈X,W 〉〈Y, T 〉 − 〈Y,W 〉〈X, T 〉)η (7)

and
R⊥(X, Y )ζ = α(X,Af

ζY )− α(Af
ζX, Y ). (8)

Equation (7) can also be written as

(∇YA
f )(X, ζ)− (∇XA

f)(Y, ζ) = ǫ〈η, ζ〉(X ∧ Y )T, (9)

where (X ∧ Y )T = 〈Y, T 〉X − 〈X, T 〉Y .
Although this will not be used in the sequel, it is worth mentioning that equations (4)

–(8) completely determine an isometric immersion f : Mm → Qn
ǫ × R up to isometries

of Qn
ǫ × R (see Corollary 3 of [12]).
We now relate the second fundamental forms and normal connections of f and f̃ .

First notice that ν̂ = π◦i is a unit normal vector field to the inclusion i : Qn
ǫ ×R → En+2,

ǫ ∈ {−1, 1}, where π : En+1 × R → En+1 is the projection, and

∇̃Z ν̂ = π∗i∗Z = i∗Z − 〈i∗Z, i∗
∂

∂t
〉i∗

∂

∂t

= i∗(Z − 〈Z, ∂
∂t

〉 ∂
∂t

),

for every Z ∈ T (Qn
ǫ × R), where ∇̃ is the derivative in En+2. Hence

Ai
ν̂Z = −Z + 〈Z, ∂

∂t
〉 ∂
∂t
. (10)

The normal spaces of f and f̃ are related by

N f̃M = i∗N
fM ⊕ span{ν},

where ν = ν̂ ◦ f = π ◦ f̃ . Let ∇̄ denote the Levi-Civita connection of Qn
ǫ × R. Given

ξ ∈ NfM , we obtain from (10) that

∇̃X i∗ξ = i∗∇̄Xξ + αi(f∗X, ξ)

= −f̃∗Af
ξX + i∗∇⊥

Xξ + 〈X, T 〉〈ξ, η〉ν,
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hence
Af̃

i∗ξ
= Af

ξ

and
∇̃⊥

Xi∗ξ = i∗∇⊥
Xξ + 〈X, T 〉〈ξ, η〉ν (11)

for every ξ ∈ NfM , where ∇̃⊥ is the normal connection of f̃ . On the other hand,

∇̃Xν = ∇̃X ν̂ ◦ f = ∇̃f∗X ν̂ = f̃∗(X − 〈X, T 〉T )− 〈X, T 〉i∗η,

hence
Af̃

νX = −X + 〈X, T 〉T,
or equivalently,

Af̃
νT = −‖η‖2T and Af̃

νX = −X for X ∈ {T}⊥, (12)

and
∇̃⊥

Xν = −〈X, T 〉i∗η. (13)

3 Class A
In this section we study submanifolds in class A. In particular, we give the proofs of
Theorem 2 and of Corollaries 3 and 4. We start with the following observation.

Proposition 10. Assume that the vector field T in (1) is nowhere vanishing. Then the
following assertions are equivalent:

(i) T is an eigenvector of Af
ζ for all ζ ∈ NfM ;

(ii) η is parallel along {T}⊥;

(iii) Af̃
ν commutes with Af

ζ for all ζ ∈ NfM .

Proof: The equivalence between (i) and (ii) follows from (5), whereas (12) implies the
equivalence between (i) and (iii).

Before going into the proof of Theorem 2, we write down in the next proposition the
differential, the normal space and the second fundamental form of an immersion

f̃ = i ◦ f : Mm := Nm−1 × I → Qn
ǫ × R ⊂ En+2, ǫ ∈ {−1, 1},

which is given by (2) in terms of an isometric immersion g : Nm−1 → Qn
ǫ and a smooth

regular curve α : I → Qk
ǫ×R ⊂ Ek+2, α = (α0, . . . , αk, αk+1), with ǫα

2
0+α

2
1+. . .+α

2
k = ǫ.

The case ǫ = 0 is similar. We use the notations before the statement of Theorem 2.
Given x ∈ Nm−1, X ∈ TxN and s ∈ I, we denote by XH the unique vector in T(x,s)M
such that π1∗X

H = X and π2∗X
H = 0, where π1 : M

m → Nm−1 and π2 : M
m → I are

the canonical projections.
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Proposition 11. The following holds:

(i) The differential of f̃ is given by

f̃∗(x, s)X
H = g̃∗(x)(α0(s)I −

k
∑

i=1

αi(s)A
g
ξi
(x))X, for every X ∈ TxN, (14)

where I is the identity endomorphism of TxN , and

f̃∗(x, s)
∂

∂s
= φx(α

′(s)). (15)

(ii) The map f̃ (and hence f) is an immersion at (x, s) if and only if

Ps(x) := α0(s)I −
k
∑

i=1

αi(s)A
g
ξi
(x) = −Ag̃

φx(ᾱ(s))
,

where ᾱ(s) = (α0(s), . . . , αk(s), 0), is an invertible endomorphism of TxN .

(iii) If f̃ is an immersion at (x, s) then

N f̃

(x,s)M = k∗E(x)
⊥ ⊕ φx(α

′(s)⊥) ⊂ N g̃
xN,

where E(x)⊥ is the orthogonal complement of E(x) in Ng
xN , and

N f̃

(x,s)M = i∗N
f

(x,s)M ⊕ span{(π ◦ f̃)(x, s)} = i∗N
f

(x,s)M ⊕ φx(ᾱ(s)). (16)

(iv) If f̃ is an immersion at (x, s) then

Af̃
ξ (x, s)X

H = (Ps(x)
−1Ag̃

ξ(x)X)H (17)

for all ξ ∈ N f̃

(x,s)M and X ∈ TxN ,

Af̃
ξ (x, s)

∂

∂s
= 0, if ξ ∈ k∗E(x)

⊥, (18)

and

Af̃

φx(ζ)
(x, s)

∂

∂s
=

〈α′′(s), ζ〉
〈α′(s), α′(s)〉

∂

∂s
, if ζ ∈ Ek+2, 〈ζ, α′(s)〉 = 0. (19)

Moreover,

Af
ζ (x, s) = Af̃

i∗ζ
(x, s) (20)

for every ζ ∈ Nf

(x,s)M .
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Proof: Given a smooth curve γ : J → Nm−1 with 0 ∈ J , γ(0) = x and γ′(0) = X , for
each s ∈ I let γs : J → Mm be given by γs(t) = (γ(t), s). Then γs(0) = (x, s) and
γ′s(0) = XH. Hence

f̃∗(x, s)X
H = d

dt
|t=0f̃(γs(t)) =

d
dt
|t=0

∑k+1
i=0 αi(s)ξ̃i(γ(t))

= g̃∗(x)(α0(s)I −
∑k

i=1 αi(s)A
g̃

ξ̃i
(x))X,

and (14) follows from the fact that Ag̃

ξ̃i
= Ag

ξi
for any 1 ≤ i ≤ k.

