Squares in polynomial product sequences

Paul Spiegelhalter ${ }^{\text {a,1 }}$, Joseph Vandehey ${ }^{\text {a,2,* }}$
${ }^{a}$ Department of Mathematics, 250 Altgeld Hall, 1409 W Green St., Urbana, IL, 61801

Abstract

Let $F(n)$ be a polynomial of degree at least 2 with integer coefficients. We consider the products $N_{x}=\prod_{1 \leq n \leq x} F(n)$ and show that N_{x} should only rarely be a perfect power. In particular, the number of $x \leq X$ for which N_{x} is a perfect power is $O\left(X^{c}\right)$ for some explicit $c<1$. For certain $F(n)$ we also prove that for only finitely many x will N_{x} be squarefull and, in the case of monic irreducible quadratic $F(n)$, provide an explicit bound on the largest x for which N_{x} is squarefull.

Keywords: Squarefull numbers
2010 MSC: 11A51, 11C08

1. Introduction

Several papers have recently been published concerning how often

$$
N_{x}=\prod_{n \leq x} F(n)
$$

can be a perfect square, given an irreducible polynomial $F(n)$ with integer coefficients. Cilleruelo proved in [1] that if $F(n)=n^{2}+1$ then N_{x} is a perfect square only when $x=3$. Fang, using Cilleruelo's method, proved in [2] that if $F(n)=4 n^{2}+1$ or $F(n)=2 n(n-1)+1$ then N_{x} is never a perfect square, and Gürel and Özgür Kişisel proved in [3] that if $F(n)=n^{3}+1$ then N_{x} is never squarefull. Conjectures regarding these products were initially put forth in [4], as they related to studying arithmetical properties of the arctangent function.

Cilleruelo, et al., in [5], later showed that if $F(n)$ is an irreducible polynomial of degree at least 2 , then the number of times N_{x} / d is a perfect square for x in the interval $[M, M+N]$ is

$$
\ll N^{11 / 12}(\log N)^{1 / 3}
$$

uniformly over all positive square-free integers d and all positive integers M.

[^0]In this paper, we examine how often $N_{x}=\prod_{n \leq x} F(n)$ will be a perfect power or squarefull for more general $F(n)$.

If $F(n)$ is an irreducible monic quadratic, then we can provide an explicit bound on the largest x for which N_{x} can be squarefull.

We will also show that if $F(n)$ can be factored into linear and quadratic terms and given some conditions on the leading coefficient of the linear terms and discriminant of the quadratic terms, then N_{x} will be squarefull for only finitely many x. These conditions are general enough to cover some large collections of polynomials $F(n)$, such as all $F(n)$ that are the product of two or three distinct irreducible quadratics. However, these proofs are not strong enough to provide explicit bounds.

More generally, we can show that if $F(n)$ is not of the form $s G(n)^{p}$ where s is a rational number and $G(n) \in \mathbb{Z}[n]$, then N_{x} is a perfect $p^{t h}$ power for at most $O\left(X^{c_{p}}\right)$ of the $x<X$ for some explicit $c_{p}<1$.

In this paper, all polynomials denoted by lower-case letters are assumed to be irreducible over the rationals and have integer coefficients. We denote the discriminant of a quadratic polynomial $f_{i}(n)$ by D_{i}. Also, we assume $x \geq 1$ is integer-valued.

2. The case $F(n)=n^{2}+D$

We wish to find an upper bound on those $x>0$ for which

$$
N_{x}:=\prod_{n \leq x}\left(n^{2}+D\right)
$$

is squarefull. Here, D is a positive integer. In particular, we will show that the bound $e^{C \cdot D}$ works, where C is a constant that is effectively computable. We start with the following proposition.

Proposition 2.1. If a and q are coprime natural numbers and z a positive real number, then

$$
S(z ; q, a):=\left|\sum_{\substack{p \leq z \\ p \equiv a(q)}} \frac{\log p}{p}-\frac{1}{\phi(q)} \log z\right|=O(1)
$$

where the constant implied by the Big-Oh expression can be effectively computed and is independent of a and q.

Proof. Here we use a method of proof similar to that employed by Pomerance in 6].

Suppose that $z \geq e^{q^{2 / 3}}$. Define

$$
\theta(z ; q, a):=\sum_{\substack{p \leq z \\ p \equiv a(q)}} \log p .
$$

Now,

$$
\begin{aligned}
\sum_{\substack{p \leq z \\
p \equiv a(q)}} \frac{\log p}{p} & =\frac{1}{z} \theta(z ; q, a)-\frac{1}{2} \theta(z ; q, a)+\int_{2}^{z} \frac{\theta(t ; q, a)}{t^{2}} d t \\
& \leq \frac{1}{z} \theta(z ; q, a)+\left(\int_{2}^{q}+\int_{q}^{e^{q^{1 / 2}}}+\int_{e^{q^{1 / 2}}}^{e^{q^{2 / 3}}}+\int_{e^{q^{2 / 3}}}^{z}\right) \frac{\theta(t ; q, a)}{t^{2}} d t
\end{aligned}
$$

To bound the first term, we use the bound $\theta(z) \leq 2 z \log 2$. This follows from the inequality $\prod_{p \leq n} p \leq 4^{n}$ (see for example [7]). Hence

$$
\frac{1}{z} \theta(z ; q, a) \leq \frac{1}{z} \theta(z) \leq 2 \log 2 .
$$

For the first of the four integrals, we note that each of

$$
\sum_{\substack{p \leq q \\ p \equiv a(q)}} \frac{\log p}{p} \text { and } \frac{1}{q} \sum_{\substack{p \leq q \\ p \equiv a(q)}} \log p
$$

is bounded by 1 , so by partial summation

$$
\int_{2}^{q} \frac{\theta(t ; q, a)}{t^{2}} d t \leq 3
$$

Since $\theta(z ; a, q) \leq(1+z / q) \log z \leq \frac{2 z \log z}{q}$ when $z \geq q$,

$$
\int_{q}^{e^{q^{1 / 2}}} \frac{\theta(t ; q, a)}{t^{2}} d t \leq \int_{q}^{e^{q^{1 / 2}}} \frac{2 \log t}{q t} d t \leq 1
$$

Now, the Brun-Titchmarsh theorem in the form of Montgomery and Vaughan (see [8]) gives us that

$$
\pi(z ; q, a) \leq \frac{2 z}{\phi(q) \log (z / q)}
$$

for $z>q$. So for $z>e^{q^{1 / 2}}$,

$$
\theta(z ; a, q) \leq \frac{2 z}{\phi(q)}\left(\frac{1}{1-\frac{\log q}{\log z}}\right) \leq \frac{8 z}{\phi(q)}
$$

using elementary calculus. Hence

$$
\int_{e^{q^{1 / 2}}}^{e^{q^{2 / 3}}} \frac{\theta(t ; q, a)}{t^{2}} d t \leq \frac{8}{\phi(q)} \int_{e^{q^{1 / 2}}}^{e^{q^{2 / 3}}} \frac{d t}{t} \leq \frac{8 q^{2 / 3}}{\phi(q)}
$$

If $z \geq e^{q^{2 / 3}}$ then by the prime number theorem for arithmetic progressions (see [9] p. 123),

$$
\left|\theta(z ; q, a)-\frac{z}{\phi(q)}\right| \leq A z e^{-c(\log z)^{1 / 8}}
$$

where A and c are positive absolute constants. Then since

$$
\int_{e^{q^{2 / 3}}}^{z} \frac{1}{\phi(q) t} d t=\frac{1}{\phi(q)} \log z-\frac{q^{2 / 3}}{\phi(q)}
$$

and since $A e^{-c(\log z)^{1 / 8}} \leq \frac{A^{\prime}}{(\log z)^{2}}$ for some A^{\prime} depending on A and c, we have

$$
\begin{aligned}
\left|\int_{e^{q^{2 / 3}}}^{z} \frac{\theta(t ; q, a)}{t^{2}} d t-\frac{1}{\phi(q)} \log z\right| & \leq \frac{q^{2 / 3}}{\phi(q)}+\int_{e^{q^{2 / 3}}}^{z} \frac{A e^{-c(\log t)^{1 / 2}}}{t} d t \\
& \leq \frac{q^{2 / 3}}{\phi(q)}+\int_{e^{q^{2 / 3}}}^{z} \frac{A^{\prime}}{t \log ^{2} t} d t \\
& \leq \frac{q^{2 / 3}}{\phi(q)}+\frac{A^{\prime}}{q^{2 / 3}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
S(x ; q ; a) & =\left|\sum_{\substack{p \leq z \\
p \equiv a(q)}} \frac{\log p}{p}-\frac{1}{\phi(q)} \log z\right| \\
& \leq 4+2 \log 2+\frac{9 q^{2 / 3}}{\phi(q)}+\frac{A^{\prime}}{\phi(q)}
\end{aligned}
$$

Since $q^{2 / 3} / \phi(q)$ can be effectively bounded, this completes the proof of the proposition for $z>e^{q^{2 / 3}}$. For smaller values of z, one can simply truncate the expansion of

$$
\sum_{\substack{p \leq z \\ p \equiv a(q)}} \frac{\log p}{p}
$$

as a sum of integrals at the appropriate place to obtain a similar bound.
Remark 1. Using the Brun-Titchmarsh estimate we can show that

$$
\frac{1}{z} \theta(z ; q, a)=\frac{\log p(q ; a)}{p(q ; a)}+O\left(\frac{\log q}{q}\right)
$$

where $p(q ; a)$ denotes the first prime $p \equiv a(\bmod q)$ and that, after a suitable adjustment to the bounds of integration, the remaining terms are $O\left(q^{-1 / 3}\right)$. One obtains the result

$$
S(z ; q, a)=\frac{\log p(q ; a)}{p(q ; a)}+O\left(q^{-1 / 3}\right)
$$

for $x>e^{q^{2 / 3}}$, where the implied constant is independent of a and q.

