
DIMENSION SPECTRUM FOR A NONCONVENTIONAL ERGODIC

AVERAGE

YUVAL PERES AND BORIS SOLOMYAK

Abstract. We compute the dimension spectrum of certain nonconventional averages,

namely, the Hausdorff dimension of the set of 0, 1 sequences, for which the frequency

of the pattern 11 in positions k, 2k equals a given number θ ∈ [0, 1].

1. Introduction

For a dynamical system (X,T ) (say, a continuous self-map of a compact metric space),

the dimension spectrum of ordinary Birkhoff averages is defined as the function

θ 7→ dimH

{
x ∈ X : lim

n→∞

Snf(x)

n
= θ
}
.

where Snf(x) =
∑n

k=1 f(T kx) and f is a function on X. It has been widely investigated

in Multifractal Analysis, see e.g. [2]. The most basic example of such analysis goes back

to Besicovitch [4] and Eggleston [7] who proved that

dimH

{
(xk)

∞
1 ∈ {0, 1}

N : lim
n→∞

1

n

n∑
k=1

xk = θ
}

= H(θ), θ ∈ [0, 1], (1.1)

where H(θ) = −θ log2 θ−(1−θ) log2(1−θ) is the entropy function. Throughout the paper,

{0, 1}N = Σ2 is the symbolic space, with the usual metric %((xk), (yk)) = 2−min{n: xn 6=yn}.

For dimension purposes, this is equivalent to [0, 1] with the standard metric, since for

any set A ⊂ Σ2, its image under the binary representation map has the same dimension

as A, see [8, Section 2.4].

Furstenberg [10] was the first to consider multiple Birkhoff averages, and their study

has become a very active area of research, see e.g. Bourgain [6], Host and Kra [11], and

others. For a system (X,T ) one considers

1

n
Sn(f1, . . . , f`)(x) :=

1

n

n∑
k=1

f1(T
kx)f2(T

2kx) · · · f`(T `kx)
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for some bounded functions f1, . . . , f`. Very recently, Yu. Kifer [16] and A.-H. Fan, L.

Liao, J. Ma [9] initiated the study of the dimension spectrum for such averages (in [16]

more general “nonconventional averages” are considered as well). Multifractal analysis

of this kind appears to be very complicated, so it is natural to start with the simplest

situation, namely, the shift map T on the symbolic space and the functions f1, . . . , f`

depending only on the first digit x1, for ` ≥ 2. Specializing even further, to ` = 2 and

f1(x) ≡ f2(x) = x1 leads to the sets

Aθ :=
{

(xk)
∞
1 ∈ Σ2 : lim

n→∞

1

n

n∑
k=1

xkx2k = θ
}
, θ ∈ [0, 1]. (1.2)

The question about the dimension of Aθ was raised in [9]. Note that this directly gener-

alizes the Besicovitch-Eggleston set-up from ` = 1 to ` = 2.

Motivated by this problem, A.-H. Fan, L. Liao, J. Ma, and J. Schmeling [private

communication in August 2010] computed the Minkowski (box-counting) dimension of

another set

XG :=
{

(xk)
∞
1 ∈ Σ2 : xkx2k = 0 for all k

}
and asked what is its Hausdorff dimension. It is obvious that XG ⊂ A0, and in fact, it is

easy to see that dimH(XG) = dimH(A0).

In joint work with R. Kenyon, we computed the Hausdorff dimension of XG and a large

class of similarly defined sets, putting it into the context of subshifts invariant under the

semi-group of multiplicative integers [14, 15]. Here we adapt the techniques of [14, 15] to

compute the full dimension spectrum dimH(Aθ).

Theorem 1.1. Let Aθ be given by (1.2). For θ ∈ (0, 1) we have

dimH(Aθ) = f(θ) := − log2(1− p)−
θ

2
log2

[(1− q)(1− p)
qp

]
, (1.3)

where

p2q = (1− p)3, 0 < p < 1, 0 < q < 1, (1.4)

θ =
2p(1− q)
1 + p+ q

. (1.5)

We have dimH(A0) = limθ→0 f(θ) = − log2(1− p), with p2 = (1− p)3, and dimH(A1) =

limθ→1 f(θ) = 0.

The meaning of p and q will be explained in the next section. Of course, it is easy to

eliminate q from (1.3) and (1.5). For a given θ, we get an algebraic equation of degree 4

for p. Solving the equation numerically yields the graph in Figure 1.
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Figure 1. Dimension of Aθ

Remarks.

