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Abstract

We investigate the properties of absolutely continuous invariant probability measures
(ACIPs) for piecewise area preserving maps (PAPs) on Rd. This class of maps unifies
piecewise isometries (PWIs) and piecewise hyperbolic maps where Lebesgue measure is
locally preserved. In particular for PWIs, we use a functional approach to explore the
relationship between topological transitivity and uniqueness of ACIPs, especially those
measures with bounded variation densities. Our results “partially” answer one of the fun-
damental questions posed in [12] - determine all invariant non-atomic probability Borel
measures in piecewise rotations. When reducing to interval exchange transformations
(IETs), we demonstrate that for non-uniquely ergodic IETs with two or more ACIPs,
these ACIPs have very irregular densities (namely of unbounded variation and discontin-
uous everywhere) and intermingle with each other.
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1 Introduction

Conservative systems are often used as models of the physical world, where conservative
is usually understood as energy preserving (i.e., where energy is invariant under the time
evolution). In this article we consider conservative systems that are governed by discrete time
dynamical systems. In particular, we focus on multidimensional piecewise area preserving
maps (PAPs), which are a general extension of interval exchange transformations (IETs) into
Rd. Regarding IETs, Keane conjectures that minimality implies unique ergodicity in [15]
and this conjecture holds for IETs with two or three intervals. However, counterexamples
have been constructed; see [16, 18]. Thereafter, Masur [20] and Veech [24] independently
demonstrated that almost every minimal (transitive) IET (with respect to Lebesgue measure)
is uniquely ergodic; simultaneously, Keane & Rauzy [17] revealed that unique ergodicity holds
for a (Baire) residual subset of the space of IETs. To fully understand the densities of invariant
measures for these non-uniquely ergodic counterexamples, it is natural to explore equivalent
conditions to the minimality (transitivity) in IETs in terms of absolutely continuous invariant
probability measures (ACIPs).

When extending the above question to multidimensional PAPs, there are at least two
technical obstacles: complicated topology in high dimensions and distance may not preserved
locally. For the class of PAPs preserving distance locally, a special case of interest is the class
of piecewise isometries (PWIs). Establishing their ACIPs contributes to determine all their
invariant non-atomic probability Borel measures. This is one of the fundamental questions
posed in [12] for two-dimensional piecewise rotations that is still open.

For the class of PAPs that do not preserve distance locally, a particular case is piecewise
hyperbolic maps. For these maps, transitivity along with the uniqueness of physical measure
has been widely studied (see works of Boyarsky & Góra, Viana [3, 25]). These studies use
a functional analytic approach by choosing a “reasonable” function space and applying a
transfer operator on this space. They study statistical properties of the system by looking
at the operator fixed point and determining if there is a spectral gap. In one-dimensional
piecewise expanding maps, the space of bounded variation functions is demonstrated to be
such a reasonable space [3, 25]. In higher dimensions, the space of multidimensional bounded
variation functions can still be chosen under certain assumptions [5, 23] and contains a clas-
sical anisotropic Sobolev space of Triebel-Lizorkin type which is shown by Baladi & Gouëzel
[2] to be such a “reasonable” space.

In this article, our interest is to explore the structure of ACIPs and the relationship
between the uniqueness of such measures and topological properties (e.g. existence of dense
orbits, topological transitivity and minimality) for multidimensional PAPs (particularly for
PWIs) by applying the functional approach. Definitions of PAPs as well as PWIs are given
below.

Let X be a compact subset of Rd and (X,B,m) be a probability space. For convenience,
m always denotes d−dimension normalized Lebesgue measure on X, and B is the Borel σ-
field. We say P = {ωi}

r−1
i=0 is a topological partition of X if: (i) ωi ∩ ωj = ∅, for i 6= j; (ii)⋃r−1

i=0 ωi = X; and (iii) for each ωi, int(ωi) 6= ∅ and m(∂ωi) = 0. Here each ωi is called an
atom; intA and ∂A are the interior and boundary of A respectively.

Definition 1 A nonsingular map f : (X,B,m) → (X,B,m) with a topological partition
P = {ωi}

r−1
i=0 is called a piecewise area preserving map (PAP) if f |int(ωi) ∈ C1 for each ωi and

|detDf(x)| ≡ 1 for x ∈
⋃r−1
i=0 int(ωi). Here nonsingularity means that f is measurable (with

respect to B) and m(A) = 0 implies m(f−1(A)) = m(f(A)) = 0 for any A ∈ B; and Df
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refers to the Jacobian Matrix. We say a PAP f is piecewise invertible area preserving if f |ωi

is invertible for each ωi, and say f is invertible PAP if f is globally invertible. In particular,
if each ωi is a connected polyhedral region and f |intωi

is isometry (i.e., preserving Euclidean
distance), we say f is a piecewise isometry (PWI).

PWIs include reflections while PAPs also include piecewise (non-)uniformly hyperbolic
maps with determinant ±1, e.g. Baker’s map, Arnold’s cat map, area preserving Hénon map
and Standard map [19]. Piecewise versions of these maps can be realized by considering them
on the torus.

For a PAP f : X → X, we classify its ACIPs based on their density properties as 1

MI(f) : = {µ is an ACIP with respect to f},

MIB(f) : = {µ ∈ MI(f) :
dµ

dm
= η|X for some η ∈ BV (U),∀U open ⊃ X},

MIC(f) : = {µ ∈ MI(f) :
dµ

dm
is m-a.e. continuous},

where BV (U) is the space of bounded variation functions (see Definition 2). It is reasonable
to discuss MIB,MIC as

• these spaces are “large enough” Banach subspaces of L1(m) (i.e. containing some
discontinuous functions since L1 is a non-separable space) [22];

• functions in these spaces have “good” geometric intuitiveness, e.g. if χE ∈ BV (U),
then the measurable subset E ⊂ U has finite perimeter [9];

• these spaces coincide with those chosen in piecewise hyperbolic maps in [2, 5, 23];

• these spaces are invariant under the transfer operator (defined in Section 2.1) for PWIs
shown in Lemma 4. This invariance is necessary for a space to be “good” as explained
in [2].

It is clear that MIB ⊂ MIC ⊂ MI in R, while for a general invertible PAP f in higher
dimension, m ∈ MIB(f),MIC(f) ⊂ MI(f). For non-invertible PAPs, MI(f) is possibly
empty; and conditions for MI(f) 6= ∅ is discussed in Section 3.2.

The novelty of this paper is that we introduce multidimensional bounded variation func-
tions to analyze ACIPs in PAPs, especially in PWIs. Particularly, we explore the relationship
between the existence of dense orbits and uniqueness of MIC(f) or MIB(f) for invertible
multidimensional PAPs in Theorem 1. Reducing to non-uniquely ergodic IETs, this indi-
cates the irregularity of densities of ACIPs in examples constructed by Keynes & Newton
and Keane. Moreover, in Theorem 2 for invertible PWIs, we give an approach to construct
invariant measures in MIB(f) by taking accumulation point in the Birkhoff average of the
transfer operator acting on bounded variation functions. These results together with the
extension in piecewise invertible area preserving maps in Section 3.2, “partially” answer one
of Goetz’s questions in [12].