We have that if E is a set of residue classes $\bmod q$, then

$$
\left|\sum_{\substack{p \leq x \\ p \in E}}\left(\frac{\log p}{p-1}-\frac{\log p}{p}\right)\right| \leq 1
$$

Thus as a corollary to Proposition 2.1 we have that for some constant C_{0}

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ p \in E}} \frac{\log p}{p-1} \leq \frac{|E|}{\phi(q)} \log x+|E| C_{0} \tag{1}
\end{equation*}
$$

Proposition 2.2. The number N_{x} satisfies

$$
\log N_{x} \geq 2 x \log x-2 x
$$

Proof. Note that $e^{x} \geq \frac{x^{x}}{x!}$ by Taylor series, so $x!\geq\left(\frac{x}{e}\right)^{x}$, hence

$$
\sum_{n \leq x} \log n \geq x \log x-x
$$

Then since $\log \left(x^{2}+D\right) \geq 2 \log x$, we have

$$
\log N_{x} \geq 2 \sum_{n \leq x} \log n \geq 2 x \log x-2 x
$$

Proposition 2.3. There is a prime factor p_{x} of N_{x} satisfying $p_{x}>\frac{1}{72} x \log x$ for all x larger than $C_{1} e^{C_{2} D}=\exp \left\{\left(\frac{8}{5}\left(\left(4 C_{0}+8\right) D+2\right)\right\}\right.$, where C_{0} is the constant defined in (1).
Proof. Let $k=\frac{1}{72}$. For a given x, let α_{p} be defined for each prime p so that $N_{x}=\prod_{p} p^{\alpha_{p}}$. Now, $p \mid N_{x}$ only when $p \mid D$, or when $p \nmid D$ and $-D$ is a quadratic residue $\bmod p$. The latter occurs only for a particular set S of residue classes $\bmod 4 D$ with $2|S|=\phi(4 D)$. Hence

$$
N_{x}=\prod_{p \mid D} p^{\alpha_{p}} \prod_{p \in S} p^{\alpha_{p}}
$$

where by a slight abuse of notation we take $p \in S$ to mean $p(\bmod 4 D) \in S$. Now, if $p \nmid D$, then each interval of length p^{j} contains at most 2 solutions of $n^{2}+D \equiv 0\left(\bmod p^{j}\right)$. So

$$
\begin{align*}
\alpha_{p} & \leq \sum_{j \leq \frac{\log \left(x^{2}+D\right)}{\log p}} 2\left\lceil x / p^{j}\right\rceil \tag{2}\\
& \leq 2 x \sum_{j \leq \frac{\log \left(x^{2}+D\right)}{\log p}} \frac{1}{p^{j}}+2 \frac{\log \left(x^{2}+D\right)}{\log p} \\
& \leq \frac{2 x}{p-1}+2 \frac{\log \left(x^{2}+D\right)}{\log p}
\end{align*}
$$

On the other hand, if $p \mid D$, we write $D=p^{e_{0}} D^{\prime}$, with $p \nmid D^{\prime}$. Then as a result of Huxley (see [10]) we have that $n^{2}+D \equiv 0\left(\bmod p^{j}\right)$ has at most $2 p^{e_{0}}$ solutions. By an argument similar to that in (2) we have

$$
\begin{equation*}
\alpha_{p} \leq \frac{2 p^{e_{0}} x}{p-1}+2 p^{e_{0}} \frac{\log \left(x^{2}+D\right)}{\log p} \tag{3}
\end{equation*}
$$

If the claim in the proposition does not hold, then there is an $x>C_{1} e^{C_{2} D}$ such that

$$
N_{x}=\prod_{\substack{p \leq k x \log x \\ p \mid D}} p^{\alpha_{p}} \prod_{\substack{p \leq k x \log x \\ p \in S}} p^{\alpha_{p}} .
$$

To estimate $\log N_{x}$ with N_{x} in this form, we use Chebyshev's inequality $\pi(x)<$ $2 \frac{x}{\log x}$ as given in [11]. Also, note that for x in the prescribed range

$$
\begin{equation*}
\log \left(x^{2}+D\right) \leq 3 \log x \tag{4}
\end{equation*}
$$

Since $k>x^{-1 / 3}$ we have $\log (k x \log x) \geq \frac{2}{3} \log x$, so

$$
\begin{equation*}
\pi(k x \log x) \log \left(x^{2}+D\right) \leq 6 \frac{k x \log ^{2} x}{\log (k x \log x)} \leq \frac{1}{8} x \log x \tag{5}
\end{equation*}
$$

Now, certainly we have that $k x \log x>D$ for $x>C_{1} e^{C_{2} D}$, so by (3) and (4)

$$
\begin{aligned}
\sum_{\substack{p \leq k x \log x \\
p \mid D}} \alpha_{p} \log p & \leq 2 x \sum_{p \mid D} p^{e_{0}} \frac{\log p}{p-1}+2 \sum_{p \mid D} p^{e_{0}} \frac{\log \left(x^{2}+D\right)}{\log p} \\
& \leq 2 x \sum_{p \mid D} p^{e_{0}}+2 \log \left(x^{2}+D\right) \sum_{p \mid D} p^{e_{0}} \\
& \leq 2 x \prod_{p \mid D} p^{e_{0}}+2(3 \log x) \prod_{p \mid D} p^{e_{0}} \\
& \leq 8 D x .
\end{aligned}
$$

Now, if x is in the prescribed range then $\log x \leq x^{1 / 8}$, so by (2), (5) and (1) we have

$$
\begin{aligned}
\sum_{\substack{p \leq k x \log x \\
p \in S}} \alpha_{p} \log p & \leq 2 x \sum_{\substack{p \leq k x \log x \\
p \in S}} \frac{\log p}{p-1}+2 \log \left(x^{2}+D\right) \sum_{\substack{p \leq k x \log x \\
p \in S}} 1 \\
& \leq 2 x\left(\frac{|S|}{\phi(4 D)} \log (k x \log x)+|S| C_{0}\right)+2 \pi(k x \log x) \log \left(x^{2}+D\right) \\
& \leq x \log \left(k x^{9 / 8}\right)+\phi(4 D) C_{0} x+\frac{1}{4} x \log x \\
& \leq \frac{11}{8} x \log x+4 C_{0} D x
\end{aligned}
$$

So

$$
\begin{aligned}
\log N_{x} & =\sum_{\substack{p \leq k x \log x \\
p \mid D}} \alpha_{p} \log p+\sum_{\substack{p \leq k x \log x \\
p \in S}} \alpha_{p} \log p \\
& \leq \frac{11}{8} x \log x+4 C_{0} D x+8 D x
\end{aligned}
$$

Thus by Proposition 2.1 we have

$$
\frac{5}{8} x \log x \leq\left(4 C_{0} D+8 D+2\right) x
$$

hence $x \leq e^{8\left(\left(4 C_{0}+8\right) D+2\right) / 5}$. This is a contradiction to our earlier assumtion that $x>C_{1} e^{C_{2} D}$.

Theorem 2.4. For any x larger than $C_{1} e^{C_{2} D}$ the number N_{x} is not squarefull.
Proof. If N_{x} is squarefull and $p \mid N_{x}$, then either $p^{2} \mid n^{2}+D$ for some positive integer $n \leq x$ or $p \mid n^{2}+D$ and $p \mid m^{2}+D$ for some distinct positive integers $n, m \leq x$. In the first case, we have

$$
p \leq \sqrt{x^{2}+D} \leq x+D \leq 2 x
$$

since $x>D$. In the second case, we have that p divides $n^{2}-m^{2}=(n-m)(n+m)$, so $p \leq 2 x$. If x is in the range given in the theorem, then

$$
2 x<k x \log x<p_{x}
$$

for some p_{x} dividing N_{x}, a contradiction.
Remark 2. If we take $F(n)$ to be any irreducible monic quadratic, we can apply the above technique to $\left|N_{x}\right|$ to obtain similar results. Write $F(n)=(n-\alpha)^{2}+D$; there is a constant $C_{f}<0$ such that

$$
\log \left|1-\frac{2 \alpha}{n}+\frac{\alpha^{2}+D}{n^{2}}\right|>C_{f}
$$

Modifying Proposition 2.2 we get

$$
\begin{aligned}
\log \left|N_{x}\right| & \geq 2 \sum_{n \leq x} \log n+C_{f} x \\
& \geq 2 x \log x-2 x+C_{f} x .
\end{aligned}
$$

The rest of the proof of Theorem [2.4 holds with only slight modification. One obtains the result that N_{x} is not squarefull for any x larger than $\exp \left\{\frac{8}{5}\left(2-C_{f}+\right.\right.$ $\left.\left.4 C_{0} D+8 D\right)\right\}$.

3. Products of quadratics

The main result of this section relies on the following theorem, proved in two separate cases by Duke, Friedlander, and Iwaniec in [12] and Tóth in [13].

