On the Local Well-posedness of a 3D Model for Incompressible Navier-Stokes Equations with Partial Viscosity

Thomas Y. Hou* Zuoqiang Shi ${ }^{\dagger} \quad$ Shu Wang ${ }^{\ddagger}$

July 20, 2011

Abstract

In this short note, we study the local well-posedness of a 3D model for incompressible Navier-Stokes equations with partial viscosity. This model was originally proposed by Hou-Lei in [4. In a recent paper, we prove that this 3D model with partial viscosity will develop a finite time singularity for a class of initial condition using a mixed Dirichlet Robin boundary condition. The local well-posedness analysis of this initial boundary value problem is more subtle than the corresponding well-posedness analysis using a standard boundary condition because the Robin boundary condition we consider is non-dissipative. We establish the local well-posedness of this initial boundary value problem by designing a Picard iteration in a Banach space and proving the convergence of the Picard iteration by studying the well-posedness property of the heat equation with the same Dirichlet Robin boundary condition.

1 Introduction

In this short note, we prove the local well-posedness of the 3D model with partial viscosity. The 3D model with partial viscosity has the following form:

$$
\left\{\begin{align*}
u_{t} & =2 u \psi_{z} \tag{1}\\
\omega_{t} & =\left(u^{2}\right)_{z}+\nu \Delta \omega, \quad(\mathbf{x}, z) \in \Omega=\Omega_{\mathbf{x}} \times(0, \infty), \\
-\Delta \psi & =\omega
\end{align*}\right.
$$

where $\Omega_{\mathbf{x}}=(0, a) \times(0, a)$. Let $\Gamma=\left\{(\mathbf{x}, z) \mid \mathbf{x} \in \Omega_{\mathbf{x}}, z=0\right\}$. The initial and boundary conditions for (1) are given as following:

$$
\begin{align*}
& \left.\omega\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=0 \tag{2}\\
& \left.\psi\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\psi_{z}+\beta \psi\right)\right|_{\Gamma}=0 \tag{3}\\
& \left.\omega\right|_{t=0}=\omega_{0}(\mathbf{x}, z),\left.\quad u\right|_{t=0}=u_{0}(\mathbf{x}, z) . \tag{4}
\end{align*}
$$

[^0]This 3D model with viscosity in both u and ω components was first proposed by Hou and Lei in [4]. The only difference between this 3D model and the reformulated Navier-Stokes equations is that convection term is neglected in the model. If one adds the convection term back to the 3D model, one would recover the full Navier-Stokes equations. This model preserves almost all the properties of the full 3D Navier-Stokes equations. Despite the striking similarity at the theoretical level between the 3D model and the Navier-Stokes equations, the former seems to have a very different behavior from the full Navier-Stokes equations. In a recent paper [5], we prove that the above 3D model with partial viscosity develops a finite time singularity for a class of initial condition using a mixed Dirichlet Robin boundary condition.

The analysis of finite time singularity formation of the 3D model [5] uses the local well-posedness result of the 3D model. The local well-posedness of the 3D model can be proved by using a standard energy estimate and a mollifier if there is no boundary or if the boundary condition is a standard one, see e.g. [6]. For the mixed Dirichlet Robin boundary condition we consider here, the analysis is a bit more complicated since the mixed Dirichlet Robin condition gives rise to a growing eigenmode.

There are two key ingredients in our local well-posedness analysis. The first one is to design a Picard iteration for the 3D model. The second one is to show that the mapping that generates the Picard iteration is a contraction mapping and the Picard iteration converges to a fixed point of the Picard mapping by using the Contraction Mapping Theorem. To establish the contraction property of the Picard mapping, we need to use the well-posedness property of the heat equation with the same Dirichlet Robin boundary condition as ω. The well-posedness analysis of the heat equation with a mixed Dirichelet Robin boundary has been studied in the literature. The case of $\gamma>0$ is more subtle because there is a growing eigenmode. Nonetheless, we prove that all the essential regularity properties of the heat equation are still valid for the mixed Dirichlet Robin boundary condition with $\gamma>0$.

2 The main result

The local existence result of our 3D model with partial viscosity is stated in the following theorem.

Theorem 2.1 Assume that $u_{0} \in H^{s+1}(\Omega), \omega_{0} \in H^{s}(\Omega)$ for some $s>3 / 2,\left.u_{0}\right|_{\partial \Omega}=$ $\left.u_{0 z}\right|_{\partial \Omega}=0$ and ω_{0} satisfies (2). Moreover, we assume that $\beta \in S_{\infty}$ (or S_{b}) as defined in Lemma 2.1. Then there exists a finite time $T=T\left(\left\|u_{0}\right\|_{H^{s+1}(\Omega)},\left\|\omega_{0}\right\|_{H^{s}(\Omega)}\right)>0$ such that the system (1) with boundary condition (2), (3) and initial data (4) has a unique solution, $u \in C\left([0, T], H^{s+1}(\Omega)\right), \omega \in C\left([0, T], H^{s}(\Omega)\right)$ and $\psi \in C\left([0, T], H^{s+2}(\Omega)\right)$.