The proof of (15) is straightforward, and the assertions in (ii) and (iii) follow im-

mediately from (i). To prove (17), given ξ ∈ N f̃

(x,s)M and X ∈ TxN , let γ : J → Nm−1

and γs : J → Mm be as in the beginning of the proof. Then, using (14) we obtain

−f̃∗(x, s)Af̃
ξ (x, s)X

H = (∇̃XHξ)T = ( d
dt
|t=0ξ(γs(t)))

T = −g̃∗(x)Ag̃
ξ(x)X

= −g̃∗(x)Ps(x)Ps(x)
−1Ag̃

ξ(x)X = −f̃∗(x, s)(Ps(x)
−1Ag̃

ξ(x)X)H,

and (17) follows. Here, putting T as a superscript of a vector means taking its tangent
component.

Formula (18) is clear. As for (19), given ζ ∈ Ek+2 with 〈ζ, α′(s)〉 = 0, extend ζ to a
parallel normal vector field along α, so that

ζ ′(s) =
〈ζ ′(s), α′(s)〉
〈α′(s), α′(s)〉α

′(s) = − 〈α′′(s), ζ(s)〉
〈α′(s), α′(s)〉α

′(s).

Then we have

−f̃∗(x, s)Af̃

φx(ζ)
(x, s)

∂

∂s
= ∇̃ ∂

∂s
φx(ζ) = φx(ζ

′(s)) = − 〈α′′(s), ζ(s)〉
〈α′(s), α′(s)〉φx(α

′(s))

= −f̃∗(x, s)
〈α′′(s), ζ(s)〉
〈α′(s), α′(s)〉

∂

∂s
,

where we have used (15) in the last equality. This gives (19) and completes the proof,
for (20) is clear.

Proof of Theorem 2: It follows from (14) and (15) that 〈XH, ∂
∂s
〉 = 0 for any X ∈ TN ,

with respect to the metric induced by f . On the other hand, we also have from (14)
that 〈XH, T 〉 = 〈f̃∗XH, i∗

∂
∂t
〉 = 0 for any X ∈ TN . Hence T is in the direction of ∂/∂s.

We have
〈T, ∂/∂s〉 = 〈f̃∗T, f̃∗∂/∂s〉 = 〈i∗∂/∂t, φx(α

′(s))〉 = α′
k+1(s),

hence

T =
〈T, ∂/∂s〉

〈∂/∂s, ∂/∂s〉
∂

∂s
=

α′
k+1(s)

‖α′(s)‖2
∂

∂s
.
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In particular, T is nowhere vanishing by the assumption that α′
k+1(s) 6= 0 for all s ∈ I.

That f belongs to class A now follows from (18), (19) and (20).
Let us prove the converse. Since f : Mm → Qn

ǫ × R belongs to class A, the vector
field T is nowhere vanishing, and using (4) and the fact that T is a gradient vector field
we obtain

〈∇TT,X〉 = 〈∇XT, T 〉 = 〈Af
ηT,X〉 = 0 for any X ∈ {T}⊥. (21)

Hence, the one-dimensional distribution spanned by T is totally geodesic. Moreover,
since T is a gradient, then the orthogonal distribution {T}⊥ is integrable. Therefore,
there exists locally a diffeomorphism ψ : Nm−1 × I → Mm, where I is an open interval
containing 0, such that ψ(x, ·) : I →Mn are integral curves of T for any x ∈ Nm−1 and
ψ(·, s) : Nm−1 → Mm are leaves of {T}⊥ for any s ∈ I. Denoting by E1 and E2 the
distributions given by tangent spaces to the leaves of the product foliation of Nm−1× I,
we have that E1 and E2 are mutually orthogonal and E2 is totally geodesic with respect
to the metric induced by ψ. Set f̃ = i ◦ f ◦ ψ. Then

〈f̃∗X, i∗
∂

∂t
〉 = 〈ψ∗X, T 〉 = 0 (22)

for every X ∈ E1. Moreover, αf̃(X,
∂
∂s
) = 0 for every X ∈ E1, in view of (12) and the

fact that f belongs to class A. Hence, using that E2 is totally geodesic we obtain that

∇̃ ∂
∂s
f̃∗X = f̃∗∇ ∂

∂s
X + αf̃

(

X,
∂

∂s

)

= f̃∗∇ ∂
∂s
X ∈ f̃∗E1

for all X ∈ E1, hence f̃∗E1 is constant in En+2 along the leaves of E2. In view of (22)
we can assume that g̃ := f̃(·, 0) satisfies g̃(Nm−1) ⊂ Qn

ǫ × {0}. Set f̂ = π ◦ f̃ and
h = 〈f̃ , i∗∂/∂t〉, so that

f̃ = f̂ + hi∗
∂

∂t
.

Using (22) we obtain
〈f̃∗X, f̃〉 = 〈f̂∗X, f̂〉 = 0

for all X ∈ E1, since 〈f̂ , f̂〉 = ǫ. Therefore, we have

f̃(x, s) ∈ (f̃∗(x, s)E1(x, s))
⊥ = (f̃∗(x, 0)E1(x, 0))

⊥ = (g̃∗(x)TxN)⊥,

where in the first equality we have used that f̃∗E1 is constant in En+2 along E2. Hence,
for fixed s ∈ I, we have that ξs(x) := f̃(x, s) defines a normal vector field along g̃.
Moreover,

∇̃Xξs ∈ f̃∗(x, s)E1(x, s) = g̃∗(x)TxN,

thus ξs is parallel along g̃ in the normal connection. It follows that

x ∈ N 7→ span{f̃(x, s) : s ∈ I}
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is a parallel flat subbundle of Ng̃N and, for fixed x ∈ N , the fiber {f̃(x, s) : s ∈ I} is

contained in a cylinder Qǫ × I ⊂ N g̃
xN , for 〈f̂(x, s), f̂(x, s)〉 = ǫ.

Let g : Nm−1 → Qn
ǫ be defined by g̃ = k ◦ g, and let {ξ1, . . . , ξk} be an orthonormal

set of parallel normal vector fields along g such that ξ̃i = i∗ξi, 1 ≤ i ≤ k, ξ̃0 = g̃ and
ξ̃k+1 = i∗∂/∂t span {f̃(x, s) : s ∈ I} for each x ∈ Nm−1. Note that

X〈f̃ , ξ̃i〉 = 〈f̃∗X, ξ̃i〉+ 〈f̃ , ∇̃X ξ̃i〉 = 0,

for f̃ is a normal vector field, f̃∗(x, s)X ∈ g̃∗(x)TxN and ξ̃i is parallel in the normal
connection of g̃. Then we can write

f̃(x, s) =
k+1
∑

i=0

αiξ̃i, with αi = αi(s).

