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Abstract

One of pressing problems in mathematical physics is to find a gen-

eralized Poincaré symmetry that could be applied to nonflat space-

times. As a step in this direction we define the semidirect product of

groupoids Γ0 ⋊ Γ1 and investigate its properties. We also define the

crossed product of a bundle of algebras with the groupoid Γ1 and prove

that it is isomorphic to the convolutive algebra of the groupoid Γ0⋊Γ1.

We show that families of unitary representations of semidirect prod-

uct groupoids in a bundle of Hilbert spaces are random operators. An

important example is the Poincaré groupoid defined as the semidirect

product of the subgroupoid of generalized Lorentz transformations

and the subgroupoid of generalized translations.

I Introduction

One of the main stumbling blocks in combining general relativity with quan-
tum mechanics into a suitable generally relativistic quantum field theory is
the fact that Poincaré group does not act on a curved space-time as a group
of motions (e.g., [9, p. 360]). There are strong reasons to believe that to
make a synthesis of general relativity and quantum physics would require
a suitable generalization of the Poincaré group so as it would be able to
enter into a fruitful interaction with geometry of curved manifolds (see, for
instance, [2, 4, 5]).

Natural generalization of group symmetries are groupoid symmetries. In
the present work, we propose such a generalization. First, we define the
semidirect product of groupoids Γ0 ⋊ Γ1 where Γ0 and Γ1 are subgroupoids
of the same groupoid Γ (Sect. II). Then, in Sect. III, we define the action of
the subgroupoid Γ1 on a bundle A of algebras related to the subgroupoid Γ0.
This allows us to define the crossed product of a bundle A of algebras with
Γ1, A⋊Γ1, which we prove to be isomorphic to the convolutive algebra of the
groupoid Γ0⋊Γ1. In IV we show that families of unitary representations of the
semidirect product groupoids in a bundle of Hilbert spaces form an algebra
of random operators (in the sense of Connes [3]), which can be completed to
a von Neumann algebra. Finally, in Sect. V, we construct, as an example of
the developed theory, the Poincaré groupoid being a semidirect product of
the subgroupoid of generalized Lorentz transformations and the subgroupoid
of generalized translations.
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To fix notation we briefly describe the groupoid structure (for the defini-
tion see [1, p.85] or [6, p. 269]). A groupoid Γ over X , or a groupoid with base
X , is a 7-tuple (Γ, X, d, r, ǫ, ι,m) consisting of the following elements: (1) sets
Γ and X , (2) surjections (d, r) : Γ → X , called source and target map, re-
spectively, (3) injection ǫ : X → Γ, x 7→ ǫ(x), called identity section or simply
identity, (4) map ι : Γ → Γ , γ 7→ ι(γ) = γ−1, called inversion map. More-
over, a composition law is defined, m : Γ(2) → Γ, (γ, ξ) 7→ m(γ, ξ) = γ ◦ ξ,
with the domain Γ(2) := {(γ, ξ) ∈ Γ × Γ : r(ξ) = d(γ)} such that the fol-
lowing axioms are satisfied: (i) (associativity law) for arbitrary γ,ξ,η ∈ Γ
the triple product (γ ◦ ξ) ◦ η is defined iff γ ◦ (ξ ◦ η) is defined. In such
a case, we have (γ ◦ ξ) ◦ η = γ ◦ (ξ ◦ η), (ii) (identities) for each γ ∈ Γ,
ǫ(r(γ))◦γ = γ ◦ ǫ(d(γ)) = γ, (iii) (inverses) for each γ ∈ Γ, γ ◦ ι(γ) = ǫ(r(γ)),
ι(γ) ◦ γ = ǫ(d(γ)).

For each γ ∈ Γ the sets: Γx = {γ ∈ Γ : r(γ) = x, x ∈ X} and Γx =
{γ ∈ Γ : d(γ) = x, x ∈ X} are defined. If H ⊂ Γ and H is closed under
multiplication and inverses, H can be naturally given the structure of the
subgroupoid of Γ. A groupoid Γ is called a Lie groupoid if the sets Γ and X
are manifolds, the maps d and r are surjective submersions, and the structure
maps are smooth [1]. A groupoid Γ is called transitive if for every pair
x, y ∈ X there exists γ ∈ Γ such that d(γ) = x and r(γ) = y.