The local well-posedness analysis relies on the following local well-posedness of the heat equation and the elliptic equation with mixed Dirichlet and Robin boundary conditions. First, the local well-posedness of the elliptic equation with the mixed Dirichlet and Robin boundary condition is given by the following lemma [5]:

Lemma 2.1 There exists a unique solution $v \in H^{s}(\Omega)$ to the boundary value problem:

$$
\begin{align*}
& -\Delta v=f, \quad(\mathbf{x}, z) \in \Omega \tag{5}\\
& \left.v\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(v_{z}+\beta v\right)\right|_{\Gamma}=0, \tag{6}
\end{align*}
$$

if $\beta \in S_{\infty} \equiv\left\{\beta \left\lvert\, \beta \neq \frac{\pi|k|}{a}\right.\right.$ for all $\left.k \in \mathbb{Z}^{2}\right\}, f \in H^{s-2}(\Omega)$ with $s \geq 2$ and $\left.f\right|_{\partial \Omega \backslash \Gamma}=0$. Moreover we have

$$
\begin{equation*}
\|v\|_{H^{s}(\Omega)} \leq C_{s}\|f\|_{H^{s-2}(\Omega)} \tag{7}
\end{equation*}
$$

where C_{s} is a constant depending on $s,|k|=\sqrt{k_{1}^{2}+k_{2}^{2}}$.
Definition 2.1 Let $\mathcal{K}: H^{s-2}(\Omega) \rightarrow H^{s}(\Omega)$ be a linear operator defined as following:
for all $f \in H^{s-2}(\Omega), \quad \mathcal{K}(f)$ is the solution of the boundary value problem (5) - (66).
It follows from Lemma 2.1 that for any $f \in H^{s-2}(\Omega)$, we have

$$
\begin{equation*}
\|\mathcal{K}(f)\|_{H^{s}(\Omega)} \leq C_{s}\|f\|_{H^{s-2}(\Omega)} . \tag{8}
\end{equation*}
$$

For the heat equation with the mixed Dirichlet and Robin boundary condition, we have the following result.

Lemma 2.2 There exists a unique solution $\omega \in C\left([0, T] ; H^{s}(\Omega)\right)$ to the initial boundary value problem:

$$
\begin{align*}
& \omega_{t}=\nu \Delta \omega, \quad(\mathbf{x}, z) \in \Omega \tag{9}\\
& \left.\omega\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=0 \tag{10}\\
& \left.\omega\right|_{t=0}=\omega_{0}(\mathbf{x}, z) \tag{11}
\end{align*}
$$

for $\omega_{0} \in H^{s}(\Omega)$ with $s>3 / 2$. Moreover we have the following estimates in the case of $\gamma>0$

$$
\begin{equation*}
\|\omega(t)\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2} t}\left\|\omega_{0}\right\|_{H^{s}(\Omega)}, \quad t \geq 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\omega(t)\|_{H^{s}(\Omega)} \leq C(\gamma, s, t)\left\|\omega_{0}\right\|_{L^{2}(\Omega)}, \quad t>0 . \tag{13}
\end{equation*}
$$

Remark 2.1 We remark that the growth factor $e^{\nu \gamma^{2} t}$ in (12) is absent in the case of $\gamma \leq 0$ since there is no growing eigenmode in this case.

Proof First, we prove the solution of the system (9)-(11) is unique. Let $\omega_{1}, \omega_{2} \in H^{s}(\Omega)$ be two smooth solutions of the heat equation for $0 \leq t<T$ satisfying the same initial
condition and the Dirichlet Robin boundary condition. Let $\omega=\omega_{1}-\omega_{2}$. We will prove that $\omega=0$ by using an energy estimate and the Robin boundary condition at Γ :

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \omega^{2} d \mathbf{x} d z & =\nu \int_{\Omega} \omega \Delta \omega d \mathbf{x} d z \\
& =-\nu \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z-\nu \int_{\Gamma} \omega \omega_{z} d \mathbf{x} \\
& =-\nu \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z+\nu \gamma \int_{\Gamma} \omega^{2} d \mathbf{x} \\
& =-\nu \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z-\nu \gamma \int_{\Gamma} \int_{z}^{\infty}\left(\omega^{2}\right)_{z} d z d \mathbf{x} \\
& =-\nu \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z-2 \nu \gamma \int_{\Gamma} \int_{z}^{\infty} \omega \omega_{z} d \mathbf{x} d z \\
& \leq-\nu \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z+\frac{\nu}{2} \int_{\Omega}\left|\omega_{z}\right|^{2} d \mathbf{x} d z+2 \nu \gamma^{2} \int_{\Omega} \omega^{2} d \mathbf{x} d z \\
& \leq-\frac{\nu}{2} \int_{\Omega}|\nabla \omega|^{2} d \mathbf{x} d z+2 \nu \gamma^{2} \int_{\Omega} \omega^{2} d \mathbf{x} d z \tag{14}
\end{align*}
$$

where we have used the fact that the smooth solution of the heat equation ω decays to zero as $z \rightarrow \infty$. Thus, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \omega^{2} d \mathbf{x} d z \leq 2 \nu \gamma^{2} \int_{\Omega} \omega^{2} d \mathbf{x} d z \tag{15}
\end{equation*}
$$