Moreover, from 〈f̂ , f̂〉 = ǫ we obtain that ǫα2
0 +

∑k
i=1 α

2
i = ǫ.

Proof of Corollary 3: It follows from the Ricci equation (8) that f has flat normal bundle
if and only if all shape operators Af

ζ , ζ ∈ NfM , are simultaneously diagonalizable,

whereas f̃ has flat normal bundle if and only if this holds for all shape operators Af̃
ξ , ξ ∈

N f̃M . Since the vector field T in (1) is nowhere vanishing, the equivalence between (i)

and (ii) then follows from Proposition 10 and the fact that Af̃
i∗ζ

= Af
ζ for all ζ ∈ NfM .

Let f : Mm → Qn
ǫ × R be an isometric immersion in class A. By Theorem 2, it is

locally given as in (2) in terms of an isometric immersion g : Nm−1 → Qn
ǫ . Since T is

an eigenvector of all shape operators of f , it follows from (17) and (20) that all shape
operators of f commute if and only if the same holds for the shape operators of g. By
the Ricci equation, we conclude that f has flat normal bundle if and only if the same
holds for g. Hence (ii) and (iii) are equivalent.

Proof of Corollary 4: Let f : Mm := Nm−1 × I → Qn
ǫ × R be given by (2) with

α : I → Qk
ǫ × R a geodesic of Qk

ǫ × R. Then f belongs to class A by Theorem 2 and
αf(T, T ) = 0 by (19). Thus η is parallel in the normal connection of f by (5).

Conversely, let f : Mm := Nm−1 × I → Qn
ǫ × R be an isometric immersion with the

property that the vector field η is parallel in the normal connection. We obtain from
(5) that f belongs to class A and that αf (T, T ) = 0. By Theorem 2, it is locally given
by (2) in terms of an isometric immersion g : Nm−1 → Qn

ǫ and a smooth regular curve
α : I → Qk

ǫ × R. That α is a geodesic follows from αf(T, T ) = 0 and (19).

4 Rotational submanifolds in Qn
ǫ × R

In this section we define rotational submanifolds in Qn
ǫ × R with curves as profiles,

extending the definition in [10] for the hypersurface case. Then we prove Corollary 5 in
the introduction.
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Let (x0, . . . , xn+1) be the standard coordinates on En+2 with respect to which the
flat metric is written as

ds2 = ǫ dx20 + dx22 + . . .+ dx2n+1.

Regard En+1 as
En+1 = {(x0, . . . , xn+1) ∈ En+2 : xn+1 = 0}

and

Qn
ǫ = {(x0, . . . , xn) ∈ En+1 : ǫ x20 + x22 + . . .+ x2n = ǫ} ( x0 > 0 if ǫ = −1).

Let P n−m+3 be a subspace of En+2 of dimension n−m+3 containing the e0 and the
en+1 directions, where {e0, . . . , en+1} is the canonical basis. Then

(Qn
ǫ × R) ∩ P n−m+3 = Qn−m+1

ǫ × R.

Denote by I the group of isometries of En+2 that fix pointwise a subspace P n−m+2 ⊂
P n−m+3 also containing the en+1 direction. Consider a curve α in Qn−m+1

ǫ ×R ⊂ P n−m+3

that lies in one of the two half-spaces of P n−m+3 determined by P n−m+2.

Definition 12 An m-dimensional rotational submanifold in Qn
ǫ × R with profile curve

α and axis P n−m+2 is the orbit of α under the action of I.

We will always assume that P n−m+3 is spanned by e0, em, . . . , en+1. In the case ǫ = 1,
we also assume that P n−m+2 is spanned by em, . . . , en+1. Writing the curve α as

α(s) = α0(s)e0 +

n
∑

i=m

αi−m+1(s)ei + h(s)en+1,

with
∑n−m+1

i=0 α2
i = 1, the rotational submanifold in Sn×R with profile curve α and axis

P n−m+2 can be parametrized by

f̃(s, t) = (α0(s)ϕ1(t), . . . , α0(s)ϕm(t), α1(s), . . . , αn−m+1(s), h(s)), (23)

where t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Sm−1 ⊂ Rm.
For ǫ = −1, one has three distinct possibilities, according as P n−m+2 is Lorentzian,

Riemannian or degenerate, respectively, and the rotational submanifold is called accord-
ingly of spherical , hyperbolic or parabolic type. In the first case, we can assume that
P n−m+2 is spanned by e0, em+1, . . . , en+1 and that

α(s) = α0(s)e0 +

n
∑

i=m

αi−m+1(s)ei + h(s)en+1, (24)
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with −α2
0(s) +

∑n−m+1
i=1 α2

i = −1. Then, the submanifold can be parametrized by

f̃(s, t) = (α0(s), α1(s)ϕ1(t), . . . , α1(s)ϕm(t), α2(s), . . . , αn−m+1(s), h(s)),

where again t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Sm−1 ⊂ Rm.
In the second case, we can assume that P n−m+2 is spanned by em, . . . , en+1. Then,

with the curve α also given as in (24), a parametrization is

f̃(s, t) = (α0(s)ϕ1(t), . . . , α0(s)ϕm(t), α1(s), . . . , αn−m+1(s), h(s)),

where t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Hm−1 ⊂ Lm.
Finally, when P n−m+2 is degenerate, we choose a pseudo-orthonormal basis

ê0 =
1√
2
(−e0 + en), ên =

1√
2
(e0 + en), êj = ej,

for j ∈ {1, . . . , n−1, n+1}, and assume that P n−m+2 is spanned by êm, . . . , ên+1. Notice
that 〈ê0, ê0〉 = 0 = 〈ên, ên〉 and 〈ê0, ên〉 = 1. Then, we can parametrize α by

α(s) = α0(s)ê0 +
n
∑

i=m

αi−m+1(s)êi + h(s)ên+1,

with 2α0(s)αn−m+1(s) +
∑n−m

i=1 α2
i (s) = −1, and a parametrization of the rotational

submanifold is

f̃(s, t) = (α0, α0t1, . . . , α0tm−1, α1, . . . , αn−m, αn−m+1 −
α0

2

m−1
∑

i=1

t2i , h), (25)

where t = (t1, . . . , tm−1) parametrizes Rm−1, αi = αi(s), 0 ≤ i ≤ n−m+1, and h = h(s).