II Semidirect Products of Groupoids

Given two groups one can obtain a new group in various ways. The resulting
product group could be a direct product, a semidirect product, etc. A direct
product of groupoids could be easily defined (see for instance [1]). In this
section we extend the concept of semidirect product to groupoids. Let Γ be
a topological, locally compact, and locally trivial groupoid over X [8]. With
these assumptions there exists the Haar system {λx}x∈X on Γ [7].

Let us recall the notion of an isotropy groupoid of the groupoid Γ

Γ0 :=
⋃

x∈X

Γx
x

where Γx
x = Γx ∩ Γx. The subgroupoid Γ0 is a wide subgroupoid of Γ, i.e., it

is the subgroupoid of Γ with the same base space
Let us now define another wide subgroupoid Γ1 of Γ such that r × d :
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Γ → X ×X , given by

(r × d)(γ) = (r(γ), d(γ)),

is a surjection, i.e., the subgroupoid Γ1 is transitive. Here d and r are source
and target mappings in Γ, respectively.

With the same symbol {λx}x∈X we denote the Haar system obtained by
the restriction of measures λx to the sets Γ0,x. In the following, we write
dλx(γ0) = dγ0 for the measure λx on Γ0,x. We also assume, for simplicity,
that the groups Γ0,x are unimodular. It is straightforward to see that the
restricted measures are right-invariant Haar measures on locally compact
groups Γ0,x [7].

Definition 1. The semidirect product Γ0⋊Γ1 of the groupoids Γ1 and Γ0 is
the groupoid given by the following elements:

• set
Γ̄ = Γ0 ∗ Γ1 = {(γ0, γ1) ∈ Γ0 × Γ1 : d(γ0) = r(γ1)},

• source and target
d̄(γ0, γ1) = d(γ1)

r̄(γ0, γ1) = r(γ0),

• multiplication

(γ0, γ1) ◦ (γ′0, γ
′
1) = (γ0 ◦ αγ1(γ

′
0), γ1 ◦ γ

′
1),

provided that γ1 and γ′1 are composable; here we have introduced the
following abbreviation (representing the action of Γ1 on Γ0)

αγ1(γ0) = γ1 ◦ γ0 ◦ γ
−1
1 ,

for (γ0, γ
−1
1 ) ∈ Γ̄; it can be easily seen that αγ1 : Γ0,d(γ1) → Γ0,r(γ1) is an

isomorphism of groups.

• identity
ǫΓ̄(x) = (ǫΓ0(x), ǫΓ1(x)) = (ǫ(x), ǫ(x))

where ǫΓ0 and ǫΓ1 are identities of Γ0 and Γ1, respectively,

• inverse
(γ0, γ1)

−1 = (αγ−1
1

(γ−1
0 ), γ−1

1 ).
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Let γ, γ′ ∈ Γ. The elements γ ∼ γ′ are equivalent (in the sense of
equivalence relation) if there exists γ0 ∈ Γ0, with d(γ0) = r(γ), such that
γ0 ◦ γ = γ′. On the set Γ/Γ0 = {[γ]∼ : γ ∈ Γ} we introduce the groupoid
structure by defining

d̃([γ]) = d(γ), r̃([γ]) = r(γ),

[γ] ◦ [γ′] = [γ ◦ γ′]

provided that d(γ) = r(γ′)

[γ]−1 = [γ−1], ǫ̃(x) = [ǫ(x)].

Proposition 1. The groupoid Γ1 is isomorphic with the groupoid Γ/Γ0 if
and only if the semidirect product Γ0⋊Γ1 is isomorphic with the groupoid Γ.

Proof. ⇒) Let the isomorphism assumed in the Proposition be denoted by
j : Γ1 → Γ/Γ0. We define J : Γ0 ⋊ Γ1 → Γ by

J(γ0, γ1) = γ0 ◦ γ1.

First, we show that J is a bijection. Let γ ∈ Γ and [γ] ∈ Γ/Γ0. One has
γ1 = j−1([γ]) ∈ Γ1 and let γ0 = γ ◦ γ−1

1 . From the isomorphism property of j
we have d(γ1) = d̃([γ]), r(γ1) = r̃([γ]). But d̃([γ]) = d(γ), r̃([γ]) = r(γ) and
therefore

d(γ0) = d(γ−1
1 ) = r(γ1)

r(γ0) = r(γ) = r(γ1).