The paper is organized as following: preliminaries and the main results are stated in
Section 2 with proofs given in Section 4. Applications along with discussions are in Section 3.

1 dµ

dm
∈ L1(m) is m − a.e. continuous means that its equivalence class contains an m − a.e. continuous

representative.
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2 Preliminaries and Main results

In this section, we state the main results obtained by employing the transfer operator and
multidimensional bounded variation, whose explicit definitions are given in the following for
the completeness. The main results is then connected to one of the open questions in [12].
Note that m always denotes normalized Lebesgue measure on a compact subset X of Rd.

2.1 Transfer operator

Let (X,B,m) be a probability space and f : X → X be nonsingular. The transfer operator
Lf : L1(m) → L1(m) associated with f is defined up to m− a.e. equivalence as [3]:

∫

A

Lfϕdm =

∫

f−1(A)
ϕdm, ϕ ∈ L1(m), A ∈ B.

This transfer operator possesses the following dual property [25]

∫
(Lfϕ)ψdm =

∫
ϕ · (ψ ◦ f)dm, ϕ ∈ L1(m), ψ ∈ L∞(m).

For an invertible PAP f : X → X with a topological partition P := {ω0, · · · , ωr−1},
the transfer operator can be simplified to Lf (ϕ) = ϕ ◦ f−1, ∀ϕ ∈ L1(m). In particular, by
choosing a representative ϕ from the m− a.e. equivalent class, we can adjust Lf to ensure

Lfϕ(x) = ϕ ◦ f−1(x), x ∈
r−1⋃

i=0

intωi.

2.2 Multidimensional bounded variation functions

There are various equivalent definitions of multidimensional bounded variation function; see
Appendix A.1 (we refer to [9, 26] for overview). In one dimension, the Definition 2 below
reduces to the usual notation of bounded variation as described in [3], see also Appendix A.1.
We also state here Helly’s Theorem, which is used in the proof of Theorem 2.

Definition 2 [9] Let U be an open set of Rd. A function η ∈ L1(U) is a bounded variation
function (η ∈ BV (U)) if

var(η) := sup

{∫

U

η div
−→
φ dm :

−→
φ ∈ C1

c (U,R
d), |

−→
φ | ≤ 1

}
<∞ (1)

where
−→
φ = (φi)

d
i=1, div

−→
φ =

∑d
i=1

∂φi
∂xi
, and

−→
φ ∈ C1

c (U,R
d) means that

−→
φ ∈ C1 and its

compact support set is contained in U . We define a norm on BV(U) by ||η||BV (U) := ||η||1 +
var(η).

Helly’s Theorem [9] Let U ⊂ Rd be open and bounded, with ∂U Lipschitz. Assume
that {ηn}∞n=1 is a sequence in BV(U) satisfying supk ||ηk||BV (U) < ∞, then there exist a
subsequence {ηnj

}∞j=1 and a function η ∈ BV (U) such that ηkj → η in L1(U) as j → ∞.
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2.3 Main results

Let X be a compact subset of Rd, for an invertible map f : X → X, we say f admits a dense
orbit if there exists x0 ∈ X with Of (x0) := {f i(x0)|i ∈ Z} dense in X. A representative
x∗ ∈ Of (x0) of a dense orbit is called a nomadic point. If every point x0 ∈ X is nomadic,
then f is called minimal.

Theorem 1 Let (X,B,m) be a probability space and f : X → X be an invertible PAP with
a topological partition P = {ωi}

r−1
i=0 , then the following hold.

(i) If f admits a dense orbit, then MIB(f) ∪MIC(f) = {m}.

(ii) If f |ωi
is a homeomorphism for each ωi, then f admits a dense orbit if and only if

MIC(f) = {m}.

Corollary 1 For an invertible PAP f , if f |ωi
is a homeomorphism for each ωi, then MIC(f) =

{m} implies MIB(f) = {m}.

Theorem 2 For an invertible PWI f : X → X, given any η ∈ BV (U) with η|X > 0, where
U ⊃ X is open bounded and ∂U is Lipschitz, then there is a subsequence of the Birkhoff
average sequence of the transfer operator Lf

1

nk

nk−1∑

i=0

Lifη → η∗ ∈ BV (U), as k → ∞

and dµ := η∗|Xdm ∈ MIB(f); moreover, var(η∗) ≤ var(η) and sup(η∗) ≤ sup(η).

Note that all the invariant measures in MIB(f) can be constructed using Theorem 2; the
reason being the following. Suppose η ∈ BV (U) and dµ := η|Xdm ∈ MIB(f), then it is
clearly to see that Lfη = η, which follows limk→∞

1
nk

∑nk

j=1L
j
fη = η. This construction in

principle determines all invariant measures in MIB of piecewise rotations (see Appendix A.2
for the definition).

Remark 1 Theorem 1 and Theorem 2 also hold for m−a.e. invertible (i.e., m({y|#f−1(y) 6=
1}) = 0).

The above theorems together with Lemma 5 and Proposition 2 in the following sections
“partially” answer the open question posed in [12] - “determine all invariant non-atomic
probability Borel measure for two dimensional piecewise rotation” and we summarise this
“partial” answer as the following corollary.

Corollary 2 Suppose f : X → X is an invertible piecewise rotation, then

(i) MI(f) = {ϕdm : ϕ = E(ϕ|I), ϕ ∈ L1(m)}, where I = {B ∈ B : f−1(B) = B mod m};

(ii) MIB(f) = {η∗|Xdm : η∗ is an accumulation point of{ 1
n

∑n−1
i=0 Lifη}n∈Z, where η ∈

BV (U) and η|X > 0}; and if f admits a dense orbit then MIB(f) = {m};

(iii) MIC(f) = {m} if and only if f admits a dense orbit.
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Suppose f is non-invertible. Let X+ =
⋂∞
i=0 f

i(X) and define f+ : X+ → X+ as in
(2) in Section 3.2, then f+ is m − a.e. invertible. Furthermore, if m(X+) > 0, then above
statements (i), (ii) and (iii) hold for f+ and

MI(f) = {µ(·) := ν(· ∩X+),∀ν ∈ MI(f
+)};

if m(X+) = 0, then MI(f) = MIB(f) = MIC(f) = ∅.