Theorem 3.1. If $f(n)$ be an irreducible quadratic polynomial with integer coefficients, and $0 \leq \alpha<\beta \leq 1$, then

$$
K_{x}=\#\left\{(p, v) \mid 0 \leq v<p \leq x, f(v) \equiv 0 \quad(\bmod p), \alpha \leq \frac{v}{p}<\beta\right\} \sim(\beta-\alpha) \pi(x)
$$

where $v \in \mathbb{Z}$, p prime, and the asymptotic relation holds as $x \rightarrow \infty$.
We begin by presenting two lemmas derived from this result, which we will often refer to as the DFIT result, after its various authors.
Lemma 3.2. Let $f(n)=n^{2}+b n+c$ be a monic quadratic polynomial, and let $\epsilon>0$. Then there exists $\delta=\delta(\epsilon)$ and x_{0} such that for all $x>x_{0}$, at least $\left(\frac{1}{2}-\epsilon\right)(\pi(2 x)-\pi((2-\delta) x))$ of the primes between $(2-\delta) x$ and $2 x$ divide $N_{x}=\prod_{n \leq x} f(n)$ exactly one time.
Proof. In particular we will choose δ such that $1 / 2+\epsilon / 2>1 /(2-\delta)$.
We first note that for all sufficiently large $x,(2-\delta)^{2} x^{2}>f(x)$, so any prime $p \in[(2-\delta) x, 2 x]$ can only divide any given $f(n)$ at most one time. Thus the number of times p divides N_{x} equals the number of $n \leq x$ for which $f(n) \equiv 0$ $(\bmod p)$.

We rewrite this last condition as

$$
\left(n+\frac{b}{2}\right)^{2} \equiv \frac{b^{2}-4 c}{4} \quad(\bmod p)
$$

and then write $b / 2$ in reduced terms as B / A and first handle the case where $A=1$.

Then if we use the interval

$$
\left(\frac{1}{2-\delta}+\frac{\epsilon}{4}, 1-\frac{\epsilon}{4}\right)
$$

and the polynomial $\bar{f}(n)=(2 n)^{2}-\left(b^{2}-4 c\right)$ in the DFIT result, we see that the number of pairs (v, p), for which $0 \leq v<p,(2-\delta) x<p<2 x, p \mid \bar{f}(v)$ and

$$
\frac{v}{p} \in\left(\frac{1}{2-\delta}+\frac{\epsilon}{4}, 1-\frac{\epsilon}{4}\right)
$$

tends asymptotically to $\delta\left(1-\frac{\epsilon}{2}-\frac{1}{2-\delta}\right) \frac{x}{\log x}$, as $K_{2 x} \sim 2\left(1-\frac{\epsilon}{2}-\frac{1}{2-\delta}\right) \frac{x}{\log x}$ and $K_{(2-\delta) x} \sim(2-\delta)\left(1-\frac{\epsilon}{2}-\frac{1}{2-\delta}\right) \frac{x}{\log x}$.

If $\bar{f}(v) \equiv 0(\bmod \quad p)$, then $v^{2} \equiv\left(b^{2}-4 c\right) / 4$. If we set $n=v-B$, this gives us a solution to $f(n) \equiv 0(\bmod p)$. We can pick x to be large enough so that $B / p<\epsilon / 20$. So,

$$
\frac{n}{p} \in\left(\frac{1}{2-\delta}+\frac{\epsilon}{5}, 1-\frac{\epsilon}{5}\right)
$$

with $0<n<p$. This implies that

$$
n>p\left(\frac{1}{2-\delta}+\frac{\epsilon}{5}\right)>(2-\delta) x\left(\frac{1}{2-\delta}+\frac{\epsilon}{5}\right)>x+\frac{\epsilon}{5} .
$$

So this particular p can only divide N_{x} at most once.
Moreover, each pair (v, p) corresponds in a one to one ratio with pairs ($p-$ $v, p)$, with $0 \leq p-v<p,(2-\delta) x<p<2 x, p \mid \bar{f}(p-v)$ and

$$
\frac{v}{p} \in\left(\frac{1}{2-\delta}+\frac{\epsilon}{4}, 1-\frac{\epsilon}{4}\right)
$$

which is the same thing as

$$
\frac{p-v}{p} \in\left(\frac{\epsilon}{4}, 1-\frac{1}{2-\delta}-\frac{\epsilon}{4}\right) .
$$

Again setting $n=p-v-B$ and extending the bounds to allow

$$
\frac{n}{p} \in\left(\frac{\epsilon}{5}, 1-\frac{1}{2-\delta}-\frac{\epsilon}{5}\right)
$$

we can see that

$$
n<p\left(1-\frac{1}{2-\delta}-\frac{\epsilon}{5}\right)<2 x\left(1-\frac{1}{2-\delta}-\frac{\epsilon}{5}\right)<x
$$

so that this p must divide N_{x} at least once, and hence, by the last paragraph, exactly once.

As there are asymptotically $\delta \frac{x}{\log x}$ primes in the interval $(2-\delta) x$ to $2 x$, and our choice of δ implies

$$
1-\frac{\epsilon}{2}-\frac{1}{2-\delta}>\frac{1}{2}-\epsilon,
$$

we have proved the lemma in this case.
For the case $A=2$, we need to consider how B / A acts modulo p. For all odd primes, $1 / 2 \equiv(p+1) / 2$. Since p is odd, $(p+1) / 2$ is an integer so this represents a solution to $1 / 2(\bmod p)$. Therefore $B / 2 \equiv B(p+1) / 2$. If we call this latter integer $k, 0 \leq k<p$, then note that k / p tends towards $1 / 2$ as p grows since B is a fixed odd number.

From here, the proof of the second case proceeds identically to that of the first case, except that we use the interval

$$
\left(\frac{1}{2-\delta}-\frac{1}{2}+\frac{\epsilon}{4}, \frac{1}{2}-\frac{\epsilon}{4}\right)
$$

in the DFIT result and set $n=v-k$ or $n=p-v-k$ as appropriate.
Remark 3. Clearly the previous proof also works if $f(n)=a n^{2}+b n+c$, where $a \mid b$ or $2 a \mid b$. In general though, the $b / 2 a$ term is only well-behaved over primes of a specific congruence class, and the DFIT result does not address the equidistribution of v / p for primes p of a specific congruence class, so we do not yet know how to extend the above lemma.

Lemma 3.3. Let $f(n)$ be an irreducible monic quadratic polynomial with integer coefficients, and $2<a<b$. Then for all sufficiently large x, there exists a prime p, ax $<p<b x$, such that $p \mid \prod_{n \leq x} f(n)$.
Proof. Consider pairs (p, v) for which p divides $f(v)$, with $a x \leq p \leq b x$, and $0 \leq v / p \leq 1 / b$. By DFIT, the number of such pairs is asymptotically $(1-a / b) x / \log x$. In particular, there is always such a pair once x is sufficiently large. But for this pair, we have $v \leq p / b \leq x$, so that p divides $f(v)$, which itself divides $\prod_{n \leq x} f(n)$.

Cilleruelo, in his proof, used the fact that if N_{x} is a perfect square, then all primes dividing it must be less than $2 x$, so the previous lemma provides an alternative proof that $\prod_{n \leq x}\left(n^{2}+1\right)$ is not infinitely often a square. We can generalize this idea a little further with the help of the following lemmas.

Lemma 3.4. If $f_{1}(n)=a_{1} n^{2}+b_{1} n+c_{1}$ and $f_{2}(n)=a_{2} n^{2}+b_{2} n+c_{2}$ are two distinct quadratic polynomials such that $D_{1} D_{2}$ is a square, then the largest prime p that can divide both $N_{x}=\prod_{n \leq x} f_{1}(n)$ and $M_{x}=\prod_{n \leq x} f_{2}(n)$ is bounded by $c x$ for some positive constant c and sufficiently large x

Proof. We can rewrite $f_{1}(n)=a_{1}\left(n+\left(b_{1} / 2 a_{1}\right)\right)^{2}-\left(b_{1}^{2}-4 a_{1} c_{1}\right) / 4 a_{1}$ and $f_{2}(n)=$ $a_{2}\left(n+\left(b_{2} / 2 a_{2}\right)\right)^{2}-\left(b_{2}^{2}-4 a_{2} c_{2}\right) / 4 a_{2}$. Thus writing $d=\sqrt{D_{1} D_{2}}$, we have that

$$
\begin{aligned}
& 4 a_{1} D_{2} f_{1}(n)-4 a_{2} D_{1} f_{2}(m) \\
& =4 a_{1}^{2} D_{2}\left(n+\frac{b_{1}}{2 a_{1}}\right)^{2}-4 a_{2}^{2} D_{1}\left(m+\frac{b_{2}}{2 a_{2}}\right)^{2} \\
& =\frac{1}{D_{1}}\left(D_{1} D_{2}\left(2 a_{1}\left(n+\frac{b_{1}}{2 a_{1}}\right)\right)^{2}-\left(2 a_{2} D_{1}\left(m+\frac{b_{2}}{2 a_{2}}\right)\right)^{2}\right) \\
& =\frac{1}{D_{1}}\left(d\left(2 a_{1} n+b_{1}\right)-D_{1}\left(2 a_{2} m+b_{2}\right)\right)\left(d\left(2 a_{1} n+b_{1}\right)+D_{1}\left(2 a_{2} m+b_{2}\right)\right)
\end{aligned}
$$

So if $p \mid f_{1}(n)$ and $p \mid f_{2}(m)$, then p must divide the second or third factor of the above equation. Since $n, m \leq x$ by assumption, this implies that p must be less than $\left|d\left(2 a_{1} x+b_{1}\right)\right|+\left|D_{1}\left(2 a_{2} x+b_{2}\right)\right|<\left(2\left|a_{1} d\right|+2\left|a_{2} D_{1}\right|+1\right) x$ for sufficiently large x.