1. As already mentioned, the formula for dimH(A0) easily follows from [14]. Note that

in [14, 15] notation was slightly different, so that p in those papers is 1− p here.

2. It is immediate that A1 is contained in the set of 0-1 sequences which have frequency

of 1’s equal to 1. Thus, dimH(A1) = 0 by (1.1), and we assume θ < 1 for the rest of the

paper.

3. By the Strong Law of Large Numbers for weakly correlated random vari-

ables (see [18]), for a.e. sequence (xk) with respect to the Bernoulli (12 ,
1
2)N mea-

sure, limn→∞
1
n

∑n
j=1 xjx2j = 1/4. This agrees with our result: for θ = 1/4 we get

dimH(Aθ) = 1 and p = q = 1/2.

4. In [9] it is proved that dimH(Bθ) = 1− 1
` + 1

`H
(
1+θ
2

)
for θ ∈ [−1, 1] and ` ≥ 2, where

Bθ :=
{

(xk)
∞
1 ∈ {−1, 1}N : limn→∞

1
n

∑n
k=1 xkx2k · · ·x`k = θ

}
, using the techniques

of Riesz products. It is further pointed out in [9] that the problem becomes drastically

different if one takes the digits 0,1 (which reduces to Aθ for ` = 2) instead of −1, 1.

5. Yu. Kifer [16] considered a slightly different question: he studied the Hausdorff

dimension of sets defined by the frequencies of all `-tuples of digits i1, . . . , i` in positions

k, 2k, . . . , `k. However, he was able to compute the dimensions only under the assumption

that such frequencies are of the form pi1,...,i` = pi1 · · · pi` .
6. As pointed out in [15], there are some parallels between the multiplicative shifts

of finite type and self-affine carpets [3, 19]; we should also add here self-affine sponges

[13]. The present paper may similarly be compared to the work on multifractal self-affine



4 YUVAL PERES AND BORIS SOLOMYAK

carpets and sponges, see e.g. [17, 20, 1, 12]; however, we do not see any way to directly

transfer the results.

2. Preliminaries and the scheme of the proof.

The dimension of Aθ is computed with the help of the following lemma which goes

back to Billingsley [5]. We write [u] for the cylinder set of sequences starting with a finite

word u and xn1 := x1 . . . xn.

Lemma 2.1 (see Prop.4.9 in [8]). Let E be a Borel set in Σ2 and let ν be a finite Borel

measure on Σ2.

(i) If ν(E) > 0 and lim infn→∞
− log2 ν[x

n
1 ]

n ≥ s for ν-a.e. x ∈ E, then dimH(E) ≥ s.
(ii) If lim infn→∞

− log2 ν[x
n
1 ]

n ≤ s for all x ∈ E, then dimH(E) ≤ s.

Following [14, 15], for a probability measure µ on Σ2, we define another measure Pµ
on Σ2 by

Pµ[u] :=
∏

i≤n, i odd

µ[u|J(i)], where J(i) = {2ri}∞r=0 (2.1)

and u|J(i) is the subsequence of u (viewed as a finite sequence) along the geometric

progression J(i). The new measure Pµ is invariant under the action of the multiplicative

semigroup of odd positive numbers:

(xk)
∞
k=1 7→ (xik)

∞
k=1 for odd i.

We consider Markov measures µp,P on Σ2, with the initial probability distribution

p = (1 − p, p) (so that p is the probability of initial 1), and the stochastic transition

matrix P =

(
1− p p

q 1− q

)
. Note that our Markov measures are not stationary;

instead, their initial distribution coincides with the first row of the transition matrix.

Next we indicate the scheme of the proof of Theorem 1.2. Recall that θ ∈ [0, 1). In

view of Lemma 2.1(i), the lower bound for dimH(Aθ) will be established once we prove

the following.

Lemma 2.2. Fix p ∈ (0, 1), q ∈ [0, 1), and let Pµ, with µ = µp,P , be defined by (2.1).

(i) If p, q satisfy (1.5), then Pµ(Σ2 \Aθ) = 0. For θ = 0 we take q = 1.