Concerning the open question [12] in piecewise rotations, this Corollary gives a universal
approach to construct all invariant measures with bounded variation densities and gives
a necessary and sufficient condition for uniqueness of ACIPs for any piecewise rotations.
However, ACIPs only gives a subset of non-atomic probability Borel measures. Thereby, to
fully answer the question in piecewise rotations (or in PAPs), we have to explore singular
(with respect to Lebesgue measure) non-atomic probability invariant measures, e.g. Hausdorff
measure when it is probabilistic. This is discussed at the end of Section 3.2.

3 Applications and Discussions

In this section, we firstly apply Theorem 1 to IETs (see Appendix A.3 for the definition),
particularly to examples of non-uniquely ergodic IETs and show the irregularity in the den-
sities of their ACIPs. Secondly, we apply Theorem 1 and Theorem 2 to multidimensional
piecewise invertible area preserving maps and give a short discussion at the end particularly
on the open question proposed in [12] for piecewise rotations. Recall that m always denotes
normalized Lebesgue measure on a compact subset X of Rd.

3.1 Interval exchange transformations

In IETs, MIC can be refined to

M′
IC(f) := {µ ∈ MI(f) :

dµ

dm
:= ϕ has at most countably many discontinuity points},

then MIB ⊂ M
′

IC ⊂ MIC . Note that topological transitivity2 implies minimality for IETs
(see e.g. Corollary 14.5.11 in [14]) and so by applying Theorem 1, it is straightforward to
prove the following corollary which characterizes the minimality in terms of the uniqueness
of ACIPs with particular properties.

Corollary 3 For any IET f : [0, 1) → [0, 1),

f is minimal ⇔ MIC(f) = {m} ⇔ M′
IC(f) = {m}.

This corollary can be used to investigate Keane Conjecture - minimality implies unique
ergodicity for IETs [15] and its counterexamples. Firstly, we review two well-known coun-
terexamples.

In [18] Keynes and Newton construct Tγ(x) = x + γ (mod 1) where γ ∈ (0, 1) was an

irrational number. By choosing certain β and γ (see [6, 18]) and defining T̂γβ : [0, 1 + β) →
[0, 1 + β) as

T̂γβ(x) =

{
x+ 1, if 0 ≤ x < β
x+ γ (mod 1), if β ≤ x < 1 + β,

2Topological transitivity means that for any open sets U and V , there exists n ∈ Z such that fn(U))∩V 6= ∅.
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then Tγβ(x) := 1
1+β T̂γβ(x(1 + β)) has an eigenvalue −1, implying that T 2

γβ is not uniquely
ergodic and its ergodic measures belong to MI (see [18] for details).

In [16], Keane constructs an interval exchange transformation with four intervals satisfying
a strong irrationality condition that implies minimality. Under certain conditions (see [16]),
there exist two different ergodic measures µ1 and µ2. Moreover, such ergodic measures are
either both in MI or one is Lebesgue measure and the other is singular. The Hausdorff
dimension of singular measures in this example has been recently estimated in [7]; here we
discuss ACIPs. Combining these results gives a better understanding of ergodic measures for
non-uniquely ergodic IETs.

For the examples above, explicit formulae of their densities (if they belong to MI) are
not clear. The difficulty in constructing counterexamples can be seen from Corollary 3 as
these ergodic measures are in MI(f)\MIC(f), which means that their densities are Lebesgue
integrable but the points of discontinuity have a positive Lebesgue measure, and so the den-
sities have unbounded variation. The following proposition provides an explicit description
of topological properties for the density of invariant measures of non-uniquely ergodic IETs.

Proposition 1 For any topologically transitive IET, if m 6= µ ∈ MI , the following holds:

(i) the density of µ is a simple function (i.e. a combination of finitely many characteristic
functions);

(ii) for any representative from the equivalence class ϕ := dµ
dm

, ϕ is discontinuous everywhere
and suppµ = [0, 1) (i.e. if x /∈ suppµ, then there exists an open ball B such that
µ(B) = 0).

Remark 2 For the two ergodic measures µ1, µ2 ∈ MI in the examples of Keynes & Newton[18]
and Keane [16], we can derive from Proposition 1 that µ1 ⊥ µ2, µ1, µ2 ≪ m, and suppµ1 =
suppµ2 = [0, 1). Hence, in some sense the measure µ1 and µ2 intermingle with each other.

3.2 Piecewise invertible area preserving maps

In this subsection, we aim to understand the structure of ACIPs for non-invertible PAPs,
particularly for piecewise invertible area preserving maps f : X → X, where X is a compact
subset of Rd. Let X+ :=

⋂∞
i=0 f

i(X), which is invariant under f , i.e., f(X+) = X+ [11]. In
particular for PWIs, X+ is shown to be almost closed (i.e., m(X+) = m(X+)) in [1]. Here
we show such almost closedness of X+ holds for a large proportion of piecewise invertible
area preserving maps.

Lemma 1 Let f : X → X be piecewise invertible area preserving with a topological partition
P = {ω0, · · · , ωr−1} and fi := f |intωi

is Lipschitz for each ωi, then m(X+) = m(X+) and
f |X+ is m− a.e. invertible.

Under the conditions of Lemma 1, X+ is not necessarily invariant under f , however, there
still exists a map f+ (not necessarily unique) that is m − a.e. equal to f for which X+ is
invariant. This f+ can be constructed as follows. Since each fi is Lipschitz, there exists a
continuous extension f̂i : intωi → fi(intωi). Hence for any x ∈ (

⋃r−1
i=0 ∂ωi) ∩ X+, we can

define g(x) := f̂i∗(x), where i
∗ := min{i : x ∈ ∂ωi}. Thereby, f

+ : X+ → X+ can be defined
as

f+(x) =

{
f(x), x ∈ int(ωi) ∩X

+

g(x), otherwise.
(2)
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Moreover, if fi is bi-Lipschitz, f+ can be shown to be non-singular and m − a.e. invertible.
The non-singularity andm−a.e. invertibility allow the analysis of the ACIPs of f+ analogous
to the proofs of Theorem 1 and Theorem 2 by replacing X and int(·) with X+ and int(·)∩X+

respectively, though X+ may be not sufficiently regular in the sense that m(∂X+) > 0. The
ACIPs of f+ can be further used to construct all the ACIPs of f . This gives the following
proposition.

Proposition 2 Let f : X → X be a piecewise invertible area preserving map with topolog-
ical partition P := {ω0, · · · , ωr−1} and assume that fi := f |intωi

is bi-Lipschitz continuous.
Moreover, let f+ : X+ → X+ be defined as in (2), then f+ is non-singular and m − a.e.
invertible. Moreover the following hold:

(i) if m(X+) > 0, then MI(f) =
{
µ(·) := ν(· ∩X+),∀ν ∈ MI(f

+)
}
;

(ii) if m(X+) = 0, then MI(f) = ∅.