Lemma 3.5. If $f(n)=n^{2}+b n+c$ is a quadratic polynomial and for a prime $p, p^{2} \mid \prod_{n \leq x} f(n)$, then $p<(2+|b|+|c|) x$.

Proof. If $p^{2} \mid f(n)$ for some $n \leq x$, then $p^{2} \leq n^{2}+b n+c \leq x^{2}+|b| x+|c|<$ $(1+|b|+|c|) x^{2}$, which implies that $p \leq x \sqrt{1+|b|+|c|}$.

If $p \mid f(n)$ and $p \mid f(m)$ for some $n, m \leq x$, then $p \mid n^{2}+b n+c-m^{2}-b m-c=$ $(n-m)(n+m)+b(n-m)=(n-m)(n+m+b)$. Since p is prime, this implies $p \mid(n-m)$ or $p \mid(n+m+b)$. Either way this implies that $p<(2+|b|) x$. So the lemma holds.

Thus we have the following result using our variant method of Cilleruelo.

Theorem 3.6. Let $f_{i}(n), 1 \leq i \leq I$, be some sequence of monic irreducible polynomials. If $D_{1} D_{i}$ is a perfect square for all $1 \leq i \leq I$, then

$$
N_{x}=\prod_{n \leq x} \prod_{i=1}^{I} f_{i}(n)
$$

cannot be squarefull for infinitely many x.
Proof. First, suppose N_{x} is squarefull, so for all primes p such that p divides $N_{x}, p^{2} \mid N_{x}$.

If $I=1$ then by the previous lemma, there exists some constant c independent of our choice of x, for which $p<c x$ for all primes dividing N_{x}.

If $I>1$, then for each prime $p \mid N_{x}$, either for some $i, p^{2} \mid \prod_{n \leq x} f_{i}(n)$, or else for some i and $i^{\prime}, p \mid \prod_{n \leq x} f_{i}(n)$ and $p \mid \prod_{n \leq x} f_{i^{\prime}}(n)$. Regardless of which case we fall into, the previous two lemmas tell us that there exists some constant c, dependent only on the f_{i} 's for which $p<c x$ for all sufficiently large x.

But again, Lemma 3.3 shows that $\prod_{n \leq x} f_{1}(n)$ will eventually be divisible by at least one prime in the range $c x$ to $(c+1) x$. Thus our assumption that N_{x} could be squarefull for any of these large x must be false.

We can replace the condition that requires $D_{1} D_{i}$ to be a perfect square through the use of the following lemma.

Lemma 3.7. If $f_{i}(n), 1 \leq i \leq I$, is some sequence of distinct irreducible polynomials, with

$$
J_{f}:=1+\sum_{\substack{\varnothing \neq J \subset\{1,2,3, \ldots, I\} \\ \prod_{j \in J} D_{j} \text { square }}}(-1)^{|J \backslash\{1\}|}>0,
$$

then there exists some residue class k modulo $\prod_{i=1}^{I} D_{i}$, such that all sufficiently large primes congruent to $k\left(\bmod \prod_{i=1}^{I} D_{i}\right)$ cannot divide any term of the form $f_{i}(n)$ for $1<i \leq I$, but will divide some term of the form $f_{1}(n)$.

Proof. Once again, a given prime p will divide $f_{i}(n)=a_{i} n^{2}+b_{i} n+c_{i}$ if

$$
\left(n+\frac{b_{i}}{2 a_{i}}\right)^{2}+\frac{4 a_{i} c_{i}-b_{i}^{2}}{4 a_{i}^{2}} \equiv 0 \quad(\bmod p)
$$

which makes sense provided p is larger than a_{i}.
Thus p will divide $f_{i}(n)$ for some n if and only if D_{i} is a quadratic residue modulo p. To estimate the number of primes up to z, which can divide $f_{1}(n)$ for some n but can never divide $f_{i}(m)$ for $i \neq 1$, we use the formula

$$
\sum_{D<p \leq z}\left(\frac{1+\left(\frac{D_{1}}{p}\right)}{2} \prod_{2 \leq i \leq I}(-1) \frac{-1+\left(\frac{D_{i}}{p}\right)}{2}\right)
$$

Here, D is some constant larger than all the D_{i}. But this sum equals

$$
\begin{aligned}
& (-1)^{|I|-1} \frac{1}{2^{I}} \sum_{D<p \leq z} \sum_{J \subset\{1,2,3, \ldots, I\}}(-1)^{|I|-|J \backslash\{1\}|-1}\left(\frac{\prod_{j \in J} D_{j}}{p}\right) \\
& =\frac{1}{2^{I}} \sum_{J \subset\{1,2,3, \ldots, I\}} \sum_{D<p \leq z}(-1)^{|J \backslash\{1\}|}\left(\frac{\prod_{j \in J} D_{j}}{p}\right)
\end{aligned}
$$

If $\prod_{j \in J} D_{j}$ is a square, then

$$
\sum_{D<p \leq z}\left(\frac{\prod_{j \in J} D_{j}}{p}\right)
$$

will be asymptotic to $\pi(z)$. Otherwise, the sum will be $o(\pi(z))$ (in fact, it is $O(1))$. Thus the sum above equals

$$
\frac{\pi(z)}{2^{I}}\left(1+\sum_{\substack{\varnothing \neq J \subset\{1,2,3, \ldots, I\} \\ \prod_{j \in J} D_{j} \text { square }}}(-1)^{|J \backslash\{1\}|}+o(1)\right)
$$

which will represent a non-trivial proportion of the primes provided $J_{f}>0$.
We can now combine this with Lemma 3.2 assuming f_{1} is monic. If we pick $\epsilon<1 / \phi(D)$, then Lemma 3.2 says that for all sufficiently large x there exists a prime congruent to $k\left(\bmod \prod_{i=1}^{I} D_{i}\right)$ that must divide $\prod_{n \leq x} f_{1}(n)$ exactly once. And since it cannot divide $f_{i}(n)$ for $1<i \leq I$, we have proved the following theorem.

Theorem 3.8. Suppose that we have a set of I distinct irreducible quadratic polynomials $f_{i}(n)=a_{i} n^{2}+b_{i} n+c_{i}$ with f_{1} monic. Furthermore, suppose that $J_{f}>0$

Then for sufficiently large x the number

$$
N_{x}=\prod_{n \leq x} f_{1}(n)
$$

is not squarefull. Moreover, N_{x} cannot be made a squarefull by multiplying N_{x} with terms of the form $f_{i}(n)$ with $i \neq 1, n \in \mathbb{N}_{>0}$.

Corollary 3.9. Suppose that we have a set of I distinct irreducible quadratic polynomials f_{i} with f_{1} monic. Furthermore, suppose that $J_{f}>0$.

Then the number

$$
N_{x}=\prod_{n \leq x} \prod_{i=1}^{I} f_{i}(n)
$$

cannot be infinitely often a squarefull.

While the conditions of the previous theorems have been somewhat complex, we can combine them to prove the following - much simpler - theorem.
Corollary 3.10. Suppose we have k distinct monic quadratic polynomials f_{i}. Then

$$
N_{x}=\prod_{n \leq x} \prod_{1 \leq i \leq k} f_{i}(n)
$$

cannot be infinitely often squarefull if $k=2$ or 3 .
Proof. If any D_{i} is a perfect square, then f_{i} is reducible, so none of the D_{i} can be a perfect square.

In the case $k=2$, we therefore have only two cases to consider: either $D_{1} D_{2}$ is a perfect square or it is not.

If $D_{1} D_{2}$ is a perfect square, then we apply Theorem 3.6
If $D_{1} D_{2}$ is not a perfect square, then we apply Theorem 3.9 as $J_{f}=1$ in this case.

In the case $k=3$ we again have multiple sub-cases.
First, if no product of D_{1}, D_{2}, D_{3} is ever a square, we may again apply Theorem 3.9 as $J_{f}=1$ in this case.

Suppose that exactly one product of two of the discriminants is a square, and that the product of all three is not. By reindexing we can let $D_{2} D_{3}$ be the square. Then we again apply Theorem 3.9 as $J_{f}=2$ in this case.

Note that it is impossible to have just two products of two discriminants being square, as if $D_{1} D_{2}$ and $D_{1} D_{3}$ are square, then so is $\left(D_{1} D_{2}\right)\left(D_{1} D_{3}\right) / D_{1}^{2}=$ $D_{2} D_{3}$.

So suppose that all three products of two of the discriminants is a square, and that the product of all three is not. Here we can apply Theorem 3.6.

Suppose that the only square can be formed by multiplying all three discriminants together, i.e. $D_{1} D_{2} D_{3}$ is a square, then we apply Theorem 3.9 as $J_{f}=2$ in this case.

Finally assume that some product of two discriminants and the product of all three discriminants are squares, say $D_{1} D_{2}$ and $D_{1} D_{2} D_{3}$ are both squares. Then $\left(D_{1} D_{2} D_{3}\right) /\left(D_{1} D_{2}\right)=D_{3}$ must also be a square contrary to the irreducibility of f_{3}.