(ii) For any p, q we have

lim
n→∞

− logPµ[xn1 ]

log n
= s(p, q) :=

H(p)(1 + q) + pH(q)

1 + p+ q
for Pµ-a.e. x.
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(iii) The maximum of s(p, q), subject to (1.5), is achieved when p2q = (1− p)3, and it

equals

f(θ) = − log2(1− p)−
θ

2
log2

[(1− q)(1− p)
qp

]
(2.2)

The upper bound in Theorem 1.1 will follow from Lemma 2.1(ii), once we prove the

following

Lemma 2.3. Let µ = µp,P be the Markov measure with initial probability vector p =

(1 − p, p) and transition matrix P =

(
1− p p

q 1− q

)
, where p2q = (1 − p)3 and (1.5)

holds, and let Pµ be the corresponding multiplicative invariant measure. Then

lim inf
n→∞

− log2 Pµ[xn1 ]

n
≤ f(θ) for all x ∈ Aθ. (2.3)

3. Proof of the lower bound.

Lemma 3.1. Let µ be a Markov measure on Σ2, with the initial probability (row) vector

p and transition matrix P . Then for Pµ-a.e. x ∈ Σ2 we have

lim
n→∞

1

n

n∑
j=1

xjx2j =
∞∑
k=0

2−(k+1)(pP k)1 · P (1, 1). (3.1)

Proof. Fix ` ∈ N and consider n = 2`r. Denote Jni := J(i)∩ [1, n] (recall that J(i) is the

geometric progression with ratio 2 starting at i.) Let

Sn(x) =
n∑
j=1

xjx2j and S′n(x) :=
∑

j∈Jn
i , odd i>r

xjx2j .

We have

S′n(x) ≤ Sn(x) ≤ S′n(x) + r(`+ 1), (3.2)

since ∑
odd i≤r

|Jni | = n−
∑

odd i>r

|Jni |

= n−
∑̀
k=1

nk

2k+1

= n− n[` · 2−`−1 − (`+ 1)2−` + 1]

< n(`+ 1)2−` = r(`+ 1).
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Now, denote

x
(k)
i := xix2i . . . x2ki.

We have

S′n(x) =
∑̀
k=1

∑
n
2k

<i≤ n
2k−1

i odd

L11(x
(k)
i ),

where L11(u) is the number of subwords 11 in the word u (counting all, possibly overlap-

ping, occurrences). We consider the sequence of words (x
(k)
i ) (of length k + 1) for odd

i ∈ ( n
2k
, n
2k−1 ] and n = 2`r, as r →∞. By the definition of the measure Pµ, this sequence

is i.i.d. with the distribution induced by µ on the set of words of length k + 1. By the

Strong Law of Large Numbers, for any k ≤ `,
1

n/2k+1

∑
n
2k

<i≤ n
2k−1

i odd

L11(x
(k)
i )→ Eµ[L11(u)] as n = 2`r →∞, for Pµ-a.e. x,

where |u| = k+1. Here we used the fact that there are n/2k+1 odd numbers in ( n
2k
, n
2k−1 ].

By the definition of µ as a Markov measure, writing the expectation as the sum of

probabilities of seeing 11 at all possible locations,

Eµ[L11(u)] =
k−1∑
j=0

(pP j)1 · P (1, 1).

It follows that for Pµ-a.e. x,

1

n
S′n(x) →

∑̀
k=1

2−k−1
k−1∑
j=0

(pP j)1 · P (1, 1)

=
`−1∑
j=0

(pP j)1 · P (1, 1)
∑̀
k=j+1

2−k−1

=

`−1∑
j=0

(2−(j+1) − 2−(`+1)) · (pP j)1 · P (1, 1) as n = 2`r →∞.

Combining this with (3.2), we obtain

lim inf
n→∞

Sn
n

= lim inf
r→∞

S2`r
2`r
≥

`−1∑
k=0

(2−(k+1) − 2−(`+1)) · (pP k)1 · P (1, 1)

and

lim sup
n→∞

Sn
n

= lim sup
r→∞

S2`r
2`r
≤

`−1∑
k=0

(2−(k+1) − 2−(`+1)) · (pP k)1 · P (1, 1) +
`+ 1

2`
,
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so letting `→∞ yields (3.1). �

Proof of Lemma 2.2(i). The right-hand side of (3.1) is easy to compute explicitly. The

matrix P =

(
1− p p

q 1− q

)
has left eigenvectors π = ( q

p+q ,
p
p+q ), τ = (1,−1) corre-

sponding to the eigenvalues 1, 1 − p − q, respectively. Recall that p = (1 − p, p). Thus

p = π + p(1−p−q)
p+q τ , hence

(pP k)0 =
q

p+ q
+

p

p+ q
(1− p− q)k+1, (pP k)1 =

p

p+ q
− p

p+ q
(1− p− q)k+1. (3.3)

Therefore, it follows from (3.1), in view of P (1, 1) = 1− q, that for Pµ-a.e. x ∈ Σ2,

lim
n→∞

1

n

n∑
j=1

xjx2j =
p(1− q)
p+ q

∞∑
k=0

2−(k+1)[1− (1− p− q)k+1]

=
p(1− q)
p+ q

[
1− 1− p− q

2(1− 1−p−q
2 )

]
=

2p(1− q)
1 + p+ q

= θ,

whenever (1.5) holds, as desired. �

For a probability measure µ on Σ2 let

s(µ) =
∞∑
k=1

Hµ(αk)

2k+1
, (3.4)

where αk is the partition of Σ2 into cylinders of length k and Hµ is the Shannon entropy

of a partition, using log2.