When m(X+) = 0, it is natural to consider invariant measures that are absolutely contin-
uous with respect to Hausdorff measure Hs, where s = dimH X+. If f+ satisfies the following
conditions:

(1) 0 < Hs(X+) = Hs(X+) <∞;

(2) Hs is an invariant measure for f+;

(3) f+ is non-singular with respect to Hs, i.e., Hs
(
(f+)−1(A)

)
= Hs(f+(A)) = 0 whenever

Hs(A) = 0;

then by an analogous argument to Proposition 2, f+ is Hs−a.e. invertible. Correspondingly,
Theorem 1 and Theorem 2 hold for f+ when Lebesgue measure is replaced by Hs.

The above three conditions are possible to achieve for interval translation maps (which
is a special class of piecewise invertible area preserving maps on R, see Appendix A.3). In
fact, condition (2) is demonstrated in [4, Theorem 2] while condition (3) can be inferred by
combining condition (2) and the definition of Hausdorff measure. Moreover, the Hs − a.e.
closedness can be shown by analogous arguments to the proof of Lemma 1. Eventually, by [10,
Theorem 9.3], condition (1) can be achieved for particular interval translation maps where
X+ are self similar sets satisfying an open set condition and positive Hausdorff dimension
[4].

Particular to the open question in determining all invariant non-atomic probability Borel
measures of non-invertible piecewise rotations when m(X+) = 0, we consider absolutely
continuous (with respect to Hs) invariant probability measures. Let f+ be defined as (2),
then we have the following proposition.

Proposition 3 Let f be a two-dimensional piecewise rotation, with m(X+) = 0 and s :=
dimH X+ > 1, then X+ is Hs − a.e. closed and f+ is non-singular. Moreover, let

HI(f) := {ν probability invariant measure of f : ν ≪ Hs},

then the following hold:

(i) if 0 < Hs(X+) < ∞, then f+ is Hs − a.e. invertible, Hs is invariant under f+ and

HI(f) =
{
µ(·) := ν(· ∩X+),∀ν ∈ HI(f

+)
}
;

8



(ii) if Hs(X+) = 0, then HI(f) = ∅.

The proof of Proposition 3 is analogous to the proofs of Proposition 2 and Lemma 1
where we need the condition s := dimH X+ > 1. This condition does not always hold. For
instance, taking the Cartesian product of interval translation maps in [4] gives some examples
of piecewise rotations with Hausdorff dimension ranging 0 ≤ s ≤ 1.It might be interesting to
explore conditions for s > 1. For the case 0 ≤ s ≤ 1, we suspect that the approaches would
be different.

To fully answer the open question in piecewise rotations, we suggest to consider the
structure of HI(f

+) in the case of Hs(X+) = ∞. In this case, the corresponding approaches
in Theorem 1 and 2 on f+ are invalid due to lack of Hs−a.e. invertibility of f+. Note that by
[10, Theorem 6.2], there exists a compact subset E ⊂ X+ with 0 < Hs(E) <∞. We suggest
to establish a non-atomic probability invariant measures of f+ induced by E as a reference
measure and leave this for further studies.

4 Proofs

To demonstrate the proofs of our theorems and propositions, we first state the following two
basic results regarding MI(f), i.e., the set of all ACIPs of a PAP f : X → X with standard
proofs. Recall m always denotes normalized Lebesgue measure on a compact subset X of Rd.

Proposition 4 For a nonsingular map f : X → X and ϕ ∈ L1(m), we have Lfϕ = ϕ if and
only if dµ := ϕdm ∈ MI(f).

Proof: Suppose Lfϕ = ϕ. Let dµ := ϕdm, then for each A ⊂ X,

µ(A) =

∫

A

ϕdm =

∫

A

Lfϕdm =

∫

f−1(A)
ϕdm = µ(f−1(A)),

which implies µ ∈ MI(f).
On the other hand, if dµ := ϕdm is an invariant measure of f , i.e., µ(f−1(A)) = µ(A) for

any Borel set A ⊂ X, then
∫
A
Lfϕdm =

∫
f−1(A) ϕdm = µ(f−1(A)) = µ(A) =

∫
A
ϕdm, which

implies that Lfϕ = ϕ. ✷

Proposition 5 For an invertible PAP f : X → X, m is ergodic if and only if MI(f) = {m}.

Proof: Suppose µ ∈ MI(f), then by Proposition 4, dµ
dm

◦ f = dµ
dm

. Combining with the

facts that µ is a probability measure and m is ergodic, gives dµ
dm

≡ 1, i.e., MI = {m}.
On the other hand, if m is not ergodic, then there exists an invariant subset B ⊂ X with

0 < m(B) < 1. Let m∗(F ) := m(F∩B)
m(B) for each F ∈ B, then

m∗(f−1(F )) =
m(f−1(F ) ∩B)

m(B)
=
m(f−1(F ∩B))

m(B)
= m∗(F ),

showing that m∗ ∈ MI(f). Note that m∗ 6= m, which is contradictory to MI(f) = {m}. ✷

9



4.1 Proof of Theorem 1

To prove the statement (i), we firstly show MIC = {m} and then by combining some par-
ticular properties on bounded variation and Lebesgue point, we show MIB = {m}. For the
statement (ii), we start with a lemma showing the equivalence between topological transitiv-
ity and the existence of a nomadic point.

Without loss of generality, we assume that x∗ ∈
⋃r−1
i=0 intωi is a nomadic point.

Proof of the statement (i) in Theorem 1: In the case of µ ∈ MIC , take a
representative ϕ = dµ

dm
from the m− a.e. equivalent class such that ϕ is m− a.e. continuous

and a point x′ ∈
⋃r−1
i=0 intωi for which ϕ is continuous, hence there exists a subsequence

{fkt(x∗)} such that as |t| → ∞, fkt(x∗) → x′. Simultaneously, ϕ ◦ f−1(x) = ϕ(x) holds for
each x ∈

⋃r−1
i=0 intωi. By the continuity of the point x′, ϕ(x′) = ϕ(x∗), which implies ϕ ≡ 1,

i.e. MIC = {m}.
In the following, we consider the case of µ ∈ MIB(f). Take any x0 ∈

⋃r−1
i=0 intωi, then

there exists an open ball B ⊂ intωi, whose center is x0. Since µ ∈ MIB, (i.e., ϕ = dµ
dm

with
ϕ = η|X for some η ∈ BV (U), ∀U ⊃ X), there exists a unit vector â ∈ Rd splitting B into:

B(â,x0) := B ∩ {x ∈ Rd : 〈x− x0, â〉 > 0} and B(−â,x0) := B ∩ {x ∈ Rd : 〈x− x0,−â〉 > 0}

(where 〈·, ·〉 is the inner product), and the limits

lim
x→x0
x∈B(â,x0)

ϕ(x) and lim
x→x0

x∈B(−â,x0)

ϕ(x)

exist for m − a.e. x0 ∈
⋃r−1
i=0 intωi (x0 is then called a regular point) [26, page 178]. Hence

by analogous arguments to the proof of the uniqueness of measures in MIC (recall x∗ is the
nomadic point),

lim
x→x0
x∈B(â,x0)

ϕ(x) = lim
x→x0
x∈B(−â,x0)

ϕ(x) = ϕ(x∗),

By [26, page 168], it follows that limx→x0 ϕ(x) = ϕ(x∗). In addition, since ϕ ∈ L1(m), then
m− a.e. x ∈ X is a Lebesgue point of ϕ i.e.,

lim
r→0+

1

m(B(x, r))

∫

B(x,r)
|ϕ(y)− ϕ(x)|dm(y) = 0.