Proof of Corollary 5: We can write (23) as

f̃(s, t) = α0(s)ĝ(t) +
n
∑

i=m

αi−m+1(s)ei + h(s)en+1,

where ĝ(t) =
∑m

i=1 ϕi(t)ei for t = (t1, . . . , tm−1). This shows that for ǫ = 1 a rota-
tional submanifold is given as in (2) in terms of a totally geodesic isometric immersion
ĝ : Sm−1 → Sn. The case of a rotational submanifold of hyperbolic type in Hn × R is
similar. In particular, this proves that (i) implies (ii) in these cases.

Equation (25) can be written as

f̃(s, t) = α0ĝ +

n
∑

i=m

αi−m+1(s)êi + h(s)ên+1, (26)
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where ĝ(t) = ê0 +
∑m−1

i=1 tiêi − 1
2
(
∑m−1

i=1 t2i )ên. Notice that ĝ defines an isometric im-
mersion of Rm−1 into Ln+2 (in fact into the light-cone Vn+1, for 〈ĝ, ĝ〉 = 0), and that
ĝ, êm, . . . , ên, ên+1 is a pseudo-othonormal basis of N ĝRm−1, with 〈ĝ, ĝ〉 = 0 = 〈ên, ên〉,
〈ĝ, en〉 = 1 and êm, . . . , ên−1, ên+1 an orthonormal basis of span{ĝ, en}⊥. For any fixed
s0 ∈ I, let g : Rm−1 → Hn be given by where v =

∑n

i=m αi−m+1(s0)êi. Then g defines
an umbilical isometric immersion with the same normal space in Ln+2 as ĝ at every
t ∈ Rm−1, i.e.,

span{ĝ, êm, . . . , ên, ên+1} = span{g, ξ̃1, . . . , ξ̃n−m+1, ên+1},

where ξ̃i = i∗ξi, 1 ≤ i ≤ n −m + 1, for a parallel orthonormal frame ξ1, . . . , ξn−m+1 of
NgRm−1. Hence we can also write (26) as

f̃(s, t) = α̃0g +
n−m+1
∑

i=1

α̃i(s)ξ̃i + h(s)ên+1,

where α̃ : I → En−m+3 is a regular curve satisfying −α̃2
0 +

∑n−m+1
i=1 α̃2

i = −1. Thus
condition (ii) holds for f . The case of a spherical rotational submanifold is similar and
easier.

Now suppose that f is given as in (2) in terms of an umbilical isometric immersion
g : Nm−1 → Qn

ǫ (a geodesic circle if m = 2). Suppose first that ǫ = 1. We can assume
that the affine hull of g(Nm−1) in Rn+1 is v +W , where W is the subspace spanned by
{e0, . . . , em−1} and v ∈ W⊥, hence g = aĝ + v, where a ∈ R and ĝ is the composition
ĝ = i ◦ g̃ of a homothety g̃ : Nm−1 → Sm−1 with the canonical inclusion i of Sm−1 into
W = Rm as the unit sphere centered at the origin. Then g and ĝ have the same normal
spaces in Rn+1 at every point of Nm−1, that is,

span{ĝ, êm, . . . , ên, ên+1} = span{g, ξ̃1, . . . , ξ̃n−m+1, ên+1},

where ξ̃i = i∗ξi, 1 ≤ i ≤ n −m + 1, for a parallel orthonormal frame ξ1, . . . , ξn−m+1 of
NgSm−1. Hence f can also be parametrized by

f̃(s, t) = α̃0ĝ +

n
∑

i=m

α̃i−m+1(s)êi + h(s)ên+1,

where α̃ : I → En−m+3 is a smooth regular curve satisfying
∑n−m+1

i=0 α̃2
i = 1. Thus f is

a rotational submanifold with α̃ as profile.
If ǫ = −1, we argue for the parabolic case, the others being similar and easier. We

can assume that Nm−1 = Rm−1 and that the the affine hull of g(Rm−1) in Ln+1 is v+W ,
where W is the subspace spanned by {ê1, . . . , êm−1, ên} and v ∈ W⊥. Then g = aĝ + v,
where a ∈ R and ĝ(t) = ê0+

∑m−1
i=1 tiêi− 1

2
(
∑m−1

i=1 t2i )ên for t = (t1, . . . , tm−1). As before,
by using the fact that g and ĝ have the same normal spaces in Ln+1 for every t ∈ Rm−1,
we conclude that f is a rotational submanifold parametrized as in (26).
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The second fundamental form of f being given by (3) is equivalent to the restriction
of each shape operator Af

ξ to {T}⊥ being a multiple of the identity tensor. In particular,
if it is satisfied then the immersion f is in class A, hence it is locally given as in (2)
in terms of an isometric immersion g : Nm−1 → Qn

ǫ . It follows from formulas (17)-(20)
in part (iv) of Proposition 11 that g is umbilical. Conversely, if f is locally given as in
(2) in terms of an umbilical isometric immersion g : Nm−1 → Qn

ǫ , then formulas (17)-
(20) imply that the restriction of each shape operator Af

ξ to {T}⊥ is a multiple of the
identity tensor, hence the second fundamental form of f is as in (3). To conclude the
proof that (ii) and (iii) are equivalent, it remains to show that for m = 2 the additional
assumption that the vector field ζ in (3) be parallel along {T}⊥ is equivalent to the
unit-speed curve g : J := Nm−1 → Qn

ǫ being a geodesic circle.
Write ζ = αf (X,X), where X is a unit vector field orthogonal to T . Let f̃ = i ◦ f .

In view of (12) we have
αf̃(X,X) = i∗αf(X,X)− ν,

hence we obtain using (11) and (13) that

∇̃Xαf̃ (X,X) = −f̃∗Af̃

α
f̃
(X,X)X + ∇̃⊥

Xαf̃(X,X)

= −f̃∗Af̃

α
f̃
(X,X)X + i∗∇⊥

Xαf(X,X).

Thus, ∇⊥
Xαf (X,X) = 0 if and only if

∇̃Xαf̃ (X,X) = −f̃∗Af̃

α
f̃
(X,X)X. (27)

It follows from (17) that at the point (t, s) we have

αf̃(X,X) =
g̃′′(t)

〈g̃′′(t), φt(ᾱ(s))〉
, (28)

where g̃ = k ◦ g. From (14) we obtain

X =
1

〈g̃′′(t), φt(ᾱ(s))〉
d

dt

H
, (29)

where d
dt

is a unit vector field along J . Hence

∇̃Xαf̃(X,X) = − 〈g̃′′′(t), φt(ᾱ(s)〉
〈g̃′′(t), φt(ᾱ(s))〉3

g̃′′(t) +
1

〈g̃′′(t), φt(ᾱ(s))〉2
g̃′′′(t).