It follows from Gronwall's inequality

$$
\begin{equation*}
e^{-4 \nu \gamma^{2} t} \int_{\Omega} \omega^{2} d \mathbf{x} d z \leq \int_{\Omega} \omega_{0}^{2} d \mathbf{x} d z=0 \tag{16}
\end{equation*}
$$

since $\omega_{0}=0$. Since $\omega \in H^{s}(\Omega)$ with $s>3 / 2$, this implies that $\omega=0$ for $0 \leq t<T$ which proves the uniqueness of smooth solutions for the heat equation with the mixed Dirichlet Robin boundary condition.

Next, we will prove the existence of the solution by constructing a solution explicitly. Let $\eta(\mathbf{x}, z, t)$ be the solution of the following initial boundary value problem:

$$
\begin{align*}
& \eta_{t}=\nu \Delta \eta, \quad(\mathbf{x}, z) \in \Omega \tag{17}\\
& \left.\eta\right|_{\partial \Omega}=0,\left.\quad \eta\right|_{t=0}=\eta_{0}(\mathbf{x}, z) \tag{18}
\end{align*}
$$

and let $\xi(\mathrm{x}, t)$ be the solution of the following PDE in Ω_{x} :

$$
\begin{align*}
& \xi_{t}=\nu \Delta_{\mathbf{x}} \xi+\nu \gamma^{2} \xi, \quad \mathbf{x} \in \Omega_{\mathbf{x}} \tag{19}\\
& \left.\xi\right|_{\partial \Omega_{\mathbf{x}}}=0,\left.\quad \xi\right|_{t=0}=\bar{\omega}_{0}(\mathbf{x}) \tag{20}
\end{align*}
$$

where $\Delta_{\mathbf{x}}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}$ and $\bar{\omega}_{0}(\mathbf{x})=2 \gamma \int_{0}^{\infty} \omega_{0}(\mathbf{x}, z) e^{-\gamma z} d z$. From the standard theory of the heat equation, we know that η and ξ both exist globally in time.

We are interested in the case when the initial value $\eta_{0}(\mathbf{x}, z)$ is related to ω_{0} by solving the following ODE as a function of z with \mathbf{x} being fixed as a parameter:

$$
\begin{equation*}
-\frac{1}{\gamma} \eta_{0 z}+\eta_{0}=\omega_{0}(\mathbf{x}, z)-\bar{\omega}_{0}(\mathbf{x}) e^{-\gamma z}, \quad \eta_{0}(\mathbf{x}, 0)=0 \tag{21}
\end{equation*}
$$

Define

$$
\begin{equation*}
\omega(\mathbf{x}, z, t) \equiv-\frac{1}{\gamma} \eta_{z}+\eta+\xi(\mathbf{x}, t) e^{-\gamma z}, \quad(\mathbf{x}, z) \in \Omega \tag{22}
\end{equation*}
$$

It is easy to check that ω satisfies the heat equation for $t>0$ and the initial condition. Obviously, ω also satisfies the boundary condition on $\partial \Omega \backslash \Gamma$. To verify the boundary condition on Γ, we observe by a direct calculation that $\left.\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=-\left.\frac{1}{\gamma} \eta_{z z}\right|_{\Gamma}$. Since $\left.\eta(\mathbf{x}, z)\right|_{\Gamma}=0$, we obtain by using $\eta_{t}=\nu \Delta \eta$ and taking the limit as $z \rightarrow 0+$ that $\left.\Delta \eta\right|_{\Gamma}=0$, which implies that $\left.\eta_{z z}\right|_{\Gamma}=0$. Therefore, ω also satisfies the Dirichlet Robin boundary condition at Γ. This shows that ω is a solution of the system (9)-(11). By the uniqueness result that we proved earlier, the solution of the heat equation must be given by (22).

Since η and ξ are solutions of the heat equation with a standard Dirichlet boundary condition, the classical theory of the heat equation [1 gives the following regularity estimates:

$$
\begin{equation*}
\|\eta\|_{H^{s}(\Omega)} \leq C\left\|\eta_{0}\right\|_{H^{s}(\Omega)}, \quad\|\xi(\mathbf{x})\|_{H^{s}\left(\Omega_{\mathbf{x}}\right)} \leq C e^{\nu \gamma^{2} t}\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{H^{s}\left(\Omega_{\mathrm{x}}\right)} \tag{23}
\end{equation*}
$$