Therefore, if the regular point x0 is also a Lebesgue point,

0 ≤ |ϕ(x0)− ϕ(x∗)| = lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)
|ϕ(x0)− ϕ(x∗)|dm(y)

≤ lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)
|ϕ(y) − ϕ(x0)|dm(y)

+ lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)
|ϕ(y) − ϕ(x∗)|dm(y) = 0,

which implies that ϕ(x0) = ϕ(x∗), meaning that ϕ ≡ 1. ✷

Before prooving statement (ii), we first formulate an equivalent condition for topological
transitivity.

Lemma 2 Let f : X → X on Rd be an invertible PAP with a topological partition P =
{ωi}

r−1
i=0 . Suppose f |ωi

is homeomorphism for each ωi, then the following are equivalent.
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(i) f admits a dense orbit;

(ii) f is strong topologically transitive(i.e. For any open sets U, V , there exists n ∈ Z such
that int(fn(U)) ∩ V 6= ∅);

(iii) f is topologically transitive (i.e. for any open sets U, V , there exists n ∈ Z such that
fn(U)) ∩ V 6= ∅).

Note that since PAPs are typically not continuous at every point, the proof for the above
equivalence will not be standard (see [27] for the standard proof), therefore, we provide the
details of the proof here.

Proof of Lemma 2: “(ii) implies (iii)” is directly and we only need to prove (i) implies
(ii) and (iii) implies (i). For convenience, we denote P(n) :=

∨n
i=0 f

−i(P) and ω(n) one of
the atoms in the topological partition P(n) for any n ∈ Z.

“(i) ⇒ (ii)” We prove by contradiction. Suppose there exist open sets U, V 6= ∅ such
that for any n ∈ Z, int(fn(U)) ∩ V = ∅ and a nomadic point x∗ of f , then there exist
n1, n2 ∈ Z such that fn1(x∗) ∈ U and fn2(x∗) ∈ V . Let t := n2 − n1, then there exists an
atom ω(t) ∈ P(t) such that fn1(x∗) ∈ ω(t).

If fn1(x∗) ∈ intω(t), then f t(U ∩ intω(t)) = int f t(U ∩ intω(t)) since f t|intω(t) is homeo-
morphic. Therefore,

fn2(x∗) = f t(fn1)(x∗) ∈ f t(U ∩ intω(t)) ⊂ int f t(U),

which implies fn2(x∗) ∈ int(f t(U)) ∩ V. This is a contradiction.
Suppose fn1(x∗) ∈ ∂ω(t), let l := n1+n2, then there exists an atom ω(l) such that x∗ ∈ ω(l).

Note that fn1 |ω(l) , fn2 |ω(l) are continuous, therefore, there exists x′ ∈ ω(l) sufficiently close to
x∗ such that fn1(x′) ∈ intω(t) ∩ U and fn2(x′) ∈ V. Repeat the same process as the above
case, using x′ in place of x∗ and this completes the proof.

“(iii) ⇒ (i)” Let {Ui}
∞
i=1 be a countable base forX and n1 ∈ Z such that fn1(U1)∩U2 6= ∅.

We firstly show int(fn1(U1)) ∩ U2 6= ∅. Let y ∈ fn1(U1) ∩ U2. Hence there exists x ∈ ω(n1) ∈
P(n1) such that y = fn1(x). If x ∈ intω(n1), then there exists an open ball x ∈ Bx ⊂ ω(n1)

such that fn1(Bx) ⊂ int fn1(U1). Therefore, y ∈ int(fn1(U1)) ∩U2. Otherwise, if x ∈ ∂ω(n1),
by the analogous approach to the case “(i) ⇒ (ii)”, there exists x′ such that x′ ∈ intω(n1)∩U1

and y′ := fn1(x′) ∈ int(fn1(U1)) ∩ U2. Hence int(fn1(U1)) ∩ U2 6= ∅.
Therefore, there exists a closed ball B2 such that B2 ⊂ int(fn1(U1)) ∩ U2 ∩ intω(n1).

Moreover, fn1 |B2 is a homeomorphism meaning that V1 := f−n1(B2) is a nonempty closed
set. Analogously, for open sets intB2 and U3 there exist n2 ∈ Z and a closed ball B3 ⊂
int(fn2(B2)) ∩ U3, with fn2 |B3 a homeomorphism. Let V2 := f−n2(B3) ⊂ B2, then V2 is a
nonempty closed set and f−n1(V2) ⊂ V1.

Continue this process and eventually there exist {ni}
∞
i=1 and {Vi}

∞
i=1 such that f−ni(Vi+1) ⊂

Vi for each i. By taking x∗ ∈
⋂∞
i=1 f

N(Vi+1), where N = −
∑i

j=1 nj, it is straightforward to
see that x∗ is a nomadic point, which completes the proof. ✷

Remark 3 There does exist a map [21] that is not continuously extend to the boundary from
its interior and is topologically transitive but does not admit dense orbit.

Proof of statement (ii) in Theorem 1: We show the converse by contraction. Suppose
that f is not topologically transitive in X, by Lemma 2 there exist two open intervals U, V ⊂
X such that int(fn(U))∩V = ∅ for all n ∈ Z. Therefore, int(f i+n(U))∩int f i(V ) = ∅ mod m,
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for any n, i ∈ Z. Let

U∗ :=
∞⋃

i=−∞

int f i(U) and V ∗ :=
∞⋃

i=−∞

int f i(V ),

then U∗ ∩ V ∗ = ∅ mod m and both U∗ and V ∗ are invariant under f . Hence both m|U∗ and
m|V ∗ are invariant measures and m|U∗ 6= m|V ∗ . Note the facts that ∂U∗ ⊂

⋃∞
i=−∞ ∂f i(U)

and ∂V ∗ ⊂
⋃∞
i=−∞ ∂f i(V ) implying that m(∂U∗) = m(∂V ∗) = 0, that is χU∗ and χV ∗

have Lebesgue zero measure points of discontinuity. Therefore, m|U∗ ,m|V ∗ ∈ MIC , which
contradicts to the uniqueness of measure in MIC . ✷

Remark 4 When reducing to IETs, each open set is a union of countably many open inter-
vals, therefore, χU∗ and χV ∗ have at most countably many discontinuities, which will be used
in the proof of Corollary 3.