On the other hand, equations (14), (28) and (29) yield

f̃∗A
f̃

α
f̃
(X,X)X =

〈g̃′′(t), g̃′′(t)〉
〈g̃′′(t), φt(ᾱ(s))〉2

g̃′(t).

It follows easily that (27) holds if and only if

g̃′′′(t) = −〈g̃′′(t), g̃′′(t)〉g̃′(t),
which is equivalent to g being a geodesic circle.
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5 Reduction of codimension

In this section we prove Lemma 6 and Theorem 7 stated in the introduction.

Proof of Lemma 6: We have from (5) that ∇⊥
Xη ∈ N1 ⊂ L for every X ∈ TM . Since

∇⊥N1 ⊂ L by assumption, it follows that L is a parallel subbundle of NfM . Let
f̃ = i ◦ f , where i : Qn

ǫ × R → En+2 is the inclusion. Given ξ ∈ L⊥ = N⊥
1 ∩ {η}⊥, from

(11) and the fact that L is a parallel subbundle of NfM we obtain

∇̃⊥
X i∗ξ = i∗∇⊥

Xξ ∈ i∗L
⊥,

hence i∗L
⊥ is a parallel subbundle of N f̃M .

Since i∗L
⊥ ⊂ Ñ⊥

1 , where Ñ1(x) is the first normal space of f̃ at x ∈ Mm, it follows
that i∗L

⊥ is a constant subspace of En+2, which is orthogonal to ∂
∂t
. Denote by K the

orthogonal complement of i∗L
⊥ in En+2. Then, for any fixed x0 ∈Mm we have

f̃(Mm) ⊂ f̃(x0) +K.

But since K contains ∂
∂t

and ν(x0), it also contains the position vector f̃(x0). Thus

f̃(x0) +K = K. We conclude that f̃(M) ⊂ (Qn
ǫ × R) ∩K = Qm+ℓ−1

ǫ × R.

Proof of Theorem 7: Assume that ∇⊥N1 ⊂ L. Then condition (ii) is trivially satisfied.
To prove (i), first notice that for ξ ∈ N⊥

1 the Ricci equation gives

R⊥(X, Y )ξ = α(X,AξY )− α(AξX, Y ) = 0.

Given ξ ∈ L⊥, we have that ξ ∈ N⊥
1 and that ∇⊥

Zξ ∈ N⊥
1 by our assumption, hence

(∇ZR
⊥)(X, Y, ξ) = ∇ZR

⊥(X, Y )ξ−R⊥(∇ZX, Y )ξ−R⊥(X,∇ZY )ξ−R⊥(X, Y )∇⊥
Zξ = 0.

To prove the converse, let ξ ∈ L⊥. Since R⊥(X, Y )ξ = 0 for all X, Y ∈ TM , we
obtain from (i) that

R⊥(X, Y )∇⊥
Zξ = 0

for all X, Y, Z ∈ TM . Using the Ricci equation again, we obtain that

[A∇⊥
Z
ξ, A∇⊥

W
ξ] = 0

for all Z,W ∈ TM . Hence, at any x ∈ M there exists an orthonormal basis Z1, . . . , Zn

of TxM that diagonalizes simultaneously all shape operators A∇⊥
Z
ξ, Z ∈ TM . We will

show that
〈∇⊥

Zk
ξ, α(Zi, Zj)〉 = 0

for all 1 ≤ i, j, k ≤ n, which implies that ∇⊥
Xξ ∈ N⊥

1 for all X ∈ TM .
From the choice of the basis Z1, . . . , Zn, we have

〈α(Zi, Zj),∇⊥
Zk
ξ〉 = 〈A∇⊥

Zk
ξZi, Zj〉 = 0
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if i 6= j. It follows from the Codazzi equation (9) and the fact that ξ ∈ L⊥ ⊂ {η}⊥ that

A∇⊥
Zi

ξZk = A∇⊥
Zk

ξZi,

hence the eigenvalue λki of A∇⊥
Zk

ξ correspondent to Xi vanishes unless k = i. Therefore,

〈α(Zi, Zi),∇⊥
Zk
ξ〉 = 〈A∇⊥

Zk
ξZi, Zi〉 = 0, if i 6= k.

Finally, the assumption ∇⊥H ∈ L and the above imply that

〈α(Zi, Zi),∇⊥
Zi
ξ〉 = n〈H,∇⊥

Zi
ξ〉 = 0.

5.1 Alencar–do Carmo–Tribuzzi Theorem

In this subsection we apply Theorem 7 to give a simple proof of the following theorem
due to Alencar, do Carmo and Tribuzzi [3].

Theorem 13. Let f : M2 → Qn
ǫ × R, n ≥ 5, be a surface with nonzero parallel mean

curvature vector. Then, one of the following possibilities holds:

(i) f is a minimal surface of a umbilical hypersurface of a slice Qn
ǫ × {t}.

(ii) f is a surface with constant mean curvature in a three-dimensional umbilical or
totally geodesic submanifold of a slice Qn

ǫ × {t}.

(iii) f(M2) lies in a totally geodesic submanifold Qm
ǫ × R, m ≤ 4, of Qn

ǫ × R.

Proof: Since the mean curvature vector H is parallel and nonzero, the function µ :=
‖H‖2 on M2 is a nonzero constant. Suppose first that AH = µI everywhere on M2. We
claim that the vector field T vanishes identically. Assuming otherwise, there exists an
open subset U where T 6= 0. Choose a unit vector field X on U orthogonal to T . Then

〈H,α(X, T )〉 = µ〈X, T 〉 = 0. (30)

By the Codazzi equation (7) we have

〈(∇⊥
Tα)(X,X)− (∇⊥

Xα)(T,X), H〉 = −‖T‖2〈η,H〉.