Lemma 3.2 (see Prop.2.3 in [15]). Let µ be a probability Borel measure on Σ2 and Pµ
the corresponding measure given by (2.1). Then

lim
n→∞

− logPµ[xn1 ]

log n
= s(µ) for Pµ-a.e. x,

where xn1 := x1 . . . xn.

Proof of Lemma 2.2(ii). In view of Lemma 3.2, it remains to verify the formula

s(µ) = s(p, q) =
H(p)(1 + q) + pH(q)

1 + p+ q
. (3.5)

By the definition of s(µ) given in (3.4), and the properties of Shannon entropy, we have

s(µ) =
Hµ(α1)

2
+
∞∑
k=1

Hµ(αk+1|αk)
2k+1

.
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Now, Hµ(α1) = H(p) by assumption, and

Hµ(αk+1|αk) = −
∑

u: |u|=k−1

(µ[u0]H(p) + µ[u1]H(q))

= (pP k−1)0H(p) + (pP k−1)1H(q),

since (pP k−1)i is the probability of having xk = i according to the measure µ. Therefore,

s(µ) =
H(p)

2
+
∞∑
k=0

2−(k+2)[(pP k)0H(p) + (pP k)1H(q)].

Now, using (3.3) and summing the geometric series yields (3.5). �

In view of the above, we have that

dimH(Aθ) ≥ s(µ) = s(p, q) =
H(p)(1 + q) + pH(q)

1 + p+ q
, where θ =

2p(1− q)
1 + p+ q

. (3.6)

Thus, we should find the constrained maximum of s(p, q) on [0, 1]2. This is a straight-

forward exercise, but we include it for the record and in order to explain where the

formula (1.4) comes from. It is actually not needed for the proof, since we could have

just produced the answer.

Proof of Lemma 2.2(iii). We use the method of Lagrange multipliers. Differentiating

s(p, q) yields

(1 + p+ q)2
∂s(p, q)

∂p
= (1 + q)[(1 + p+ q) log2(

1−p
p )−H(p) +H(q)]

= (1 + q)[(2 + q) log2(1− p)− (1 + q) log2 p+H(q)],

(1 + p+ q)2
∂s(p, q)

∂q
= p[(1 + p+ q) log2(

1−q
q ) +H(p)−H(q)]

= p[(2 + p) log2(1− q)− (1 + p) log2 q +H(p)].

Differentiating the constraint g(p, q) = θ(1 + p+ q)− 2p(1− q) = 0 yields

∇g(p, q) = (θ − 2(1− q), θ + 2p) =
(−2(1− q)(1 + q)

1 + p+ q
,
2p(2 + p)

1 + p+ q

)
.

At the point of constrained maximum we have ∇s(p, q) = λ∇g(p, q), which reduces to

(2 + p)[(2 + q) log2(1− p)− (1 + q) log2 p+H(q)]

= −(1− q)[(2 + p) log2(1− q)− (1 + p) log2 q +H(p)].

The latter becomes, after collecting the terms:

3(1 + p+ q) log2(1− p) = 2(1 + p+ q) log2 p+ (1 + p+ q) log2 q,
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so p2q = (1− p)3, as claimed.

It remains to verify the formula (2.2). We have

f(θ) = − log2(1− p)−
θ

2
log2

[(1− q)(1− p)
qp

]
= − log2(1− p)−

p(1− q)
1 + p+ q

log2

[(1− q)(1− p)
qp

]
.

Comparing the latter with

s(p, q) = −
(p log2

1−p
p − log2(1− p))(1 + q) + p(q log2

1−q
q − log2(1− q))

1 + p+ q

results in (1+p+q)(f(θ)−s(p, q)) = p[2 log2
1−p
p +log2

1−q
q +log2(1−p)−log2(1−q)] = 0,

whenever p2q = (1− p)3, as desired. �

4. Proof of the upper bound.

Proof of Lemma 2.3. Fix an even integer n. Denote

N1,odd = N1,odd(xn1 ) := {k ≤ n : k odd, xk = 1},

and similarly define N1,even(xn1 ). Further, for i, j ∈ {0, 1} let

Nij = Nij(x
n
1 ) := {k ≤ n/2 : xk = i, x2k = j}.