4.2 Proof of Theorem 2

As any bounded variation function η is defined on an open set, for any open set U ⊃ X, we
define f̄ : U → U by:

f̄(x) =

{
f(x), x ∈ X
x, x ∈ U\X,

(3)

then f̄ is still a PAP. We first show that Lf̄ preserves the variation of bounded variation
functions by applying the following lemma and eventually, use Helly’s Theorem to illustrate
the structure for MIB of PWI.

Lemma 3 [Coordinate Transformation][8] Let ψ : W → Ω be a C2− diffeomorphism where

W,Ω are open subset in Rd. Given
−→
φ ∈ C1(Ω,Rd), let

−→
φ ψ(y) := Dψ−1(y)

−→
φ (ψ(y)) then

div(|detDψ|
−→
φ ψ) = (div

−→
φ ) ◦ ψ · |detDψ|. (4)

Lemma 4 Let f : X → X be an invertible piecewise isometry. For any η ∈ BV (U),X ⊂
U ⊂ Rd, then varLf̄η = var η.

Proof Recall Definition 2 of bounded variation

var(Lfη) = sup

{∫

U

(η ◦ f
−1

· div
−→
φ )dm :

−→
φ ∈ C1

c (U,R), |
−→
φ | ≤ 1

}
.

Let fi := f |ωi
, where ωi ∈ P. For any ε > 0, there exists

−→
φ ∈ C1

c (U,R), |
−→
φ | ≤ 1 such that

var(Lfη)− ε ≤

∫

U

(η ◦ f
−1

· div
−→
φ )dm =

r−1∑

i=0

∫

intωi

(η ◦ f−1
i · div

−→
φ )dm+

∫

U\X
η · div

−→
φ dm.

By applying the coordinate transformation (x = f−1
i (y)), for each ωi

∫

intωi

η(f−1
i (y)) · div

−→
φ (y)dm(y) =

∫

f−1
i (intωi)

η(x) · div(
−→
φ )(fi(x))dm(fi(x))

=

∫

f−1
i (intωi)

η · (div
−→
φ ) ◦ fidm =

∫

f−1
i (intωi)

η · div
−→
φ fidm,
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where
−→
φ fi := (Dfi)

−1 ·
−→
φ ◦fi. The second equality is due to |detDfi(x)| ≡ 1 while the third

is due to (4) in Lemma 3. Hence,

var(Lfη)− ǫ ≤
r−1∑

i=1

∫

f−1
i (intωi)

η(x) · div
−→
φ fi +

∫

U\X
η · div

−→
φ dm. (5)

Moreover, since f is an invertible PWI, it can be written in form of fi(x) = Dfi ·x+ bi. Note
that the rotation matrix Dfi preserves the Euclidean metric, then

sup
x∈intωi

|
−→
φ fi(x)| = sup

x∈intωi

|(Dfi)
−1−→φ (fi(x))| = sup

x∈intωi

|
−→
φ (fi(x))| = sup

y∈fi(ωi)
|
−→
φ (y)|, (6)

For given ǫ, there exists δ > 0 such that by letting

∆i := {x ∈ ωi : d(x, z) ≥ δ,∀z ∈ ∂ωi},

we can then define

φ̂(x) =

{ −→
φ fi , if x ∈ ∆i

smooth connecting with the boundary, otherwise,

such that
∣∣∣∣∣

∫

U

η · div φ̂dm−

(
r−1∑

i=1

∫

f−1
i (intωi)

η(x) · div
−→
φ fi +

∫

U\X
η · div

−→
φ dm

)∣∣∣∣∣ ≤ ǫ/2.

Moreover, based on (6) and each ωi being a connected polyhedral region, it is straightforward

to see that for any given
−→
φ ∈ C1

c (U,R
d) satisfying |

−→
φ | ≤ 1, then φ̂(x) ∈ C1

c (U,R
d) is well

defined and |φ̂| ≤ 1. Therefore,

var(Lf̄η)− ǫ ≤
r−1∑

i=1

∫

f−1
i

(intωi)
η(x) · div

−→
φ fi +

∫

U\X
η · div

−→
φ dm

≤

∫

U

η · div φ̂dm+ ǫ/2 ≤ var(η) + ǫ/2,

following var(Lfη) ≤ var(η) due to arbitrariness of ε. By the invertibility of f , var(Lfη) ≥
var(η). Hence var(Lfη) = var(f). ✷

Proof of Theorem 2: Since Lf̄ (η) = η ◦ f̄−1, it follows that var(Ln
f̄
η) = var(η) from

Lemma 4 and esssup(Ln
f̄
η) = esssup(η), for n ≥ 1. Let

ηn =
1

n

n−1∑

j=0

Lj
f̄
η =

1

n

n−1∑

j=0

η ◦ f̄−j,

then var(ηn) ≤ var(η) and esssup(ηn) ≤ esssup(η). By Helly’s Theorem [9], there exists
a subsequence (ηnk

)∞k=0 converging in L1(m) to some function η∗ ∈ BV. By the triangle
inequality,

||Lf̄η
∗ − η∗||1 ≤ ||Lf̄η

∗ − Lf̄ηnk
||1 + ||Lf̄ηnk

− ηnk
||1 + ||ηnk

− η∗||1. (7)
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The third term tends to 0 because ||ηnk
− η∗||1 → 0, as k → ∞ while the first term tends to

0 since ||Lfη
∗ − Lfηk||1 ≤ ||η∗ − ηk||1. For the second term,

||Lf̄ηnk
− ηnk

||1 =

∣∣∣∣∣∣

∣∣∣∣∣∣
1

nk

nk∑

j=1

η ◦ f̄−j −
1

nk

nk−1∑

j=0

η ◦ f̄−j

∣∣∣∣∣∣

∣∣∣∣∣∣
1

=
1

nk
||η ◦ f̄−nk − η||1 ≤

2

nk
||η||1 → 0.

Hence Lf̄η
∗ = η∗, implying that dµ = η∗dm is an invariant measure of f̄ with var(η∗) ≤

var(η) and esssup(η∗) ≤ esssup(η). Note that η|X > 0, therefore, ||η∗|X ||1 = ||η|X ||1, by
normalization dµ = η∗|Xdm ∈ MIB(f). ✷

4.3 Proof of Proposition 1

To prove Proposition 1, we first show the following lemma.

Lemma 5 Let (X,B,m) be a probability space and f : X → X be an invertible PAP, then
for any ϕ ∈ L1(m), the conditional expectation E(ϕ|I) is a fixed point of Lf , where I :=
{B ∈ B, f−1(B) = B mod m} is a sub σ−field. Moreover, a measure dµ := ϕdm ∈ MI(f)
if and only if ϕ = E(ϕ|I).

Proof: Without loss of generality, for any fixed L ∈ N, we define

ϕL := min{ϕ,L} ∈ L1(m).