Recall that $\left.\eta_{z z}\right|_{\Gamma}=0$. Therefore, η_{z} also solves the heat equation with the same Dirichlet Robin boudary condition:

$$
\begin{align*}
& \left(\eta_{z}\right)_{t}=\nu \Delta \eta_{z}, \quad(\mathbf{x}, z) \in \Omega \tag{24}\\
& \left.\left(\eta_{z}\right)_{z}\right|_{\Gamma}=0,\left.\quad\left(\eta_{z}\right)\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\eta_{z}\right)\right|_{t=0}=\eta_{0 z}(\mathbf{x}, z) \tag{25}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left\|\eta_{z}\right\|_{H^{s}(\Omega)} \leq C\left\|\eta_{0 z}\right\|_{H^{s}(\Omega)} \tag{26}
\end{equation*}
$$

Putting all the above estimates for η, η_{z} and ξ together and using (22), we obtain the following estimate:

$$
\begin{align*}
\|\omega\|_{H^{s}(\Omega)} & =\left\|-\frac{1}{\gamma} \eta_{z}+\eta+\xi(\mathbf{x}, t) e^{-\gamma z}\right\|_{H^{s}(\Omega)} \\
& \leq \frac{1}{\gamma}\left\|\eta_{z}\right\|_{H^{s}(\Omega)}+\|\eta\|_{H^{s}(\Omega)}+\left\|\xi(\mathbf{x}, t) e^{-\gamma z}\right\|_{H^{s}(\Omega)} \\
& \leq C(\gamma, s)\left(\left\|\eta_{0 z}\right\|_{H^{s}(\Omega)}+\left\|\eta_{0}\right\|_{H^{s}(\Omega)}+e^{\nu \gamma^{2} t}\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{H^{s}\left(\Omega_{\mathbf{x}}\right)}\right) \tag{27}
\end{align*}
$$

It remains to bound $\left\|\eta_{0 z}\right\|_{H^{s}(\Omega)},\left\|\eta_{0}\right\|_{H^{s}(\Omega)}$ and $\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{H^{s}\left(\Omega_{\mathrm{x}}\right)}$ in terms of $\left\|\omega_{0}\right\|_{H^{s}(\Omega)}$. By solving the ODE (21) directly, we can express η in terms of ω_{0} explicitly

$$
\begin{equation*}
\eta_{0}(\mathbf{x}, z)=-\gamma e^{\gamma z} \int_{0}^{z} e^{-\gamma z^{\prime}} f\left(\mathbf{x}, z^{\prime}\right) d z^{\prime}=\gamma \int_{z}^{\infty} e^{-\gamma\left(z^{\prime}-z\right)} f\left(\mathbf{x}, z^{\prime}\right) d z^{\prime} \tag{28}
\end{equation*}
$$

where $f(\mathbf{x}, z)=\omega_{0}(\mathbf{x}, z)-\bar{\omega}_{0}(\mathbf{x}) e^{-\gamma z}$ and we have used the property that

$$
\int_{0}^{\infty} f(\mathbf{x}, z) e^{-\gamma z} d z=0
$$

By using integration by parts, we have

$$
\begin{equation*}
\eta_{0 z}(\mathbf{x}, z)=-\gamma f(\mathbf{x}, z)+\gamma^{2} \int_{z}^{\infty} e^{-\gamma\left(z^{\prime}-z\right)} f\left(\mathbf{x}, z^{\prime}\right) d z^{\prime}=\gamma \int_{z}^{\infty} e^{-\gamma\left(z^{\prime}-z\right)} f_{z^{\prime}}\left(\mathbf{x}, z^{\prime}\right) d z^{\prime} \tag{29}
\end{equation*}
$$

By induction we can show that for any $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \geq 0$

$$
\begin{equation*}
D^{\alpha} \eta_{0}=\gamma \int_{z}^{\infty} e^{-\gamma\left(z^{\prime}-z\right)} D^{\alpha} f\left(\mathbf{x}, z^{\prime}\right) d z^{\prime} \tag{30}
\end{equation*}
$$

Let $K(z)=\gamma e^{-\gamma z} \chi(z)$ and $\chi(z)$ be the characteristic function

$$
\chi(z)= \begin{cases}0, & z \leq 0 \tag{31}\\ 1, & z>0\end{cases}
$$

Then $D^{\alpha} \eta_{0}$ can be written in the following convolution form:

$$
\begin{equation*}
D^{\alpha} \eta_{0}(\mathbf{x}, z)=\int_{0}^{\infty} K\left(z^{\prime}-z\right) D^{\alpha} f\left(\mathbf{x}, z^{\prime}\right) d z^{\prime} \tag{32}
\end{equation*}
$$

Using Young's inequality (see e.g. page 232 of [2]), we obtain:

$$
\begin{align*}
\left\|D^{\alpha} \eta_{0}\right\|_{L^{2}(\Omega)} & \leq\|K(z)\|_{L^{1}\left(\mathbb{R}^{+}\right)}\left\|D^{\alpha} f\right\|_{L^{2}(\Omega)} \\
& \leq C(\gamma)\left\|D^{\alpha} \omega_{0}-(-\gamma)^{\alpha_{3}} e^{-\gamma z} D^{\left(\alpha_{1}, \alpha_{2}\right)} \bar{\omega}_{0}(\mathbf{x})\right\|_{L^{2}(\Omega)} \\
& \leq C(\gamma, \alpha)\left(\left\|D^{\alpha} \omega_{0}\right\|_{L^{2}(\Omega)}+\left\|D^{\left(\alpha_{1}, \alpha_{2}\right)} \bar{\omega}_{0}(\mathbf{x})\right\|_{L^{2}\left(\Omega_{\mathbf{x}}\right)}\right) \tag{33}
\end{align*}
$$