These techniques are not sufficient to generalize to higher k. In particular there are two problem cases with $k=4$, the case where $D_{1} D_{2} D_{3} D_{4}$ is the only square and the case where $D_{1} D_{2} D_{3} D_{4}, D_{1} D_{2}$, and $D_{3} D_{4}$ are the only squares.
Remark 4. Suppose $F(n)$ is the product of distinct irreducible quadratic polynomials f_{i}. Roughly, we expect that the large primes factors of $\prod_{n \leq x} f_{i}(n)$ should be rather sparse and should not overlap much with the large prime factors of $\prod_{n \leq x} f_{j}(n)$.

By interpreting the DFIT result - incorrectly - as a statement of probability, one can refine this heuristic argument to estimate that the squarefree part of N_{x} should tend towards $N_{x}^{1 / 2+o(1)}$ as x tends to infinity. We cannot yet prove such a statement, and so leave it here as a conjecture.

4. Quadratic and Linear Terms

Now suppose we wish to extend our results still farther, to consider products of the form

$$
N_{x}=\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)\left(\prod_{k=1}^{K} g_{k}(n)\right)
$$

where the f_{i} are quadratic and the g_{k} are linear. Under what conditions for the f_{i}, g_{k} will N_{x} again be only finitely often a square?

We will assume, as we did with the f_{i}, that $g_{k}(n) \neq 0$ for any $n \geq 1$.
If the f_{i} satisfy the conditions of Corollary 3.9 and $g_{i}(n)=n+b_{i}$ for all i then the conclusion still holds, as under these conditions only a finite number (independent of x) of primes larger than x could divide any of the terms $\prod_{n \leq x} g_{k}(n)$.
Theorem 4.1. Suppose that we have a set of I distinct quadratic polynomials $f_{i}(n)$ with f_{1} monic such that $J_{f}>0$. Suppose we also have a set of K distinct linear polynomials $g_{k}(n)=a_{k} n+b_{k}$, where each $a_{k} \geq 2$ is relatively prime to each D_{i} and to every other $a_{k} \geq 2$

Then the number

$$
N_{x}=\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)\left(\prod_{i=1}^{K} g_{i}(n)\right)
$$

cannot be infinitely often a squarefull.
Proof. A prime $p>(2-\delta) x$ divides the term $g_{k}(n)$ when the following congruence holds

$$
\begin{gathered}
a_{k} n+b_{k} \equiv 0(\bmod p) \\
n \equiv \frac{-b_{k}}{a_{k}}(\bmod p)
\end{gathered}
$$

We can solve this explicitly since $n \leq x<p$ implies that n will equal $\left(k p-b_{i}\right) / a_{i}$ where k is the smallest positive integer for which $j p-b_{i}$ is divisible by a_{i}. However, we need $n \leq x$, while $p>(2-\delta) x$ so this means that we would need to have

$$
\begin{gathered}
\frac{j(2-\delta) x-b_{i}}{a_{i}}<\frac{j p-b_{i}}{a_{i}} \leq x \\
j-\frac{b_{i}}{(2-\delta) x}<\frac{a_{i}}{(2-\delta)}
\end{gathered}
$$

Since j is discrete, we can pick x large enough so that the term $\frac{b_{i}}{2 x}<1 / 5$ and pick δ small enough so that $\left|a_{i} /(2-\delta)-a_{i} / 2\right|<1 / 5$ as well. Then we get

$$
j \leq \frac{a_{i}}{2}+\frac{2}{5}
$$

or, in other words, that only half of the congruence classes modulo a_{i} can contain primes larger than $(2-\delta) x$ which divide $\prod_{n \leq x} g_{i}(n)$.

By Lemma 13, there must be a congruence class $k^{\prime}\left(\bmod \prod D_{i}\right)$ for which primes congruent to $k^{\prime}\left(\bmod \prod D_{i}\right)$ can, and eventually will, divide $\prod_{n \leq x} f_{1}(n)$ but will never divide any other $\prod_{n \leq x} f_{i}(n)$. Provided a_{i} is relatively prime to $\prod D_{i}$ the associated congruence classes modulo a_{i} coming from $0 \leq j \leq \frac{a_{i}}{2}$ cannot cover the congruence class $k^{\prime}\left(\bmod \prod D_{i}\right)$ completely. So there exists some congruence class modulo $a_{i} D$ such that all sufficiently large primes in that congruence class eventually must divide $\prod_{n \leq x} f_{1}(n)$ as x grows, but which will never divide $\prod_{n \leq x} g_{k}(n)$.

Since $a_{j} \neq a_{i}$ is relatively prime to $a_{i} \prod D_{i}$ we can repeat this process, and continue repeating through all of the a_{k} 's until we have found a congruence class $k^{\prime \prime}\left(\bmod \prod a_{k} \prod D_{i}\right)$ such that all sufficiently large primes in that congruence class will eventually divide $\prod_{n \leq x} f_{1}(n)$ but cannot divide $N_{x} / \prod_{n \leq x} f_{1}(n)$.

Then, as in the proof of Theorem 3.8, for sufficiently large x, some of these primes can only divide N_{x} precisely one time, and thus N_{x} cannot be squarefull.

Remark 5. We can, without difficulty, allow two linear terms with the same leading coefficient, say $a n+b, a n+b^{\prime}$ provided a is prime (and as before relatively prime to all other $\left.a_{k} ' s\right)$ and $b \neq-b^{\prime}(\bmod a)$. This last condition will ensure that there is still some congruence class modulo a, such that primes from that congruence class can never divide $\prod_{n \leq x}(a n+b)\left(a n+b^{\prime}\right)$.

Using slightly different techniques, we can prove the following theorem.
Theorem 4.2. Let $f_{i}(n), i \in\{1,2, \ldots, I\}$, be distinct quadratic polynomials, and $g_{k}(n)=a_{k} n+b_{k}, k \in\{1,2, \ldots, K\}$, be distinct linear polynomials with non-zero, relatively prime coefficients, such that
1.

$$
J_{f}^{\prime}:=1+\sum_{\varnothing \neq J \subset\{1,2,3, \ldots, I\}, \Pi_{j \in J} D_{j} \text { square }}(-1)^{|J|} \neq 0
$$

2. a_{1} is positive and $a_{1} \geq\left|a_{k}\right|$ for all $1<k \leq K$.
3. a_{1} is relatively prime to $\prod_{i \leq I} D_{i}$
4. For all k such that $a_{1}=\left|a_{k}\right|$, we have that $b_{1} \neq b_{k}\left(\bmod a_{1}\right)$.

Then

$$
N_{x}=\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)\left(\prod_{k=1}^{K} g_{k}(n)\right)
$$

can only be a perfect square finitely many times.
Proof. Let us write $g_{1}(n)=a n+b$. Clearly all primes congruent to b modulo a less than $a x+b$ but larger than $a+b$ divide $\prod_{n \leq x} g_{1}(n)$. Moreover, each prime of this congruence class that exists between $\left(a-\frac{1}{2}\right) x$ and $a x+b$ divides $\prod_{n \leq x} g_{1}(n)$ exactly once for sufficiently large x. To see this, suppose p is a prime congruent to $b(\bmod a)$ in the range $\left(\left(a-\frac{1}{2}\right) x, a x+b\right)$, and let $n^{\prime}=(p-b) / a$. Then clearly the first time $g_{1}(n)$ is divisible by p is when $n=n^{\prime}$. The next
time it happens is when $n=n^{\prime}+p>p \geq\left(a-\frac{1}{2}\right) x>x$ which means p divides $\prod_{n \leq x} g_{1}(n)$ exactly one time.

In fact, these primes can only divide $\prod_{n \leq x}\left(\prod_{k=1}^{K} g_{k}(n)\right)$ once for large enough x. Every g_{k} with $\left|a_{k}\right|<a_{1}$ can only contribute primes smaller than $\left(a-\frac{1}{2}\right) x$. By assumption, every g_{k} with the same leading coefficient as g_{1} is of the form $a n+b^{\prime}$ where $b^{\prime} \neq b(\bmod a)$. Thus the first time a prime $p>\left(a-\frac{1}{2}\right) x$ congruent to $b(\bmod a)$ divides $g_{k}(n)$ is at the earliest when $n=\left(2 p-b^{\prime}\right) / a>\left((2 a-1) x-b^{\prime}\right) / a>x$ once x is large enough.

So in order for N_{x} to be a square, each of the primes congruent to $b(\bmod a)$ in the range $\left(\left(a-\frac{1}{2}\right) x, a x+b\right)$ must divide $\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)$. However, by a similar argument to Lemma, the proportion of the primes that can never divide any of these terms is

$$
\left|\sum_{D<p \leq z} \prod_{1 \leq i \leq I}(-1) \frac{-1+\left(\frac{D_{i}}{p}\right)}{2}\right|
$$

which will be asymptotic to a non-zero proportion of $\pi(z)$ whenever $J_{f}^{\prime} \neq 0$.
These correspond to a proportion of residue classes modulo $\prod_{i \leq I} D_{i}$. Since a is relatively prime to $\prod_{i \leq I} D_{i}$, there must exist residue classes modulo $a \prod_{i \leq I} D_{i}$ such that they reduce to $b(\bmod a)$ and yet primes in these residue classes can never divide $\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)$. Now, if we pick x to be large enough, then there must exist a prime congruent to b modulo a in the region $((a-1 / 2) x, a x+$ $b)$, which cannot divide $\prod_{n \leq x}\left(\prod_{i=1}^{I} f_{i}(n)\right)$ yet must divide $\prod_{n \leq x}\left(\prod_{k=1}^{K} g_{k}(n)\right)$ precisely once.