It follows easily from (30) and the fact that µ is constant on M2 that the left-hand-side
of the preceding equation is zero. Thus 〈η,H〉 vanishes on U , and hence

0 = T 〈η,H〉 = 〈∇⊥
T η,H〉 = −〈α(T, T ), H〉 = −µ‖T‖2,

where we have used (5) in the third equality. This is a contradiction and proves the
claim.
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Therefore, if AH = µI everywhere onM2 then f(M2) is contained in a slice Qn
ǫ ×{t}

of Qn
ǫ × R, and either of possibilities (i) or (ii) holds by Theorem 4 in [17].
Assume now that AH 6= µI on an open subset V of M2. Since H is parallel, it

follows from the Ricci equation that [AH , Aζ] = 0 for any x ∈ M2 and every normal
vector ζ ∈ NxM . Then, the fact that AH has distinct eigenvalues on V implies that the
eigenvectors of AH are also eigenvectors of Aζ for any ζ ∈ NxM , x ∈ V . Hence all shape
operators are simultaneously diagonalizable at any x ∈ V , which implies that f has flat
normal bundle on V by the Ricci equation (8). In particular, the first normal spaces N1

of f have dimension at most two at any x ∈ V . Let W ⊂ V be an open subset where
L = dimN1 + span{η} has constant dimension ℓ ≤ 3. It follows from Theorem 7 that
f(W ) lies in a totally geodesic submanifold Q2+ℓ−1

ǫ × R of Qn
ǫ × R. By analyticity of f

(see Remark 1 of [3]), we conclude that f(M2) ⊂ Q2+ℓ−1
ǫ × R.

Proof of Corollary 8: Let X be a unit vector field orthogonal to T . By Corollary 5, in
order to prove that f is a rotational surface it suffices to show that ∇⊥

Xαf (X,X) = 0.
We follow essentially the proof of Proposition 2 in [3]. Since the mean curvature vector
field

H =
1

2
(αf(X,X) + ‖T‖−2αf(T, T ))

is parallel in the normal connection, we have

∇⊥
Xαf (X,X) = −∇⊥

X(‖T‖−2αf(T, T )) = −X(‖T‖−2)αf(T, T )− ‖T‖−2∇⊥
Xαf(T, T ).

Now, since f is in class A, we have from (21) that

〈∇TT,X〉 = 0 = 〈∇XT, T 〉.

In particular, X(‖T‖−2) = 0. Moreover, using the Codazzi equation (7) we obtain

∇⊥
Xαf (T, T ) = (∇⊥

Xαf)(T, T ) + 2α(∇XT, T ) = (∇⊥
Xαf)(T, T ) = (∇⊥

Tαf)(X, T )

= ∇⊥
Tαf (X, T )− αf (∇TX, T )− αf (X,∇TT ) = 0.

That f(M2) is contained in a totally geodesic submanifold Qm
ǫ × R, m ≤ 4, and hence

that its profile curve lies in a totally geodesic submanifold Qs
ǫ × R, s ≤ 3, follows from

Theorem 13.

6 Umbilical submanifolds of Sn × R

We are now in a position to prove Theorem 1 in the introduction.

Proof of Theorem 1: Since φ : Sm+1 × R → Rm+2 \ {0} given by φ(x, t) = etx is a
conformal diffeomorphism, it follows that Mm

r,h = φ−1(Sm
r,h) is an umbilical submanifold

of Sm+1×R, for a conformal diffeomorphism preserves umbilical submanifolds. Assertion
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(i) and completeness of Mm
r,h are clear, for Mm

r,h = φ−1(Sm
r,h) if (r, h) 6= (d, 0) and Md,0 =

φ−1(Sm
d,0\{0}). It is easily seen that the totally geodesic hypersurfaces Sm×R of Sm+1×R

are the images by φ−1 of the hyperplanes through the origin in Rm+2. Since Sm
r,h lies

in such a hyperplane if and only if h = 0, the assertion in (ii) follows. Assertion (iii)
follows from the fact that Sm

r,0 is homologous to zero in Rm+1 if r < d and inhomologous
to zero in Rm+1 if r > d.

We now prove (iv). Since orthogonal transformations of Rm+2 correspond under
the diffeomorphism φ to isometries of Sm+1 × R fixing pointwise the factor R, and
homotheties of Rm+2 correspond to translations along R, we can assume that x̄ =√

2
2
(0, . . . , 0, 1) ∈ Rm+1. Let

I = {(p, q) ∈ R : (p− 1)2 ≤ q < p2}.

For each (p, q) ∈ I, set Jp,q = (−
√

p−√
q,
√

p−√
q) and define hp,q : J̄p,q → R by

hp,q(s) =

√

p− s2 +
√

(p− s2)2 − q .

Let Yp,q : Sm−1 × J̄p,q → Sm+1 × R and Zp,q : Sm−1 × J̄p,q → Sm+1 × R be given by

Yp,q(x, s) =

(

sx,

√
2

2

(

hp,q(s) +
1− p

hp,q(s)

)

,

√

q − (p− 1)2√
2hp,q(s)

, log hp,q(s)

)

and, for q 6= 0,

Zp,q(x, s) =

(

sx,

√
2

2

(

1− p√
q
hp,q(s) +

√
q

hp,q(s)

)

,

√

q − (p− 1)2√
2q

hp,q(s), log

√
q

hp,q(s)

)

.

Notice that Zp,q = Ψ ◦ Yp,q, where Ψ: Sm+1 ×R → Sm+1 ×R is the isometry defined by
Ψ(x, s) = (Ax,−s+ log

√
q), with A ∈ O(m) given by

A =

(

Im−2 0

0 B

)

, B =
1√
q

(

1− p
√

q − (1− p)2
√

q − (1− p)2 − (1− p)

)

.

Let ψ : I → (0,∞)× [0,∞) be the diffeomorphism given by

ψ(p, q) =

√
2

2

(

√

p2 − q,
√

q − (p− 1)2
)

.

Then (iv) is a consequence of the following fact.

Lemma 14. For (r, h) = ψ(p, q) we have

Mm
r,h =

{

Yp,q(S
m−1 × J̄p,q) ∪ Zp,q(S

m−1 × J̄p,q), if (r, h) 6= (d, 0),

Y1,0(S
m−1 × (−1, 1)), if (r, h) = (d, 0).
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Proof: We argue for (r, h) 6= (d, 0), the case (r, h) = (d, 0) ( i.e., (p, q) = (1, 0)) being
similar and easier. A straightforward computation shows that

(φ ◦ Yp,q)(x, s) =
(

shp,q(s)x,

√
2

2
(h2p,q(s)− p), 0

)

+ (x̄, h)

and

(φ ◦ Zp,q)(x, s) =

(

sh̄p,q(s)x,

√
2

2
(h̄2p,q(s)− p), 0

)

+ (x̄, h),

where h̄p,q(s) =
√
q/hp,q(s). Let γ : J̄p,q → R2 and γ̄ : J̄p,q → R2 be given by

γ(s) = (shp,q(s),

√
2

2
(h2p,q(s)− p)) and γ̄(s) = (sh̄p,q(s),

√
2

2
(h̄2p,q(s)− p)),

respectively. Then, the statement follows from the fact that γ(J̄p,q)∪ γ̄(J̄p,q) is the circle
of radius r =

√

p2−q

2
centered at the origin.