Moreover, we obtain by using the Hölder inequality that

$$
\begin{align*}
\left\|D^{\left(\alpha_{1}, \alpha_{2}\right)} \bar{\omega}_{0}(\mathbf{x})\right\|_{L^{2}\left(\Omega_{\mathrm{x}}\right)} & =\left(\int_{\Omega_{\mathbf{x}}}\left(\int_{0}^{\infty} e^{-\gamma z} D^{\left(\alpha_{1}, \alpha_{2}\right)} \omega_{0}(\mathbf{x}, z) d z\right)^{2} d \mathbf{x}\right)^{1 / 2} \\
& \leq\left(\frac{1}{2 \gamma} \int_{\Omega_{\mathrm{x}}} \int_{0}^{\infty}\left(D^{\left(\alpha_{1}, \alpha_{2}\right)} \omega_{0}(\mathbf{x}, z)\right)^{2} d z d \mathbf{x}\right)^{1 / 2} \\
& =\frac{1}{\sqrt{2 \gamma}}\left\|D^{\left(\alpha_{1}, \alpha_{2}\right)} \omega_{0}(\mathbf{x}, z)\right\|_{L^{2}(\Omega)} \tag{34}
\end{align*}
$$

Substituting (34) to (33) yields

$$
\begin{equation*}
\left\|D^{\alpha} \eta_{0}\right\|_{L^{2}(\Omega)} \leq C(\gamma, \alpha)\left(\left\|D^{\alpha} \omega_{0}\right\|_{L^{2}(\Omega)}+\left\|D^{\left(\alpha_{1}, \alpha_{2}\right)} \omega_{0}\right\|_{L^{2}(\Omega)}\right) \tag{35}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left\|\eta_{0}\right\|_{H^{s}(\Omega)} \leq C(\gamma, s)\left\|\omega_{0}\right\|_{H^{s}(\Omega)}, \quad \forall s \geq 0 \tag{36}
\end{equation*}
$$

It follows from (34) that

$$
\begin{equation*}
\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{H^{s}\left(\Omega_{\mathrm{x}}\right)} \leq C(\gamma)\left\|\omega_{0}\right\|_{H^{s}(\Omega)}, \quad \forall s \geq 0 \tag{37}
\end{equation*}
$$

On the other hand, we obtain from the equation for η_{0} (21) that

$$
\begin{equation*}
\left\|\eta_{0 z}\right\|_{H^{s}(\Omega)}=\gamma\left\|f+\eta_{0}\right\|_{H^{s}(\Omega)} \leq C(\gamma, s)\left\|\omega_{0}\right\|_{H^{s}(\Omega)}, \quad \forall s \geq 0 . \tag{38}
\end{equation*}
$$

Upon substituting (36)-(38) to (27), we obtain

$$
\begin{equation*}
\|\omega\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2} t}\left\|\omega_{0}\right\|_{H^{s}(\Omega)} \tag{39}
\end{equation*}
$$

where $C(\gamma, s)$ is a constant depending on γ and s only. This proves (12).
To prove (13), we use the classical regularity result for the heat equation with the homogeneous Dirichlet boundary condition to obtain the following estimates for $t>0$:

$$
\begin{align*}
& \|\eta\|_{H^{s}(\Omega)} \leq C(t)\left\|\eta_{0}\right\|_{L^{2}(\Omega)} \tag{40}\\
& \left\|\eta_{z}\right\|_{H^{s}(\Omega)} \leq C(s, t)\left\|\eta_{0 z}\right\|_{L^{2}(\Omega)} \tag{41}\\
& \|\bar{\omega}(\mathbf{x})\|_{H^{s}\left(\Omega_{\mathrm{x}}\right)} \leq C(s, t) e^{\nu \gamma^{2} t}\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{L^{2}\left(\Omega_{\mathrm{x}}\right)} \tag{42}
\end{align*}
$$

where $C(s, t)$ is a constant depending on s and t. By combining (40)-(42) with estimates (36)-(38), we obtain for any $t>0$ that

$$
\begin{align*}
\|\omega\|_{H^{s}(\Omega)} & \leq C(\gamma, s, t)\left(\left\|\eta_{0 z}\right\|_{L^{2}(\Omega)}+\left\|\eta_{0}\right\|_{L^{2}(\Omega)}+e^{\nu \gamma^{2} t}\left\|\bar{\omega}_{0}(\mathbf{x})\right\|_{L^{2}\left(\Omega_{\mathrm{x}}\right)}\right) \\
& \leq C(\gamma, s, t)\left\|\omega_{0}\right\|_{L^{2}(\Omega)}, \tag{43}
\end{align*}
$$

where $C(\gamma, s, t)<\infty$ is a constant depending on γ, s and t. This proves (13) and completes the proof of the Lemma.