Thus N_{x} cannot be infinitely often a square

5. More general $\mathbf{F}(\mathbf{n})$

In the case of still more general $F(n)$ we cannot yet obtain any theorems which say that N_{x} will only be finitely often a square or finitely often squarefull, yet we can obtain a small density result.

Here, given a function $F(n) \in \mathbb{Z}[n]$, let d_{F} be the positive integer such that there is some element of the Galois group of F which fixes precisely d_{F} roots of $F(n)$ and any element which fixes less than d_{F} roots of $F(n)$ will fix none of the roots. d_{F} exists since the Galois group contains the trivial element which will fix all the roots of F, which also implies that $d_{F} \leq \operatorname{deg} F$.

We denote the size of the Galois group of F by g_{F}.
Theorem 5.1. Suppose $F(n) \in \mathbb{Z}[n]$ is not of the form $s(G(n))^{p}$ for some rational number s and some polynomial $G(n) \in \mathbb{Z}[n]$. Then

$$
\#\left\{x \leq X \mid N_{x} \text { is a perfect } p^{t h} \text { power }\right\}=O\left(X^{\log \left(d_{F}+1\right) / \log \left\lceil p / d_{F}\right\rceil}\right)
$$

and, more generally,

$$
\#\left\{x \leq X \mid N_{x} \text { is a perfect } p^{t h} \text { power }\right\}=O\left(X^{24 / 25}\right)
$$

We note that this generalizes the results of Cilleruelo, et al., in [5].
To begin, we need the following lemma.
Lemma 5.2. There exists a sequence of primes $q_{1}, q_{2}, q_{3}, \ldots$, such that

$$
\lceil p / d\rceil q_{i}\left(1-g_{F} \frac{\log q_{i}}{q_{i}}\right) \leq q_{i+1} \leq\left\lceil p / d_{F}\right\rceil q_{i}
$$

and $F(n)$ has d_{F} roots modulo q_{i}.
Proof. If $f(n)$ is some irreducible polynomial, then the way that f factors when taken modulo some prime p is determined completely by the way the Frobenius automorphism acts on the roots of f. Taken modulo p, the Frobenius automorphism maps the set of roots of f bijectively onto the roots of f. If it maps an element onto itself, this corresponds to a linear factor of f modulo p. If it maps one element onto a second element, and the second element back onto the first (i.e. a 2-cycle), then this corresponds to a quadratic factor of f modulo p, and so on.

Thus if the cycle structure of the Frobenius automorphism acting on the roots of f is $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, then

$$
f(n) \equiv \prod_{i=1}^{r} g_{i}(n) \quad(\bmod p)
$$

where $\operatorname{deg} g_{i}=m_{i}$ and each g_{i} is irreducible modulo p.
A similar result holds even if our function is reducible. In particular, let $F(n)=\prod f_{i}(n)^{e_{i}}$ for distinct irreducibles f_{i}. We can still consider the Galois group of F as the compositum of all the Galois groups of the f_{i} 's; this is also the splitting field for F. The Frobenius automorphism for a given prime p is again an element of the Galois group of F and it will map roots of F bijectively onto roots of F, and will actually map roots of f_{i} bijectively onto roots of f_{i}. Thus if the cycle structure of the Frobenius automorphism acting on the roots of F is $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, then

$$
F(n) \equiv \prod_{i=1}^{r} g_{i}(n) \quad(\bmod p)
$$

where $\operatorname{deg} g_{i}=m_{i}$ and each g_{i} is irreducible modulo p.
In particular, this tells us that $F(n)$ has d roots modulo p precisely when the Frobenius automorphism fixes exactly d of the roots of $F(n)$.

The Chebotarev Density theorem (see 14], page 143) says that there exists a natural density of primes p for which the cycle structure of the Frobenius Automorphism of p acting on the roots of F is $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. In particular
this density is the number of elements of the Galois group which produce this cycle structure when they act on the roots of F divided by the total number of elements in the Galois group.

Since we know, by definition, that there exists some element of the Galois group that fixes precisely d_{F} roots of F, there must be a positive density c of primes p for which F has precisely d_{F} roots modulo p.

Thus, if we let $\epsilon(X)=g_{F} \log X / X$ and let $\pi_{d_{F}}(X)$ denote the number of primes less than X for which F has d_{F} roots, then

$$
\begin{aligned}
& \pi_{d_{F}}(X)-\pi_{d_{F}}(X(1-\epsilon(X))) \\
& \sim c \frac{X}{\log X}-c \frac{X(1-\epsilon(X))}{\log X} \\
& =c \epsilon(X) \frac{X}{\log X} \\
& =c g_{F} \geq 1
\end{aligned}
$$

since $c \geq 1 / g_{F}$.
Thus we can find a prime q_{i+1} which is between $\left\lceil p / d_{F}\right\rceil q_{i}\left(1-g_{F} \log q_{i} / q_{i}\right)$ and $\lceil p / d\rceil q_{i}$ and for which F has d_{F} roots modulo q_{i+1}, provided we start this sequence with a sufficiently large prime q_{1}.

Here, if $F(n)=s f_{1}(n)^{e_{1}} \cdots f_{k}(n)^{e_{k}}$ for some $s \in \mathbb{Q}$ and for distinct irreducible polynomials f_{i}, we let $\operatorname{sdisc}(F)$ denote the discriminant of $\prod_{i=1}^{k} f_{i}(n)$.

Recall that if $F(n)$ has k roots modulo p, then it also has k roots modulo p^{i} provided p does not divide $\operatorname{sdisc}(F)$. This is true because if p does not divide the discriminant of f_{i} then the roots of f_{i} modulo p are distinct, and we can then apply Hensel's lemma to see that these roots extend to distinct roots modulo p^{i}.

Now consider any of the primes q_{i}. Let $a_{i}(x)$ represent the number of times q_{i} divides N_{x}.

By our construction of the q_{i}, we know that $F(n)$ has d_{F} roots modulo q_{i}. Thus, $a_{i}\left(x+q_{i}\right)-a_{i}(x) \geq d_{F}$.

At the same time we know that $F(n)$ has d_{F} roots modulo q_{i}^{2}, so $a_{i}(x+j+$ 1) $-a_{i}(x+j)>1$ for at most d_{F} values of j, with $0 \leq j \leq q_{i}^{2}-1$.

Let us further assume that if $p \mid a_{i}(x)$, then x belongs to an interval of length q_{i} on which a_{i} is constant, and suppose these intervals are distinct; this will overestimate how often $p \mid a_{i}(x)$ but still give us our big-Oh bounds. Now, we will estimate how close two successive intervals can be on average. Let I_{1}, I_{2} be the two intervals in question, with $I_{1}=\left[x_{1}, x_{1}+q_{i}-1\right]$ and $I_{2}=\left[x_{2}, x_{2}+\right.$ $\left.q_{i}-1\right]$. If for all $x_{1} \leq x<x_{2}$, we have that $a_{i}(x+1)-a_{i}(x) \leq 1$, so then for all $x_{1} \leq x \leq x_{2}-q_{i}+1$ we have that $a_{i}\left(x+q_{i}\right)-a_{i}(x)=d_{F}$. Thus $a_{i}\left(x_{2}\right)-a_{i}\left(x_{1}\right) \leq d_{F}\left\lceil\left(x_{2}-x_{1}\right) / q_{i}\right\rceil$ and at the same time $a_{i}\left(x_{2}\right)-a_{i}\left(x_{1}\right)=p$. Thus, $x_{2}-x_{1} \geq\left\lfloor p / d_{F}\right\rfloor q_{i}$.

However, we also know that over an interval of x 's of length q_{i}^{2}, a_{i} will jump by more than one exactly d_{F} times. Thus it is possible that we could have two sub-intervals $I_{1}=\left[x_{1}, x_{1}+q_{i}-1\right]$ and $I_{2}=\left[x_{2}, x_{2}+q_{i}-1\right]$ of the type discussed
in the previous paragraph with $x_{2}=x_{1}+q_{i}$, but this could only occur at most d_{F} times over the full interval. Each other pair of successive intervals must be separated as in the previous paragraph.

Thus we see that if we have an interval of length q_{i+1}, which is slightly smaller than $\left\lceil p / d_{F}\right\rceil q_{i}$, then it can contain at most $d_{F}+1$ sub-intervals of length q_{i} of values of x for which $p \mid a_{i}(x)$; consequently, if $X>q_{i+1}$ at most

$$
2 X \frac{\left(d_{F}+1\right) q_{i}}{q_{i+1}}
$$

of the numbers x up to X, will have N_{x} be a perfect $p^{t h}$ power. (Here the 2 is a fudge factor since X will likely not be a multiple of q_{i+1}.)

If we look at an interval of length q_{i+2} then it can contain at most $d_{F}+1$ intervals of length q_{i+1} of values of x for which $p \mid a_{i+1}(x)$, which themselves can contain at most $d_{F}+1$ intervals of length q_{i} of values of x for which $p \mid a_{i}(x)$; consequently, at most

$$
2 X \frac{\left(d_{F}+1\right) q_{i}}{q_{i+1}} \frac{\left(d_{F}+1\right) q_{i+1}}{q_{i+2}}
$$

of the numbers x up to X, if $X>q_{i+2}$, will have N_{x} be a perfect $p^{t h}$ power. And so on.