By the Birkhoff Ergodic Theorem, it follows that for m− a.e. x ∈ X.

Lf (E(ϕL|I))(x) = E(ϕL|I) ◦ f
−1(x) = lim

n→∞

1

n

n−2∑

i=−1

ϕL ◦ f i(x)

= lim
n→∞

[
1

n
(
n−1∑

i=0

ϕL ◦ f i)(x) +
1

n

(
ϕL ◦ f−1(x)− ϕL ◦ fn−1(x)

)
]
.

Since

lim
n→∞

1

n

(
ϕL ◦ f−1(x)− ϕL ◦ fn−1(x)

)
≤ lim

n→∞

2L

n
= 0, m− a.e. x ∈ X,

which implies that LfE(ϕL|I) = E(ϕL|I). By the Monotone convergence theorem,

LfE(ϕ|I) = E(ϕ|I). (8)

Next, we show the second part of the lemma. If dµ = ϕdm ∈ MI(f), then by Proposition
4, ϕ ◦ f = ϕ. Combining with the Birkhoff Ergodic Theorem gives

ϕ = lim
n→∞

1

n

n−1∑

i=0

ϕ ◦ f i = E(ϕ|I).

The converse is clear to see by the invariance of E(ϕ|I) under Lf . ✷

We say a σ−field I is finitely generated, if there exists a partition A := {Ai}
r−1
i=0 ⊆ I, and

for each B ∈ I, there exist finitely many Ai1 , · · · , Ail ∈ A such that B =
⋃l
k=1Aik modm.

Proof of Proposition 1: (i) For any topologically transitive IET f , there are only
finitely many ergodic measures {νi}

n
i=1 ∈ MI(f) [15]. By using the ergodic decomposi-

tion theorem, it follows that the σ−field I is finitely generated by a partition, say A :=
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{A1, · · · , Ar−1} with 0 < m(Ai) < 1 for each i. Moreover, each ergodic ν = m|Ai
∈ MI ,

which implies that dνi
dm

= χAi
, hence by Lemma 5 and [3], it is straightforward to see that if

dµ := ϕdm ∈ MI , then

ϕ = E(ϕ|I) =
r−1∑

i=0

1

m(Ai)

∫

Ai

ϕdm · χAi
, ∀ ϕ ∈ L1(m), (9)

which completes the proof of the first statement.
(ii) For any µ 6= m ∈ MI , take any representative ϕ := dµ

dm
from the equivalence class,

and define
S := {x | ϕ is discontinuous at x};

T := {x | ∃ n ∈ Z, s.t. fn is discontinuous at x}.

By Theorem 1, we know that m(S) > 0. Moreover, since f is an IET, m(T ) = 0. Therefore,
m(S\T ) > 0. By choosing a x0 ∈ S\T, such that ϕ ◦ fn(x0) = ϕ(x0) for any n ∈ Z, we have
{fn(x0)}n∈Z ⊂ S. Note that topologically transitive implies minimality for IETs [14]. Hence
S dense in X. By specializing to ϕ = χAi

, Ai is then dense in X. Combining with (9), it is
straightforward to see that suppµ = [0, 1) and the density ϕ is discontinuous everywhere. ✷

4.4 Proofs of Lemma 1 and Proposition 2

Lemma 6 Suppose f̂ is Lipschitz continuous, then m(f̂(A)) = 0 if m(A) = 0.

We give the proof of this Lemma even though it is standard from [10].
Proof: If m(A) = 0, by the definition of Lebesgue measure, for any ǫ > 0, there exists a

countable covering {Ui} such that A ⊂ ∪iUi and
∑

i diam(Ui) < ǫ. Hence

∑

i

diam(Ui ∩A) ≤
∑

i

diam(Ui) ≤ ǫ. (10)

By the Lipschitz property of f̂ , there exists a universal constant C such that,

∑

i

diam f̂(Ui ∩A) ≤ C
∑

i

diam(Ui ∩A). (11)

Note that {f̂(Ui ∩A)}i is also a covering of f̂(A). Hence, by (10) and (11)

m(f̂(A)) ≤
∑

i

diam(f̂(Ui ∩A)) ≤ Cǫ

for any ǫ > 0, implying that m(f̂(A)) = 0. ✷

Proof of Lemma 1: We first show almost closedness of X+. Since fi is Lipschitz
countinuous, it can be continuously extended from intωi onto intωi. Denoting its continuous
extension by f̂i : intωi → f̂i(intωi), it is a straightforward consequence that each f̂i is also
Lipschitz continuous. Moreover, if for m− a.e. x ∈ A, x ∈ B, we say A ⊂ B mod m. Then
using the non-singularity of f and Lemma 6, we know that

X+ := closure
(⋂∞

j=0 f
j(
⋃r−1
i=0 ωi)

)
⊆

⋂∞
j=0 closure

(⋃r−1
i=0 f̂

j
i (intωi)

)
mod m

⊆
⋂∞
j=0

⋃r−1
i=0 f̂

j
i (intωi) mod m =

⋂∞
j=0

⋃r−1
i=0 fi(ωi) mod m = X+ mod m,

(12)
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which means m(X+) = m(X+).
Denote ω+

i := ωi ∩X
+, then X+ = ∪r−1

i=0ω
+
i . Consequently,

r−1∑

i=0

m(f(ω+
i )) =

r−1∑

i=0

m(ω+
i ) = m(

r−1⋃

i=0

ω+
i ) = m(X+) = m(f(X+)) = m(∪r−1

i=0 f(ω
+
i )),

which follows that m(f(ω+
i ) ∩ f(ω

+
j )) = 0, which implies that f |X+ is m− a.e. invertible. ✷

Proof of Proposition 2: Them−a.e. invertibility of f+ is straightforward from them−
a.e. invertibility of f |X+ . By Lemma 6 and the definition of f+, for any Borel subset A ⊂ X+,
m(f+(A)) = 0. Meanwhile, as f |ωi

is bi-Lipschitz, by symmetry it follows m((f+)−1(A)) = 0.
Hence f+ is non-singular.

When m(X+) > 0, f |
X+ can be seen as a first return map of f on X+. Therefore, by

applying the proposition in [3, prop 3.6.2], it follows that

{
µ(·) := ν(· ∩X+),∀ν ∈ MI(f

+)
}
⊆ MI(f).

On the other side, for any µ ∈ MI(f), since µ(X) = 1 and f−1◦f(X) = X, hence µ(f(X)) =
1. This implies that µ(X+) = 1 and completes the proof of statement (i).

For statement (ii), we prove by contraction. Suppose that there exists µ ∈ MI(f), it
follows that µ(X+) = 0 since m(X+) = 0. This is a contradiction with µ(X+) = 1. ✷
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A Appendix

A.1 Equivalence of definitions of multidimensional bounded variation func-

tion

We introduce the usual notion of bounded variation in one dimension followed by anther two
equivalent definitions of multidimensional bounded variation functions.