Hence, (γ0, γ1) ∈ Γ0 ⋊ Γ1, (γ0, γ1) = J−1(γ).
To show that J is a homomorphism we apply J to both sides of (γ0, γ1) ◦

(γ′0, γ
′
1) = (γ0 ◦ αγ1(γ

′
0), γ1 ◦ γ

′
1) to obtain

J((γ0, γ1) ◦ (γ′0, γ
′
1)) = J(γ0, γ1) ◦ J(γ′0, γ

′
1).

⇐) Let I : Γ → Γ0 ⋊ Γ1 be an isomorphism of groupoids. Then I(γ) =
(γ0, γ1). We define i : Γ/Γ0 → Γ1 by

i([γ]) = pr2(I(γ)) = γ1.

Let us notice that if I(γ) = (γ0, γ1), i.e., γ = γ0 ◦ γ1, then γ1 ∈ [γ]. Let now
γ′ ∈ [γ]. This means that there exists γ̄0 ∈ Γ0 such that

γ′ = γ′0 ◦ γ
′
1 = γ̄0 ◦ γ = γ̄0 ◦ γ0 ◦ γ1,
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which gives (γ′0, γ
′
1) = (γ̄0◦γ0, γ1) under the action of the isomorphism I and,

in particular, γ′1 = γ1. This shows that the mapping i is well defined.
The mapping i is a surjection since, for γ ∈ Γ1, one has i([γ]) = γ, and

it is also an injection since (i−1)(γ1) = [γ1]. Being a homomorphism it is,
therefore, an isomorphism.

III Algebras Associated with the Semidirect

Product of Groupoids

In this section we define the action of the subgroupoid Γ1 on a bundle A of
algebras related to the subgroupoid Γ0. The action, denoted by A ⋊ Γ1, is
called the crossed product of a bundle A of algebras with Γ1. We also prove
that A⋊Γ1 is isomorphic to the convolutive algebra of the groupoid Γ0⋊Γ1.

With a semidirect product of groupoids we can associate various algebraic
structures. Let us first define the bundle A of algebras (Ax, •)x∈X where
Ax = L1(Γ0,x) with convolution

(a1 • a2)(γ0) =

∫

Γ0,x

a1(γ
′
0)a2(γ

′−1
0 ◦ γ0)dγ

′
0.

The action α : Γ1 × Γ0 → Γ0, as it is defined in section II, induces the
dual action β : Γ1 ×A→ A given by

βγ1 : Ar(γ1) → Ad(γ1), (βγ1(a))(γ0) = a(αγ1(γ0)).

This allows us to formulate the following definition

Definition 2. The crossed product of the bundle of algebras A = (Ax, •)x∈X
and the groupoid Γ1 is the algebra

B = A⋊ Γ1 = {F ∈ L1(Γ1, A) : F (γ1) ∈ Ar(γ1), ∀γ1 ∈ Γ1},

with twisted convolution as multiplication

(F1 ⊛ F2)(γ1) =

∫

Γ
r(γ1)
1

F1(γ
′
1) • βγ′−1

1
(F2(γ

′−1
1 ◦ γ1))dγ

′
1.

By dγ′1 we denote the restriction of the suitable Haar measure λx on Γ to

Γ
r(γ1)
1 .
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We also define the algebra A = (L1(Γ0⋊Γ1,C), ∗). The fact that functions
f1, f2 ∈ A are integrable allows us to define their convolution in the following
way

(f1 ∗ f2)(γ0, γ1) =

∫

Γ
r(γ1)
1

∫

Γ0,r(γ1)

f1(γ
′
0, γ

′
1)f2

(

(γ′0, γ
′
1)

−1 ◦ (γ0, γ1)
)

dγ′0dγ
′
1.