We also need the following well-known Sobolev inequality [3].
Lemma 2.3 Let $u, v \in H^{s}(\Omega)$ with $s>3 / 2$. We have

$$
\begin{equation*}
\|u v\|_{H^{s}(\Omega)} \leq c\|u\|_{H^{s}(\Omega)}\|v\|_{H^{s}(\Omega)} . \tag{44}
\end{equation*}
$$

Now, we are ready to give the proof of Theorem 2.1,
Proof of Theorem 2.1 Let $v=u^{2}$. First, using the definition of the operator \mathcal{K} (see Definition(2.1), we can rewrite the 3D model with partial viscosity in the following equivalent form:

$$
\left\{\begin{array}{rl}
v_{t} & =4 v \mathcal{K}(\omega)_{z} \tag{45}\\
\omega_{t} & =v_{z}+\nu \Delta \omega
\end{array}, \quad(\mathbf{x}, z) \in \Omega=\Omega_{\mathbf{x}} \times(0, \infty)\right.
$$

with the initial and boundary conditions given as follows:

$$
\begin{align*}
& \left.\omega\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=0 \tag{46}\\
& \left.\omega\right|_{t=0}=\omega_{0}(\mathbf{x}, z) \in W^{s},\left.\quad v\right|_{t=0}=v_{0}(\mathbf{x}, z) \in V^{s+1} \tag{47}
\end{align*}
$$

where $V^{s+1}=\left\{v \in H^{s+1}:\left.v\right|_{\partial \Omega}=0,\left.v_{z}\right|_{\partial \Omega}=0,\left.v_{z z}\right|_{\partial \Omega}=0\right\}$ and $W^{s}=\left\{w \in H^{s}:\left.w\right|_{\partial \Omega \backslash \Gamma}=\right.$ $\left.0,\left.\left(w_{z}+\gamma w\right)\right|_{\Gamma}=0\right\}$.

We note that the condition $\left.u_{0}\right|_{\partial \Omega}=\left.u_{0 z}\right|_{\partial \Omega}=0$ implies that $\left.v_{0}\right|_{\partial \Omega}=\left.v_{0 z}\right|_{\partial \Omega}=\left.v_{0 z z}\right|_{\partial \Omega}=0$ by using the relation $v_{0}=u_{0}^{2}$. Thus we have $v_{0} \in V^{s+1}$. It is easy to show by using the u-equation that the property $\left.u_{0}\right|_{\partial \Omega}=\left.u_{0 z}\right|_{\partial \Omega}=0$ is preserved dynamically. Thus we have $v \in V^{s+1}$.

Define $U=\left(U_{1}, U_{2}\right)=(v, \omega)$ and $X=C\left([0, T] ; V^{s+1}\right) \times C\left([0, T] ; W^{s}\right)$ with the norm

$$
\|U\|_{X}=\sup _{t \in[0, T]}\left\|U_{1}\right\|_{H^{s+1}(\Omega)}+\sup _{t \in[0, T]}\left\|U_{2}\right\|_{H^{s}(\Omega)}, \quad \forall U \in X
$$

and let $S=\left\{U \in X:\|U\|_{X} \leq M\right\}$.
Now, define the map $\Phi: X \rightarrow X$ in the following way: let $\Phi(\tilde{v}, \tilde{\omega})=(v, \omega)$, then for any $t \in[0, T]$,

$$
\begin{align*}
v(\mathbf{x}, z, t) & =v_{0}(\mathbf{x}, z, t)+4 \int_{0}^{t} \tilde{v}\left(\mathbf{x}, z, t^{\prime}\right) \mathcal{K}(\tilde{\omega})_{z}\left(\mathbf{x}, z, t^{\prime}\right) d t^{\prime} \tag{48}\\
\omega(\mathbf{x}, z, t) & =\mathcal{L}\left(\tilde{v}_{z}, \omega_{0} ; \mathbf{x}, z, t\right) \tag{49}
\end{align*}
$$

where $\omega(\mathbf{x}, z, t)=\mathcal{L}\left(\tilde{v}_{z}, \omega_{0} ; \mathbf{x}, z, t\right)$ is the solution of the following equation:

$$
\begin{equation*}
\omega_{t}=\tilde{v}_{z}+\nu \Delta \omega, \quad(\mathbf{x}, z) \in \Omega=\Omega_{\mathbf{x}} \times(0, \infty) \tag{50}
\end{equation*}
$$

with the initial and boundary conditions:

$$
\left.\omega\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=0,\left.\quad \omega\right|_{t=0}=\omega_{0}(\mathbf{x}, z)
$$

We use the map Φ to define a Picard iteration: $U^{k+1}=\Phi\left(U^{k}\right)$ with $U^{0}=\left(v_{0}, \omega_{0}\right)$. In the following, we will prove that there exist $T>0$ and $M>0$ such that

1. $U^{k} \in S, \quad$ for all k.
2. $\left\|U^{k+1}-U^{k}\right\|_{X} \leq \frac{1}{2}\left\|U^{k}-U^{k-1}\right\|_{X}$, for all k.