Let η ∈ L1 be a function defined on the entire real axis and [a, b] a segment outside of
which η(x) = 0. The total variation of η is defined to be

V (η) := sup
i−1∑

i=0

|η(xi+1)− η(xi)|,

where sup is taken over all possible finite partitions of the segment [a, b] by means of the
points x0 = a < x1 < · · · < xr = b. The essential total variation of η is defined in [26] as
V̄ (η) := infz V (η + u), where the “inf” is taken over all functions u that equal zero almost
everywhere on [a, b].

Next, we proceed to multidimensional definitions of bounded variation. Let η ∈ L1 be a
function defined on Rd. We regard η(x) as a function of the variable xi for the other variables
fixed and denote by V̄i(x

′
i) the essential total variation of the function η with respect to xi

for a fixed point x′i = {x1, x2, · · · , xi−1, xi+1, · · · , xd}.
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Definition 3 [26] A function η defined on Rd is said to be a function with essentially bounded
variation if the integrals ∫

V̄i(x
′
i)dx

′
i (i = 1, 2, · · · , n)

exist. η is called a bounded variation function if it has essentially bounded variation.

Note the fact that the above definition of bounded variation reduces to the usual notion
as described in [3]. The equivalence between Definition 3 and Definition 2 in Section 2.2 is
shown via the below definition of bounded variation.

Definition 4 [26, p158] Suppose U is an open subset in Rd and η ∈ L1(U), then η is a
bounded variation function if and only if there exists a constant K such that

∣∣∣∣
∫

U

∂φ

∂xi
ηdx

∣∣∣∣ ≤ K sup
x∈U

|φ(x)|, (i = 1, 2, · · · , d) (13)

for all φ ∈ C1
0 (U,R), where φ ∈ C1

0 (U,R) means that φ ∈ C1 and |
∫
U
φdm| <∞.

A necessary and sufficient condition for a function η to be bounded variation (as defined
in Definition 4) is that η has essentially bounded variation [26], meaning that Definition 4
of bounded variation agrees with Definition 3. Moreover, we show that Definition 4 is also
equivalent to Definition 2 via the following proposition.

Proposition 6 Suppose η ∈ L1(U), then var(η) < ∞ (recalling var(·) is defined in (1)) if
and only if (13) holds for any φ ∈ C1

0 (U,R).

Proof “ ⇒′′ Suppose that var(η) <∞, then it is straightforward to see that
∣∣∣∣
∫

U

η(x) div
−→
φ (x)dx

∣∣∣∣ ≤ var(η)||
−→
φ ||∞, ∀

−→
φ ∈ C1

c (U,R
d). (14)

For any φ ∈ C1
c (U,R), let

−→
φi = (

i−1︷ ︸︸ ︷
0, · · ·, φ, · · · , 0), then (14) implies (13). Hence, we can define

a continuous linear functional on the linear subspace C1
c (U,R) ⊂ C1

0 (U,R) by∫

U

η div(·)dx :
−→
φ 7→

∫

U

η div
−→
φ dx

By the Hahn-Banach theorem, it follows that this continuous functional extends continuously
to C1

0 (U,R).
“ ⇐′′ It is straightforward to see that var(η) ≤ d ·K < ∞ for the dimension constant d.

✷

Note that the standard Sobolev space W 1,1(U) ( BV (U) and BV (U) with the norm
|| · ||BV = || · ||1 + var(·) is a non-separable Banach subspace that is dense in L1.

A.2 Piecewise rotations

Definition 5 (Piecewise rotation) [13] Let Ω be a compact convex connected polygon in
C. A map T : Ω → Ω is called a piecewise rotation with atoms P := {ω0, · · · , ωr−1} if

T |ωj
x = ρjx+ zj if x ∈ ωj

for some complex numbers: zj and ρj such that |ρj | = 1 for all j = 0, 1, · · · , r−1. The atoms
are assumed to be mutually disjoint convex connected polygons.

It is trivial to see that piecewise rotations are PWIs in R2 with a topological partition
and are homeomorphism when restricting on each atom.
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A.3 Interval translation maps and interval exchange transformations

Definition 6 (Interval translation map) [4] Let 0 = β0 < β1 < · · · < βr = 1, I = [0, 1)
and for i = 0, · · · , r, βi = [βi−1, βi). An interval translation mapping is an interval map
T : I → I given by

T (x) = x+ γi, if x ∈ Bi,

where γi are fixed numbers such that T maps I into itself. Define Ω0 := I, and Ωn := T (Ωn−1).
Then define Ω := ∩nΩn. Particularily, if Ω = Ω0 = I, then T is called an interval exchange
transformation.
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203-212.

[18] H. B. Keynes and D. Newton. A“Minimal”, Non-Uniquely Ergodic Interval Exchange
Transformation. Math Z. 148 (1976), 101-105.

[19] R. S. MacKay. Renormalisation in area-preserving maps. World Scientific, 1993.

[20] H. Masur. Interval exchange transformations and measured foliations. Ann. of Math.
115 (1982), 169-200.

[21] A. Peris. Transitivity, dense orbit and discontinuous functions. Bull. Belg. Math. Soc.
Simon Stevin, 6 (1999), 391-394.

[22] B. Saussol. Absolutely continuous invariant measures for multidimensional expanding
maps. Isr. J. Math. 116 (2000), 223-248.

[23] M. Tsujii. Piecewise expanding maps on the plane with singular ergodic properties,
Ergod. Theor. Dyn. Syst. 20 (2000), 1851-1857.

[24] W. Veech. Gauss measures for transformations on the space of interval exchange maps.
Ann. of Math. 115 (1982), 201-242.

[25] M. Viana. Stochastic Dynamics of Deterministic Systems, Braz. Math. Colloq. 21, IMPA,
1997.

[26] A. I. Vol’pert and S. I. Hudjaev. Analysis in classes of discontinuous functions and
equations of mathematical physics. Martinus Nijhoff Publishers, Dordrecht, 1985.

[27] P. Walters. An Introduction to Ergodic Theory. Springer-Verlag, New York, (1982).

19


	1 Introduction
	2 Preliminaries and Main results
	2.1 Transfer operator
	2.2 Multidimensional bounded variation functions
	2.3 Main results

	3 Applications and Discussions
	3.1 Interval exchange transformations
	3.2 Piecewise invertible area preserving maps

	4 Proofs
	4.1 Proof of Theorem 1
	4.2 Proof of Theorem 2
	4.3 Proof of Proposition 1
	4.4 Proofs of Lemma 1 and Proposition 2

	A Appendix
	A.1 Equivalence of definitions of multidimensional bounded variation function
	A.2 Piecewise rotations
	A.3 Interval translation maps and interval exchange transformations