Theorem 1. The algebra B is isomorphic with the algebra A; the isomor-
phism K : B → A is given by

(KF )(γ0, γ1) = (F (γ1))(γ0), for all (γ0, γ1) ∈ Γ̄

Proof. First, we show that K is an homomorphism of algebras. Indeed,

(KF1 ∗KF2)(γ0, γ1) =

=

∫

Γ
r(γ1)
1

∫

Γ0,r(γ1)

(KF1)(γ
′
0, γ

′
1)(KF2)

(

(γ′0, γ
′
1)

−1 ◦ (γ0, γ1)
)

dγ′0dγ
′
1 =

=

∫

Γ
r(γ1)
1

∫

Γ0,r(γ1)

(KF1)(γ
′
0, γ

′
1)(KF2)

(

αγ′−1
1

(γ′−1
0 ◦ γ0), γ

′−1
1 ◦ γ1)dγ

′
0dγ

′
1 =

=

∫

Γ
r(γ1)
1

∫

Γ0,r(γ1)

(F1(γ
′
1))(γ

′
0)(F2(γ

′−1
1 ◦ γ1))

(

αγ′−1
1

(γ′−1
0 ◦ γ0)

)

dγ′0dγ
′
1 =

=

∫

Γ
r(γ1)
1

∫

Γ0,r(γ1)

(F1(γ
′
1))(γ

′
0)
(

βγ′−1
1
F2(γ

′−1
1 ◦ γ1)

)

(γ′−1
0 ◦ γ0)dγ

′
0dγ

′
1 =

=
(

(F1 ⊛ F2)(γ1)
)

(γ0).

We have taken into account that

(γ′0, γ
′
1)

−1 ◦ (γ0, γ1) = (γ′−1
1 ◦ γ′−1

0 ◦ γ′1, γ
′−1
1 ) ◦ (γ0, γ1) =

= (γ′−1
1 ◦ γ′−1

0 ◦ γ′1 ◦ αγ′−1
1

(γ0), γ
′−1
1 ◦ γ1) =

= (αγ′−1
1

(γ′−1
0 ◦ γ0), γ

′−1
1 ◦ γ1).

It remains to show that K is a bijection. Let F ∈ L1(Γ1, A) and suppose
that KF = 0, i.e.,

(KF )(γ0, γ1) = (F (γ1))(γ0) = 0

for almost all (γ0, γ1) ∈ Γ̄ in the sense of L1. Therefore, F (γ1) = 0 for almost
all γ1 ∈ Γ1, and (F (γ1))(γ0) = 0 for almost all γ0 ∈ Γ0,r(γ1). Thus F = 0
which shows that K is an injection.

It is also a surjection since for every f ∈ L1(Γ0 ⋊ Γ1,C) there exists
F ∈ L1(Γ1, A), namely (F (γ1))(γ0) = f(γ0, γ1).
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IV Unitary Representations and Random

Operators

Let us now investigate the unitary representations of groupoids and the as-
sociated algebras.

Definition 3. [8] Unitary representation of a groupoid Γ over X is a pair
(U ,H) where H is a bundle of Hilbert spaces over X, H = {Hx}x∈X , and
U = {U(γ) : γ ∈ Γ} is a family of unitary transformations U(γ) : Hd(γ) →
Hr(γ) such that

1. U(ǫ(x)) = idHx
for x ∈ X,

2. U(γ1 ◦ γ2) = U(γ1)U(γ2) for (γ1, γ2) ∈ Γ(2),

3. U(γ−1) = U(γ)−1 for almost all γ ∈ Γ with respect to the measure as it
is defined in [8, p. 92],

4. for every ϕ, ψ ∈ L2(X,H) the function

Γ ∋ γ 7→
(

U(γ)ϕ(d(γ)), ψ(r(γ)
)

r(γ)
∈ C

is measurable on Γ.

Let now (U0,H) be a unitary representation of the isotropy groupoid
Γ0 in a Hilbert bundle H = {Hx}x∈X over X , and {iyx}x,y∈X a family of
isomorphisms of Hilbert spaces, iyx : Hx → Hy.

Definition 4. The simple extension of the representation (U0,H) of the
groupoid Γ0 to the groupoid Γ = Γ0 ⋊ Γ1 is the representation (U ,H) of
Γ given by

U(γ0, γ1) = U0(γ0) ◦ i
y
x

for γ0 ∈ Γ0,y, γ1 ∈ Γ1,x such that x = d(γ1), y = r(γ1).