Then by the contraction mapping theorem, there exists $U=(v, \omega) \in S$ such that $\Phi(U)=U$ which implies that U is a local solution of the system (45) in X.

First, by Duhamel's principle, we have for any $g \in C\left([0, T] ; V^{s}\right)$ that

$$
\begin{equation*}
\mathcal{L}\left(g, \omega_{0} ; \mathbf{x}, z, t\right)=\mathcal{P}\left(\omega_{0} ; 0, t\right)+\int_{0}^{t} \mathcal{P}\left(g ; t^{\prime}, t\right) d t^{\prime}, \tag{51}
\end{equation*}
$$

where $\mathcal{P}\left(g ; t^{\prime}, t\right)=\tilde{g}(\mathbf{x}, z, t)$ is defined as the solution of the following initial boundary value problem at time t :

$$
\begin{equation*}
\tilde{g}_{t}=\nu \Delta \tilde{g}, \quad(\mathbf{x}, z) \in \Omega=\Omega_{\mathbf{x}} \times(0, \infty) \tag{52}
\end{equation*}
$$

with the initial and boundary conditions:

$$
\begin{equation*}
\left.\tilde{g}\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\tilde{g}_{z}+\gamma \tilde{g}\right)\right|_{\Gamma}=0, \quad \tilde{g}\left(\mathbf{x}, z, t^{\prime}\right)=g\left(\mathbf{x}, z, t^{\prime}\right) \tag{53}
\end{equation*}
$$

We observe that $g\left(\mathbf{x}, z, t^{\prime}\right)$ also satisfies the same boundary condition as ω for any $0 \leq t^{\prime} \leq t$ since $g=v_{z}^{k}$ and $v^{k} \in V^{s+1}$.

Now we can apply Lemma 2.2 to conclude that for any $t^{\prime}<T$ and $t \in\left[t^{\prime}, T\right]$ we have

$$
\begin{equation*}
\left\|\mathcal{P}\left(g ; t^{\prime}, t\right)\right\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2}\left(t-t^{\prime}\right)}\left\|g\left(\mathbf{x}, z, t^{\prime}\right)\right\|_{H^{s}(\Omega)} \tag{54}
\end{equation*}
$$

which implies the following estimate for \mathcal{L} : for all $t \in[0, T]$,

$$
\begin{equation*}
\left\|\mathcal{L}\left(g, \omega_{0} ; \mathbf{x}, z, t\right)\right\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2} t}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+t \sup _{t^{\prime} \in[0, t]}\left\|g\left(\mathbf{x}, z, t^{\prime}\right)\right\|_{H^{s}(\Omega)}\right) \tag{55}
\end{equation*}
$$

Further, by using Lemma 2.1 and the above estimate (55) for the sequence $U^{k}=\left(v^{k}, \omega^{k}\right)$, we get the following estimate:

$$
\begin{align*}
\left\|v^{k+1}\right\|_{H^{s+1}(\Omega)} & \leq\left\|v_{0}\right\|_{H^{s+1}(\Omega)}+4 T \sup _{t \in[0, T]}\left\|v^{k}(\mathbf{x}, z, t)\right\|_{H^{s+1}(\Omega)} \sup _{t \in[0, T]}\left\|\mathcal{K}\left(\omega^{k}\right)_{z}(\mathbf{x}, z, t)\right\|_{H^{s+1}(\Omega)} \\
& \leq\left\|v_{0}\right\|_{H^{s+1}(\Omega)}+4 T \sup _{t \in[0, T]}\left\|v^{k}(\mathbf{x}, z, t)\right\|_{H^{s+1}(\Omega)} \sup _{t \in[0, T]}\left\|\omega^{k}(\mathbf{x}, z, t)\right\|_{H^{s}(\Omega)}, \forall t \in[0, T] \tag{56}\\
\left\|\omega^{k+1}\right\|_{H^{s}(\Omega)} & \leq C(\gamma, s) e^{\nu \gamma^{2} t}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+t \sup _{\left.t^{\prime} \in[0, t]\right]}\left\|v_{z}^{k}\left(\mathbf{x}, z, t^{\prime}\right)\right\|_{H^{s}(\Omega)}\right) \\
& \leq C(\gamma, s) e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+T \sup _{t \in[0, T]}\left\|v^{k}\right\|_{H^{s+1}(\Omega)}\right), \quad \forall t \in[0, T] . \tag{57}
\end{align*}
$$

Next, we will use mathematical induction to prove that if T satisfies the following inequality:

$$
\begin{equation*}
8 C(\gamma, s) T e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2 T\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right) \leq 1 \tag{58}
\end{equation*}
$$

then for all $k \geq 0$ and $t \in[0, T]$, we have that

$$
\begin{align*}
& \left\|v^{k}\right\|_{H^{s+1}(\Omega)} \leq 2\left\|v_{0}\right\|_{H^{s+1}(\Omega)} \tag{59}\\
& \left\|\omega^{k}\right\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2 T\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right) . \tag{60}
\end{align*}
$$