Now suppose $q_{i} \leq X<q_{i+1}$ then we have that there are at most

$$
2 X\left(\frac{d_{F}+1}{\lceil p / d\rceil}\right)^{i-1}\left(1-\epsilon\left(q_{1}\right)\right)^{-1}\left(1-\epsilon\left(q_{2}\right)\right)^{-1} \cdots\left(1-\epsilon\left(q_{i-1}\right)\right)^{-1}
$$

x less than X for which N_{x} is a perfect $p^{t h}$ power.
Note that $i-1>\log _{\left\lceil p / d_{F}\right\rceil}\left(X / q_{1}\right)$, so

$$
\begin{aligned}
& \left(\frac{d_{f}+1}{\left\lceil p / d_{F}\right\rceil}\right)^{i-1} \\
& <\left(\frac{d_{F}+1}{\left\lceil p / d_{F}\right\rceil}\right)^{\log _{\left\lceil p / d_{F}\right\rceil}\left(X / q_{1}\right)} \\
& =\exp \left(\frac{\log X-\log q_{1}}{\log \left\lceil p / d_{F}\right\rceil} \log \frac{d_{F}+1}{\left\lceil p / d_{F}\right\rceil}\right) \\
& =X^{\left(\log \left(d_{F}+1\right) / \log \left\lceil p / d_{F}\right\rceil-1\right)}\left(\frac{\left\lceil p / d_{F}\right\rceil}{d_{F}+1}\right)^{\log q_{1} / \log \left\lceil p / d_{F}\right\rceil}
\end{aligned}
$$

Furthermore, note that

$$
\begin{aligned}
& \epsilon\left(q_{i}\right)=\frac{g_{F} \log q_{i}}{q_{i}} \\
& =O\left(\frac{g_{F} \log \left(q_{1}\left\lceil p / d_{F}\right\rceil^{i-1}\right)}{\left(q_{1}\left\lfloor p / d_{F}\right\rfloor^{i-1}\right)}\right) \\
& =O\left(\frac{i}{\left\lfloor p / d_{F}\right\rfloor^{(i-1)}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(1-\epsilon\left(q_{1}\right)\right)^{-1}\left(1-\epsilon\left(q_{2}\right)\right)^{-1} \cdots\left(1-\epsilon\left(q_{i-1}\right)\right)^{-1} \\
& \leq \exp \left(\sum_{n=1}^{i-1} \epsilon\left(q_{i}\right)\right)=\exp \left(O\left(\sum_{n=1}^{\infty} \frac{n}{\left\lfloor p / d_{F}\right\rfloor^{n-1}}\right)\right) \\
& =\exp \left(O\left(\left(\sum_{n=1}^{\infty} \frac{1}{\left\lfloor p / d_{F}\right\rfloor^{n-1}}\right)^{2}\right)\right)=\exp \left(O\left(\left(\frac{1}{1-\frac{1}{\left\lfloor p / d_{F}\right\rfloor}}\right)^{2}\right)\right)
\end{aligned}
$$

which is clearly bounded.
Together these estimates prove the first part of Theorem 5.1] however this result is only interesting when $p^{2}>d_{F}$, for smaller p we will use a variation of the Turán sieve (following the method of [15]).

For the Turán sieve, let \mathcal{A} be an arbitrary finite set, \mathcal{P} be some set of primes, and to each prime $p \in \mathcal{P}$ associate a set $\mathcal{A}_{p} \subset \mathcal{A}$, and let $\mathcal{A}_{p, q}=\mathcal{A}_{p} \cap \mathcal{A}_{q}$. Now suppose

$$
\# \mathcal{A}_{p}=\delta_{p} X+R_{p}
$$

and

$$
\# \mathcal{A}_{p, q}=\delta_{p} \delta_{q} X+R_{p, q}
$$

where $X=\# \mathcal{A}$, then we have the following result.
Theorem 5.3. With all notation as in the previous paragraph, let

$$
U(z)=\sum_{\substack{p \in \mathcal{P} \\ p \leq z}} \delta_{p}
$$

then

$$
\#\left(\mathcal{A} \backslash \bigcup_{p \in \mathcal{P}} \mathcal{A}_{p}\right) \leq \frac{X}{U(z)}+\frac{2}{U(z)} \sum_{\substack{p \in \mathcal{P} \\ p \leq z}}\left|R_{p}\right|+\frac{1}{U(z)^{2}} \sum_{\substack{p, q \in \mathcal{P} \\ p, q \leq z}}\left|R_{p, q}\right|
$$

We also need the following result. Here we use the shorthand $F_{k}(n):=$ $F(n) F(n+1) \cdots F(n+k)$.

Lemma 5.4. Suppose $F(n) \in \mathbb{Z}[n]$ is not of the form $s G(n)^{p}$ for some $s \in \mathbb{Q}$ and $G(n) \in \mathbb{Z}[n]$. Then for any prime q which does not divide sdisc (F) and is larger than $\operatorname{deg}(F) k$, we have that $F_{k}(n)$ taken modulo q is not equivalent to $s G(n)^{p}$ for any $G(n) \in \mathbb{Z}_{q}[n], s \in \mathbb{Z}_{q}$.

Proof. If $q \nmid \operatorname{sdisc}(F)$, then the factors of f_{i} modulo q must be distinct from the factors of f_{j} modulo q if $i \neq j$, and the factors of f_{i} modulo q are themselves distinct from each other. Thus if not every f_{i} divides $F(n)$ with a p-multiple multiplicity, then not every irreducible modulo q divides $F(n)$ with a p-multiple multiplicity.

Moreover, $g(n)$ is irreducible (over \mathbb{Z} or \mathbb{Z}_{q}) if and only if $g(n+1$) is also irreducible, and $g(n)^{m} \mid F(n)$ if and only if $g(n+1)^{m} \mid F(n+1)$. If $g(n)=n^{l}+$ $a_{l-1} n^{l-1}+\cdots+a_{0}$ then $g(n+i)=n^{l}+\left(i l+a_{l-1}\right) n^{l-1}+\cdots$ so these will be distinct modulo q if $i l \neq 0(\bmod q)$.

Now, consider $F_{k}(n)$ and suppose that all irreducibles divide $F_{k}(n)$ with a p-multiple multiplicity when we reduce $F_{k}(n)$ modulo q. By the work above we know that there exists some irreducible over $\mathbb{Z}_{q}[n]$, let us call it $g_{1}(n)$, that does not divide $F(n)$ with a p-multiple multiplicity, but it does divide $F_{k}(n)$ with a p-multiple multiplicity, therefore there must be some other irreducible $g_{2}(n)$ such that $g_{2}(n) \mid F(n)$ and $g_{2}(n+i) \equiv g_{1}(n)(\bmod q)$ with $1 \leq i \leq k$; however, we can assume that $g_{2}(n)$ does not divide $F(n)$ a multiple of p times, so we can find a g_{3}, g_{4}, \ldots in this fashion. However, $F(n)$ has finite degree, so this sequence of g_{i} 's must eventually repeat itself. Suppose, without loss of generality, that $g_{1}(n)=g_{j}(n)$ with j minimal, then we have that $g_{1}(n+i) \equiv g_{j}(n)(\bmod q)$ for $j-1 \leq i \leq k(j-1)$. By the previous paragraph, that implies $i \equiv 0(\bmod q)$ but $i>0$ and $i \leq k(j-1)<\operatorname{deg}(F) k$, since F can have at most $\operatorname{deg}(F)$ irreducible factors. So since $q>\operatorname{deg}(F) k, F_{k}(n)$ cannot be of the form $s G(n)^{p}$ for any $G(n) \in \mathbb{Z}_{q}[n], s \in \mathbb{Z}_{q}$, as desired.

In our case, let

$$
\mathcal{A}=\{n \leq X\}
$$

and for each prime $q \nmid \operatorname{sdisc}\left(F_{k}\right)$, let

$$
\mathcal{A}_{q}=\left\{n \leq X \mid F_{k}(n) \text { is not a perfect } p^{t h} \text { power modulo } q\right\}
$$

Note that $\operatorname{sdisc}\left(F_{k}\right)=\operatorname{sdisc}(F)$, since $\operatorname{disc}\left(f_{i}(n)\right)=\operatorname{disc}\left(f_{i}(n+1)\right)$.
By 16], page 94 , we have that

$$
\left|\sum_{a} \chi_{\bmod q}\left(F_{k}(a)\right)\right| \leq\left(\operatorname{deg} F_{k}-1\right) \sqrt{q}
$$

if χ_{p} is a non-trivial multiplicative character of order p and F_{k} has some root modulo q whose multiplicity is not a p-multiple. By the previous lemma, this latter requirement is satisfied.

Let S_{k} denote the number of n modulo q for which $F_{k}(n)$ is $p^{t h}$ power modulo q, then supposing there exist non-trivial characters, we have

$$
\begin{aligned}
& \left|p S_{k}-q\right|=\left|\sum_{\chi_{p} \neq 1 a} \sum_{(\bmod q)} \chi_{p}\left(\frac{F_{k}(a)}{q}\right)\right| \\
& \leq(p-1)\left(\operatorname{deg} F_{k}-1\right) \sqrt{q}
\end{aligned}
$$

Thus $S_{k}=q / p+O\left(\left(\operatorname{deg} F_{k}\right) \sqrt{q}\right)$.