It is easy to see that the family {iyx}x,y∈X determines the unitary repre-
sentation of the groupoid Γ1 in the Hilbert bundle {Hx}x∈X .

Let us denote U1(γ1)hx = iyx(hx), hx ∈ Hx for γ1 ∈ (Γ1)
y
x, and let us

notice that the following commutation relation is satisfied

U 1(γ1)U0(γ0)U1(γ
−1
1 ) = U0(αγ1(γ0))

for γ1, γ0 such that d(γ1) = d(γ0).
We now recall the definition of a random operator [3].
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Definition 5. A random operator in a Hilbert bundle H = {Hx}x∈M is
defined to be a map

M ∋ x 7→ bx ∈ B(Hx),

where B(Hx) denotes the algebra of bounded operators on Hx. It must satisfy
the following conditions:

1. if {ψi}
∞
i=1 is a measurable field of bases in H then the function

M ∋ x 7→ (Bxψi(x), ψj(x))x, for i, j = 1, 2, . . .

is measurable,

2. the family of operators Bx, x ∈ M , is essentially bounded in the oper-
ator norm, i.e., ess supx∈X ||Bx|| <∞.

For a ∈ L1(Γ0) we define the operators U0,x(a) : Hx → Hx by

U 0,x(a)(hx) :=

∫

Γ0,x

a(γ)U0(γ)hxdλx

for hx ∈ Hx; {λx}x∈X is here the Haar system on the groupoid Γ0 defined by
the Haar measure on the group G.

Proposition 2. The family of operators ra := {U0,x(a)}x∈X forms a random
operator in the Hilbert bundle H.

Proof. Since a ∈ L1(Γ0), it is enough to prove that the condition (2) is
satisfied. Indeed,

||U0,x(a)|| = sup
||hx||≤1

||U0,x(a)hx|| = sup
||hx||≤1

||

∫

Γ0,x

a(γ)U 0(γ)hxdλx|| ≤

≤ sup
||hx||≤1

∫

Γ0,x

|a(γ)| ||U0(γ)hx||dλx = sup
||hx||≤1

∫

Γ0,x

|a(γ)| ||hx||dλx ≤

≤

∫

Γ0,x

|a(γ)|dλx ≤ vol(supp a) · sup |a(γ)| <∞.

Let us notice that for γ0 ∈ Γ0,x, γ ∈ Γy
x we have αγ(γ0) ∈ Γ0,y. Let us

also define
(α∗

γ(a))(γ0) = a(αγ(γ0)))

9



for a ∈ L1(Γ0) and γ0 ∈ Γ0, γ ∈ Γy
x.

The following transformation rules for the operators ra hold

U0(γ0)U0,x(a)U0(γ
−1
0 ) = U0,x(α∗

γ0
(a)),

U1(γ1)U0,x(a)U1(γ
−1
1 ) = U0,y(α

∗
γ1

(a)).

If an operator ra, a ∈ L1(Γ0), satisfies the above conditions, it is said
to be equivariant. Let us notice, that the second rule allows us to call the
representation of L1(Γ0) in H a covariant representation with respect to the
induced groupoid action α∗.

Let M0 denote the algebra of operators of the form ra, a ∈ L1(Γ0). Then
the algebra M = (M0)

′′ is a von Neumann algebra. The bicommutant
(M0)

′′ is considered here in the Hilbert space
∫

⊕
Hxdµ(x). We call M the

von Neumann algebra of the groupoid Γ0. In a forthcoming publication we
will describe the von Neumann algebra of the semidirect product of groupoids
Γ0 ⋊ Γ1.

V An Example – the Poincaré Groupoid

In this section we consider a special case of the above constructions which
may have direct applications to physics. Let E be a frame bundle over M
(we can think of M as of space-time). We define

Γ̃ = {(p1, p2) : p1, p2 ∈ E},

and introduce the following equivalence relation in Γ̃

(p1, p2) ∼ (p′1, p
′
2) ⇔ ∃g ∈ G, p′1 = p1g, p

′
2 = p2g.