By the definition of µ = µp,P and Pµ we have, for any x and even n:

Pµ[xn1 ] = pN1,odd(1− p)n/2−N1,odd(1− p)N00pN01qN10(1− q)N11 .

Note that N00 +N01 +N10 +N11 = n/2, so

Pµ[xn1 ] = pN1,odd+N01(1− p)n−N1,odd−N01−N10−N11qN10(1− q)N11

= (1− p)n
( p

1− p

)N1,odd+N01
( q

1− q

)N10
(1− q

1− p

)N10+N11

.

Observe that

N10 +N11 = N1(x
n/2
1 ) and N1,odd = N1(x

n
1 )−N1,even = N1(x

n
1 )−N01 −N11.

The equation p2(1− q) = (1− p)3 can be rewritten as 1−q
1−p = 1−q

q

(1−p
p

)2
. Combining this

with the last several equalities yields

Pµ[xn1 ] = (1− p)n
( p

1− p

)N1(xn1 )−N11−2N1(x
n/2
1 )(1− q

q

)N11

= (1− p)n
((1− q)(1− p)

qp

)N11( p

1− p

)N1(xn1 )−2N1(x
n/2
1 )

.
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Thus,

− log2 Pµ[xn1 ]

n
= − log2(1− p)−

N11

n
log2

((1− q)(1− p)
qp

)
+
(N1(x

n
1 )

n
− N1(x

n/2
1 )

n/2

)
log2

( p

1− p

)
. (4.1)

Observe that limn→∞
N11
n = θ/2 for all x ∈ Aθ. Now replace n by 2` for ` = 1, . . . , L,

and take the average over `. The expression in the second line of (4.1) telescopes, so we

obtain, in view of (2.2),

1

L

L∑
`=1

(− logPµ[x2
`

1 ]

2`
− f(θ)

)
=

1

L

L∑
`=1

(θ
2
− N11(x

2`
1 )

2`

)
log2

((1− q)(1− p)
qp

)
+

1

L
log2

( p

1− p

)(N1(x
2L
1 )

2L
− N1(x

2
1)

2

)
.

It follows that

lim inf
`→∞

− logPµ[x2
`

1 ]

2`
≤ f(θ) for all x ∈ Aθ,

and the proof of (2.3) is complete. �

5. Concluding remarks

1. It is not hard to verify that, under the conditions (1.4) and (1.5) we have (1−q)(1−p)
qp <

1 if and only if θ < 1/4. Therefore, by the argument in the last section, it immediately

follows that

dimH(A+
θ ) = f(θ) for θ ∈ (0, 1/4), dimH(A−θ ) = f(θ) for θ ∈ (1/4, 1),

where

A+
θ :=

{
(xk)

∞
1 ∈ Σ2 : lim sup

n→∞

1

n

n∑
k=1

xkx2k ≤ θ
}
,

A−θ :=
{

(xk)
∞
1 ∈ Σ2 : lim inf

n→∞

1

n

n∑
k=1

xkx2k ≥ θ
}
.

2. We extended the result of Theorem 1.1 to the case of arbitrary functions f1, f2 on

the shift Σ2 depending on the first digit x1. The method is the same, but the calculations

are more involved, so we only state the result.

Theorem 5.1. For β, γ ∈ R, let

Aθ(β, γ) :=
{

(xk)
∞
1 ∈ Σ2 : lim

n→∞

1

n

n∑
k=1

(xk + β)(x2k + γ) = θ
}
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We have

dimH(Aθ(β, γ)) = −1

2
log2[p0(1− p)]−

θ

2
log2

[(1− q)(1− p)
qp

]
,

where

1− p
1− q

=
( q

1− q

)1+2β+γ( p

1− p

)2+2β+γ
,

1− p0
p0

=
( q

1− q

)β( p

1− p

)1+β
,

and

θ = βγ +
(1 + β + γ − q)(1 + p− p0) + β(p0(p+ q)− q)

1 + p+ q
.

The appropriate measure is Pµ, with µ Markov, having the initial distribution (p0, 1−p0)

and the transition matrix

(
1− p p

q 1− q

)
.

3. After this work was essentially completed, we were informed that A.-H. Fan, J.

Schmeling, and M. Wu have computed the dimension of Aθ (in a different, but equivalent

form) and other sets of this type, independently, but also building on [15].
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