Thus

$$
\begin{aligned}
\# \mathcal{A}_{q} & =\left(\frac{X}{q}+O(1)\right)\left(\frac{q(p-1)}{p}+O\left(\left(\operatorname{deg} F_{k}\right) \sqrt{q}\right)\right) \\
& =\frac{X(p-1)}{p}+O\left(\operatorname{deg} F_{k} \frac{X}{\sqrt{q}}+q \operatorname{deg} F_{k}\right)
\end{aligned}
$$

and similarly, given distinct primes q_{1}, q_{2} we have

$$
\begin{aligned}
\# \mathcal{A}_{q_{1}, q_{2}} & =\left(\frac{X}{q_{1} q_{2}}+O(1)\right)\left(\frac{q_{1} q_{2}(p-1)^{2}}{p^{2}}+O\left(\left(\operatorname{deg} F_{k}\right)^{2}\left(\sqrt{q_{1}} q_{2}+\sqrt{q_{2}} q_{1}\right)\right)\right) \\
& =\frac{X(p-1)^{2}}{p^{2}}+O\left(\left(\operatorname{deg} F_{k}^{2}\right)\left(\frac{X}{\sqrt{q_{1}}}+\frac{X}{\sqrt{q_{2}}}+q_{1} q_{2}\right)\right)
\end{aligned}
$$

For our set of primes \mathcal{P} we want the set of all primes q between z and $2 z$, such that q does not divide $\operatorname{sdisc}\left(F_{k}\right)$ and $q \equiv 1(\bmod p)$ (so that there will exist non-trivial characters). We will determine z later.

Then by the Turán sieve, the number of $n \leq X$ for which $F_{k}(n)$ is a perfect $p^{t h}$ power is

$$
\ll X \frac{\log z}{z}+\left(\operatorname{deg} F_{k}\right) \frac{X}{\sqrt{z}}+\left(\operatorname{deg} F_{k}\right) z+\left(\operatorname{deg} F_{k}\right)^{2} \frac{X}{\sqrt{z}}+\left(\operatorname{deg} F_{k}\right)^{2} z^{2}
$$

and the implied constant is independent of our choice for k.
We now use the following lemma to see how frequently N_{x}, N_{x+k} can be both a $p^{t h}$ power, with k small.

Lemma 5.5. Let $S(X)$ be some subset of the natural numbers $\{1,2, \ldots, X\}$, and suppose $|S(X)|>X / K(X)$ for some function $K(X)<X$.

Let $S(X)_{k}$ denote those $s \in S(X)$ such that $s+k \in S(X)$ and $s+i \in X \backslash S(X)$ for $1 \leq i<k$.

Then there exists some integer $k \leq K(X)$ such that $\left|S(X)_{k}\right| \geq 2 X / K(X)^{3}$.
Proof. Suppose to the contrary that for all $k \leq K(X)$ there are less than $2 X / K(X)^{3}$ elements in $S(X)_{k}$. Let us consider the most number of elements that could be in $S(X)$ under these conditions. In particular we want to have as small a gap between successive elements as possible. So let us assume that for all $k \leq K(X)$ there are at most $2 X / K(X)^{3}-1$ distinct $s \in S(X)$ for which $s+k \in S(X)$ and $s+i \in X \backslash S(X)$ for $1 \leq i<k$. The number of integers in the union

$$
\bigcup_{k \leq K(X)} \bigcup_{s \in S(X)_{k}}\{s, s+1, \ldots, s+k-1\}
$$

is then at most

$$
\left.\frac{K(X)(K(X)+1)}{2}\left\lceil\frac{2 X}{K(X)^{3}}-1\right\rceil\right)=\frac{X(K(X)+1)}{K(X)^{2}}-\frac{K(X)(K(X)+1)}{2}
$$

Then let us also suppose, in order to maximize the number of elements in $S(X)$, that for each remaining $s \in S(X)$, the first element in $S(X)$ after s is $s+K(X)+1$.

Thus the total number of elements in $S(X)$ is, at most,

$$
\begin{aligned}
& K(X)\left(\frac{2 X}{K(X)^{3}}-1\right)+\left(X-\frac{X(K(X)+1)}{K(X)^{2}}+\frac{K(X)(K(X)+1)}{2}\right) \frac{1}{K(X)+1}+1 \\
& =\frac{2 X}{K(X)^{2}}-K(X)+\frac{X}{K(X)+1}-\frac{X}{K(X)^{2}}+\frac{K(X)}{2}+1 \\
& =\frac{X}{K(X)^{2}}-\frac{K(X)}{2}+\frac{X}{K(X)+1}+1
\end{aligned}
$$

which is smaller than $X / K(X)$, since

$$
\begin{aligned}
\frac{X}{K(X)}-\frac{X}{K(X)+1} & =\frac{X}{K(X)}\left(1-\frac{1}{1+\frac{1}{K(X)}}\right) \\
& =\frac{X}{K(X)}\left(\frac{1}{K(X)}-\frac{1}{K(X)^{2}}+\cdots\right) \\
& <\frac{X}{K(X)^{2}}
\end{aligned}
$$

Now we consider $F(n)$ again. Suppose that N_{x} is a perfect $p^{t h}$ power for at least $X / K(x)$ of the $x \leq X$. Then the lemma above implies that there must be some $k<K(X)$ for which there are at least $2 X / K(X)^{3}$ of the $x \leq X$ such that N_{x}, N_{x+k} are both perfect $p^{t h}$ powers and there are no such powers between them. Since N_{x}, N_{x+k} are both perfect $p^{t h}$ powers, so must $F_{k}(x)=$ $F(x+1) F(x+2) \ldots F(x+k)$ be a perfect $p^{t h}$ power.

According to the above work $F_{k}(n)$ is a perfect $p^{t h}$ power

$$
\ll X \frac{\log z}{z}+\left(\operatorname{deg} F_{k}\right) \frac{X}{\sqrt{z}}+\left(\operatorname{deg} F_{k}\right) z+\left(\operatorname{deg} F_{k}\right)^{2} \frac{X}{\sqrt{z}}+\left(\operatorname{deg} F_{k}\right)^{2} z^{2}
$$

times which is

$$
\begin{aligned}
& <_{F} X \frac{\log z}{z}+k \frac{X}{\sqrt{z}}+k z+k^{2} \frac{X}{\sqrt{z}}+k^{2} z^{2} \\
& <_{F} K(X)^{2} \frac{X}{\sqrt{z}}+K(X)^{2} z^{2}
\end{aligned}
$$

but by assumption $F_{k}(n)$ is a perfect $p^{t h}$ power at least $2 X / K(X)^{3}$ times. Putting these together we see that $K(X)$ must satisfy

$$
X \ll K(X)^{5} \frac{X}{\sqrt{z}}+K(X)^{5} z^{2}
$$

for any choice of z.
Setting $z=X^{2 / 5}$ we see that $K(X)$ cannot have smaller magnitude than

$$
X^{1 / 25}
$$

Thus we have proved the second part of Theorem 5.1.

6. Acknowledgements

The authors acknowledge support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students".

The authors also wish to thank Paul Pollack for his numerous suggestions and assistance.

7. References

References

[1] J. Cilleruelo, Squares in $\left(1^{2}+1\right) \cdots\left(n^{2}+1\right)$, J. Number Theory 128 (8) (2008) 2488-2491.
[2] J.-H. Fang, Neither $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ nor $\prod_{k=1}^{n}(2 k(k-1)+1)$ is a perfect square, Integers 9 (2009) A16, 177-180.
[3] E. Gürel, A. U. Özgür Kișisel, A note on the products $\left(1^{\mu}+1\right)\left(2^{\mu}+1\right) \ldots\left(n^{\mu}+\right.$ 1), Journal of Number Theory 130 (1) (2010) $187-191$.
[4] T. Amdeberhan, L. A. Medina, V. H. Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory 128 (6) (2008) 1807-1846.
[5] J. Cilleruelo, F. Luca, A. Quirós, I. E. Shparlinski, On squares in polynomial products, Monatsh. Math doi:10.1007/s00605-008-0066-y
[6] C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977) 217-222.
[7] H. E. Rose, A course in number theory, 2nd Edition, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1994.
[8] H. L. Montgomery, R. C. Vaughan, The large sieve, Mathematika 20 (1973) 119-134.
[9] H. Davenport, Multiplicative number theory, 3rd Edition, Vol. 74 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000, revised and with a preface by Hugh L. Montgomery.
[10] M. N. Huxley, A note on polynomial congruences, in: Recent progress in analytic number theory, Vol. 1 (Durham, 1979), Academic Press, London, 1981, pp. 193-196.
[11] R. Crandall, C. Pomerance, Prime numbers, 2nd Edition, Springer, New York, 2005, a computational perspective.
[12] W. Duke, J. B. Friedlander, H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (2) (1995) 423-441.
[13] Á. Tóth, Roots of quadratic congruences, Internat. Math. Res. Notices (14) (2000) 719-739.
[14] H. Iwaniec, E. Kowalski, Analytic number theory, Vol. 53 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 2004.
[15] A. C. Cojocaru, M. R. Murty, An introduction to sieve methods and their applications, Vol. 66 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2006.
[16] W. C. W. Li, Number theory with applications, Vol. 7 of Series on University Mathematics, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

[^0]: *Corresponding author
 ${ }^{1}$ Email address: spiegel3@illinois.edu
 ${ }^{2}$ Email address: vandehe2@illinois.edu