To simplify notation, the equivalence class of the element (p1, p2) will be
denoted by [p1, p2]. We also denote Γ̃/∼ = Γ = E ×G E. We introduce the
groupoid structure in Γ in the following way

• composition [p1, p2] ◦ [p3, p4] = [p1, p4g
−1] is defined only if there exists

g ∈ G such that p3 = p2g,

• source and target
d([p1, p2]) = πM(p2),

r([p1, p2]) = πM(p1),

10



• identity ǫ(x) = [p, p], πM(p) = x,

• inverse [p1, p2]
−1 = [p2, p1].

The following sets are naturally defined

Γx = {[p1, p2] : πM(p1) = x},

Γy = {[p1, p2] : πM(p2) = y}.

In the literature groupoid Γ is called gauge groupoid. It is a transitive
groupoid. Indeed, for any x, y ∈ M one finds [p1, p2] ∈ Γ such that
πM(p1) = x, πM (p2) = y.

We construct two subgroupoids of Γ: the subgroupoid Γ0 = {[p1, p1g] :
p1 ∈ E, g ∈ G} of the gauge groupoid Γ consists of equivalence classes of
Lorentz transformations

(p1, p1g) ∼ (p1g0, p1gg0),

and the subgroupoid Γ1 = {[s(x), s(y)] : x, y ∈ M}, where s(x) is a cross
section s : M → E, consisting of generalized translations in M . In fact, there
is an isomorphism between Γ1 and M ×M for each s.

Let us notice that Γ0 is the isotropy groupoid of the groupoid Γ, i.e.,
Γ0 = {Γx

x}x∈M where Γx
x = Γx ∩ Γx.

Proposition 3. The semidirect product Γ0 ⋊ Γ1, for any cross section s, is
isomorphic with the gauge groupoid Γ.

Proof . It is enough to show that there exists an isomorphism Γ1 ≃
Γ/Γ0. Let ρ : Γ → Γ/Γ0 be a canonical projection; it is a homomorphism of
groupoids. Let further i : Γ/Γ0 → Γ1 be as defined in the proof of Proposition
1. We can write

i
(

ρ([s(x)g, s(y)])
)

= i
(

ρ([s(x)g, s(x)] ◦ [s(x), s(y)])
)

= [s(x), s(y)].

Therefore, i is a homomorphism of groupoids. It is also a bijection. Indeed,
i is obviously a surjection on Γ1, and

i−1([s(x), s(y)]) = ρ([s(x), s(y)]

shows that it is an injection.
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Let us notice that translations in E depend on the cross section s; this can
be regarded as a kind of gauge fixing. If G is the Lorentz group, the above
proposition justifies calling the gauge groupoid the Poincaré groupoid (as a
semidirect product of generalized Lorentz transformations and generalized
translations).

For the Poincaré groupoid the Haar system {λx}x∈M on Γ0,x is of the form
∫

Γ0,x

f(γ0)dλx(γ0) =

∫

G

f([p0, p0g])dg

where G is the Lorentz group, dg is a Haar measure on G and p0 is a selected
element of Ex. On Γ1 one has

∫

Γ1,y

f(γ1)dλy =

∫

M

f([s(x), s(x)])dµ(x)

where µ is a Lebesgue measure on M .
We have the bundle of algebras A = {Ax}x∈M where Ax = L1(Γ0,x) and,

on the strength of Theorem 1, the crossed product B = A⋊Γ1 is isomorphic
with the algebra (A, ∗) associated with the Poincaré groupoid Γ = Γ0 ⋊ Γ1.
Let us write down the product in A explicitly.

Let f1, f2 ∈ A and [s(x)g, s(y)] ∈ Γ = Γ0 ⋊ Γ1, then we have

(f1 ∗ f2)([s(x)g, s(x)], [s(x), s(y)]) =

=

∫

Γx

1

∫

Γ0,x

f1([s(x)g′, s(x)], [s(x), s(z)])×

× f2(([s(x)g′, s(x)], [s(x), s(z)])−1 ◦ ([s(x)g, s(x)], [s(x), s(y)])dg′dµ(z) =

=

∫

Γx

1

∫

Γ0,x

f1([s(x)g′, s(x)], [s(x), s(z)])×

× f2([s(z)g
′−1g, s(z)], [s(z), s(y)])dg′dµ(z).

In this formula the nonlocal character of the generalized Poincaré symmetry
(of the groupoid type) can explicitly be seen.
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