We now prove the converse. Let f : Mm → Sn×R, m ≥ 2, be an umbilical isometric
immersion. If the vector field T in (1) vanishes identically, then f(Mn) is contained in
a slice Sn × R, and this gives the first possibility in the statement. Now assume that
T does not vanish at some point, and hence on some open subset U ⊂ Mn. It suffices
to prove that there exist open subsets Ũ ⊂ U and V ⊂ Sm, (p, q) ∈ I and an interval
I ⊂ Ip,q such that, up to an isometry of Sn × R, we have f(Ũ) ⊂ Yp,q(V × I). For this
implies that f(Ũ) ⊂ Mm

r,h with (r, h) = ψ(p, q), and thus (φ ◦ f)(Ũ) ⊂ φ(Mm
r,h) = Sm

r,h.
Since φ◦f is an umbilical immersion into Rn+2 \{0}, it follows that (φ◦f)(Mm) ⊂ Sm

r,h,
and hence f(Mm) ⊂Mm

r,h.
From Codazzi equation (7) and αf(X, Y ) = n〈X, Y 〉H for all X, Y ∈ TM , where H

is the mean curvature vector of f , we obtain

n∇⊥
XH = −ǫ〈X, T 〉η (31)

for every X ∈ TM . If H and η are linearly dependent on U , it follows from Lemma 6
that f has substantial codimension one on U . Otherwise, there exists an open subset
Ũ ⊂ U such that H and η are linearly independent on Ũ , in which case Lemma 6 implies
that f has substantial codimension two on Ũ .

On the other hand, since f is umbilical and its mean curvature vector H is parallel
in the normal connection along {T}⊥ by (31), condition (iii) in Corollary 5 is satisfied.
Thus f is a rotational submanifold.

Summing up, f |Ũ is a rotational submanifold of substantial codimension at most two
over a curve in a totally geodesic submanifold Ss × R, s ≤ 2. Hence, we can assume
that n = m + 1 and s = 2. Equivalently, in view of the last assertion in Corollary 5,
we obtain that f |Ũ is given by (2) in terms of a totally geodesic isometric immersion
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g : V ⊂ Sm−1 → Sm and a regular curve α : I → S2 ×R ⊂ R4, α = (α0, α1, α2, α3), with
α2
0 + α2

1 + α2
2 = 1.

With notations as in Proposition 11, we have by (16) and the umbilicity of f that

Af̃

φx(ζ)
is a multiple of the identity tensor for every ζ ∈ α′(s)⊥ ∩ ᾱ(s)⊥. Using that

Ps(x) = α0(s)I, it follows from (17), (19) and (20) that

−〈g̃, φx(ζ)〉
α0(s)

=
〈α′′(s), ζ〉

〈α′(s), α′(s)〉 for all ζ ∈ α′(s)⊥ ∩ ᾱ(s)⊥,

or equivalently,

〈α0(s)α
′′(s) + ϕ(s)e0, ζ〉 = 0 for all ζ ∈ α′(s)⊥ ∩ ᾱ(s)⊥,

since g̃ = φx(e0). Here ϕ(s) = 〈α′(s), α′(s)〉. Hence, there exist smooth functions
y = y(s) and z = z(s) such that

α0α
′′ + ϕe0 = yα′ + zᾱ. (32)

We write the preceding equation as

α0ᾱ
′′ + α0α

′′
3e3 + ϕe0 = yᾱ′ + yα′

3e3 + zᾱ. (33)

Notice that

〈ᾱ, ᾱ〉 = 1, 〈ᾱ′, ᾱ〉 = 0, 〈ᾱ′, ᾱ′〉 = ϕ− (α′
3)

2 = −〈ᾱ′′, ᾱ〉, and 〈ᾱ′′, ᾱ′〉 = 1

2
(ϕ′ − 2α′

3α
′′
3).

(34)
On the other hand, taking the inner product of both sides of (33) with e3 yields

α0α
′′
3 = yα′

3. (35)

Using (34) and (35), we obtain by taking the inner product of both sides of (33) with ᾱ
and ᾱ′, respectively, that

z = α0(α
′
3)

2 and y =
α0ϕ

′ + 2ϕα′
0

2ϕ
. (36)

Hence (32) becomes

2ϕα0α
′′ + 2ϕ2e0 − (α0ϕ

′ + 2ϕα′
0)α

′ − 2ϕα0(α
′
3)

2ᾱ = 0. (37)

Taking the inner product of both sides of (37) with e3 yields

α′′
3 =

(

ϕ′

2ϕ
+
α′
0

α0

)

α′
3,
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which easily implies that

α′
3 = cα0

√
ϕ for some c ∈ R. (38)

We now show that α0 can not be constant on I. Assume otherwise, say, that α0 =
a ∈ R. We may also suppose that α is parametrized by arc-length, i.e., ϕ = 1. Then
α′
3 = ac by (38), thus z = a3c2 and y = 0 by (36). Replacing into (37), the e0-component

gives c2a4 = 1, whereas for 1 ≤ i ≤ 2 the ei-component then yields α′′
i = (1/a)αi. We

obtain that αi = ai exp(s/a) + bi exp(−s/a) for some ai, bi ∈ R, 1 ≤ i ≤ 2. Replacing
into 1 = α2

0 + α2
1 + α2

2 = a2 + α2
1 + α2

2 implies that ai = 0 = bi for 1 ≤ i ≤ 2, i.e.,
α1 = 0 = α2, and that a = ±1. Therefore f |Ũ is totally geodesic, contradicting our
assumption.

Hence, there must exist an open interval J ⊂ I such that α′
0(s) 6= 0 for all s ∈ J , thus

we can reparametrize α on J so that α0(s) = s for all s ∈ J . Then the e0-component of
(37) gives

sϕ′ + 2(c2s4 − 1)ϕ2 + 2ϕ = 0.

This is easily seen to be equivalent to ϕ−1(s) = c2s4 + c2s
2 + 1 for some c2 ∈ R. Hence

the right-hand-side of the preceding equation is nowhere vanishing, and we can write
bϕ−1(s) = s4 + as2 + b for a = c2/c

2 and b = 1/c2, or equivalently,

ϕ(s) =
p2 − q

(s2 − p)2 − q
, p2 > q, (39)

for p = −a
2
and q = a2

4
− b. Equation (38) becomes

α′
3(s) =

s
√

(s2 − p)2 − q
. (40)

Taking the inner product of both sides of (37) with ei, 1 ≤ i ≤ 2, and using (39) and
(40) yields

s((s2 − p)2 − q)α′′
i + (s4 − p2 + q)α′ − s3αi = 0, 1 ≤ i ≤ 2.

Lemma 15. Let αi : I → R, 1 ≤ i ≤ 2, be linearly independent solutions of the ODE

s((s2 − p)2 − q)α′′
i + (s4 − p2 + q)α′ − s3αi = 0, p2 > q, (41)

on an open interval I ⊂ R where (s2 − p)2 − q > 0. Assume that s2 + α2
1 + α2

2 = 1 for
all s ∈ I. Then (p, q) ∈ I, I ⊂ Jp,q and there exists θ ∈ R such that

√
2(α1(s), α2(s)) =

(

h(s) +
1− p

h(s)

)

(cos θ, sin θ)±
√

q − (1− p)2

h(s)
(− sin θ, cos θ), (42)

where h(s) =
√

p− s2 +
√

(p− s2)2 − q.
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Proof: Let F be a primitive of β : I → R given by

β(s) =
s

√

(s2 − p)2 − q
.

Then, it is easily checked that the functions

ρ+ := exp ◦F and ρ− := exp ◦(−F )

form a basis of the space of solutions of (41) on I. Thus, there exist ai, bi ∈ R, 1 ≤ i ≤ 2,
such that

αi = aiρ+ + biρ−, 1 ≤ i ≤ 2. (43)

Replacing into s2 + α2
1 + α2

2 = 1 gives

s2 + A exp(2F (s)) +B + C exp(−2F (s)) = 0, for all s ∈ I, (44)

where A = a21 + a22, B = 2(a1b1 + a2b2)− 1 and C = b21 + b22.
Assume that either of the following conditions holds:

(i) q < 0; (ii) q > 0 and p ≤ 0; (iii) q > 0, p > 0 and I is not contained in Jp,q.

Then, up to a constant,

F (s) =
1

2
log
(

s2 − p+
√

(s2 − p)2 − q
)

,

hence (44) gives

A(u+
√

u2 − q) + C(u+
√

u2 − q)−1 = −u+ E,

where u = s2 − p and E = −B − p. This yields

2(2A+1)(C−Aq) = −(2A+1)2q, (C−Aq)E = −(2A+1)Eq and (C−Aq)2 = −E2q.

Since 2A+1 > 0, the first and the third of the preceding equations give q = 0 if E = 0,
whereas the same conclusion follows from the first and second equations if E 6= 0. This
is a contradiction and shows that either q = 0 or q > 0, p > 0 and I ⊂ Jp,q.

Let us consider first the case q = 0. Suppose either that p < 0 or that p > 0 and I
is not contained in Jp,0 = (−√

p,
√
p). Then F (s) = 1

2
log(s2 − p) and (44) gives

Au+ Cu−1 = −u+ E,

which implies that C = 0, E = 0 and A = −1, a contradiction. Thus p > 0 and I ⊂ Jp,0,
in which case F (s) = −1

2
log(p− s2) and (44) now yields

−Au−1 − Cu = −u+ E.
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This implies that A = 0, E = 0 and C = 1, hence (a1, a2) = (0, 0), p = −B = 1
and there exists θ ∈ R such that (b1, b2) = (cos θ, sin θ). Therefore α1 = cos θ

√
1− s2,

α2 = sin θ
√
1− s2, and hence the statement is true in this case.

Now suppose that q > 0, p > 0 and I ⊂ Jp,q. Then

F (s) = −1

2
log
(

√

(p− s2)− q − s2 + p
)

= − log h(s), (45)

where h(s) is as in the statement. We obtain from (44) that

A(
√

u2 − q − u)−1 + C(
√

u2 − q − u) = −u+ E,

with u = s2 − p and A,C,E as before. This is equivalent to

2(2C−1)(A−qC) = −q(2C−1)2, (A−qC)E = −q(2C−1)E and (A−qC)2 = −qE2,

and hence to

E = 0, A =
q

2
and C =

1

2
.

This gives

a1b1 + a2b2 =
1

2
(1− p), a21 + a22 =

q

2
and b21 + b22 =

1

2
. (46)

By the last equation in (46), there exists θ ∈ R such that (b1, b2) =
√
2
2
(cos θ, sin θ). Set

u := (cos θ, sin θ) and v := (− sin θ, cos θ). Then the first equation can be written as

〈(a1, a2), u〉 =
√
2

2
(1− p). (47)

Using this and the second equation we obtain

q

2
= a21 + a22 =

1

2
(p− 1)2 + 〈(a1, a2), v〉2,

hence

〈(a1, a2), v〉2 =
1

2
(q − (p− 1)2).

In particular, this shows that q ≥ (p − 1)2, thus (p, q) ∈ I. Moreover, together with
(47) it implies that

a1 =

√
2

2
((1−p) cos θ∓

√

q − (1− p)2 sin θ), a2 =

√
2

2
((1−p) cos θ±

√

q − (1− p)2 sin θ),

and (42) follows.

We obtain from Lemma 15 and (40) that α(s) is given by
(

s,

√
2

2

(

h(s) +
1− p

h(s)

)

(cos θ, sin θ)±
√
2

2

√

q − (1− p)2

h(s)
(− sin θ, cos θ), h± log h(s)

)

,
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and f |Ũ can be parametrized by Y : Sm−1 × I → Sm+1 × R given by

Y (X, s) = (sX, α1(s), α2(s), α3(s)).

Let A be the linear isometry of Rm+2 ⊃ Sm+1 × R defined by

Aem = cos θem + sin θem+1, Aem+1 = ∓ sin θem + cos θem+1,

Aei = ei for i ∈ {1, . . . , m} and Aem+2 = ±em+2. Then A
−1Y (X, s)−hem+2 = Yp,q(X, s).

It remains to prove assertion (v) in the direct statement. This is equivalent to
showing that Yp,q and Yp′,q′ do not parametrize congruent submanifolds for distinct
pairs (p, q) and (p′, q′) in I. After reparametrizing the curve α = αp,q by arc-length, the
metric induced by Yp,q is a warped product metric ds2+ ρ2(s)dσ on I × Sm−1, where dσ
is the standard metric on Sm−1 and the warping function ρ = ρp,q is the inverse of the
arc-length function

Sp,q(t) =

∫ t

0

‖α′
p,q(τ)‖dτ =

∫ t

0

√

ϕp,q(τ)dτ,

with ϕp,q given by (39). If Yp,q and Yp′,q′ parametrize congruent submanifolds, then
the induced metrics, and hence the corresponding warping functions, must coincide. It
follows that ϕp,q = ϕp′,q′, which easily implies that (p, q) = (p′, q′).

Acknowledgement: A first draft of Lemma 6 was derived in a conversation of the second
author with M. Dajczer. We thank him for allowing us to include it here.
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