First of all, $U^{0}=\left(v_{0}, \omega_{0}\right)$ satisfies (59) and (60). Assume $U^{k}=\left(v^{k}, \omega^{k}\right)$ has this property, then for $U^{k+1}=\left(v^{k+1}, \omega^{k+1}\right)$, using (56) and (57), we have

$$
\begin{align*}
\left\|v^{k+1}\right\|_{H^{s+1}(\Omega)} & \leq\left\|v_{0}\right\|_{H^{s+1}(\Omega)}+4 T \sup _{t \in[0, T]}\left\|v^{k}(\mathbf{x}, z, t)\right\|_{H^{s+1}(\Omega)} \sup _{t \in[0, T]}\left\|\omega^{k}(\mathbf{x}, z, t)\right\|_{H^{s}(\Omega)} \\
& \leq\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\left(1+8 C(\gamma, s) T e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2 T\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right)\right) \\
& \leq 2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}, \quad \forall t \in[0, T] . \tag{61}\\
\left\|\omega^{k+1}\right\|_{H^{s}(\Omega)} & \leq C(\gamma, s) e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+T \sup _{t \in[0, T]}\left\|v^{k}\right\|_{H^{s+1}(\Omega)}\right) \\
& \leq C(\gamma, s) e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2 T\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right), \quad \forall t \in[0, T] . \tag{62}
\end{align*}
$$

Then, by induction, we prove that for any $k \geq 0, U^{k}=\left(v^{k}, \omega^{k}\right)$ is bounded by (59) and (60).

We want to point that there exists $T>0$ such that the inequality (58) is satisfied. One choice of T is given as following:

$$
\begin{equation*}
T_{1}=\min \left\{\left[8 C(\gamma, s) e^{\nu \gamma^{2}}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right)\right]^{-1}, 1\right\} \tag{63}
\end{equation*}
$$

Using the choice of T in (63), we can choose $M=2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}+C(\gamma, s) e^{\nu \gamma^{2}}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right)$, then we have $U^{k} \in S$, for all k.

Next, we will prove that Φ is a contraction mapping for some small $0<T \leq T_{1}$.
First of all, by using Lemmas 2.1 and 2.3, we have

$$
\begin{align*}
\left\|v^{k+1}-v^{k}\right\|_{H^{s+1}(\Omega)}= & \left\|\int_{0}^{t} v^{k}\left(\mathbf{x}, t^{\prime}\right) \mathcal{K}\left(\omega^{k}\right)_{z}\left(\mathbf{x}, t^{\prime}\right) d t^{\prime}-\int_{0}^{t} v^{k-1}\left(\mathbf{x}, t^{\prime}\right) \mathcal{K}\left(\omega^{k-1}\right)_{z}\left(\mathbf{x}, t^{\prime}\right) d t^{\prime}\right\|_{H^{s+1}(\Omega)} \\
\leq & \left\|\int_{0}^{t}\left(v^{k}-v^{k-1}\right)\left(\mathbf{x}, t^{\prime}\right) \mathcal{K}\left(\omega^{k}\right)_{z}\left(\mathbf{x}, t^{\prime}\right) d t^{\prime}\right\|_{H^{s+1}(\Omega)} \\
& +\left\|\int_{0}^{t} v^{k-1}\left(\mathbf{x}, t^{\prime}\right)\left(\mathcal{K}\left(\omega^{k}\right)_{z}-\mathcal{K}\left(\omega^{k-1}\right)_{z}\right)\left(\mathbf{x}, t^{\prime}\right) d t^{\prime}\right\|_{H^{s+1}(\Omega)} \\
\leq & T \sup _{t \in[0, T]}\left\|v^{k}-v^{k-1}\right\|_{H^{s+1}(\Omega)} \sup _{t \in[0, T]}\left\|\mathcal{K}\left(\omega^{k}\right)_{z}\right\|_{H^{s+1}(\Omega)} \\
& +T \sup _{t \in[0, T]}\left\|v^{k-1}\right\|_{H^{s+1}(\Omega)} \sup _{t \in[0, T]}\left\|\mathcal{K}\left(\omega^{k}-\omega^{k-1}\right)_{z}\right\|_{H^{s+1}(\Omega)} \\
\leq & M T\left(\sup _{t \in[0, T]}\left\|v^{k}-v^{k-1}\right\|_{H^{s+1}(\Omega)}+\sup _{t \in[0, T]}\left\|\omega^{k}-\omega^{k-1}\right\|_{H^{s}(\Omega)}\right) \tag{64}
\end{align*}
$$

On the other hand, Lemma 2.2 and (51) imply

$$
\begin{align*}
\left\|\omega^{k+1}-\omega^{k}\right\|_{H^{s}(\Omega)} & =\left\|\mathcal{L}\left(v_{z}^{k}, \omega_{0} ; \mathbf{x}, t\right)-\mathcal{L}\left(v_{z}^{k-1}, \omega_{0} ; \mathbf{x}, t\right)\right\|_{H^{s}(\Omega)} \\
& \leq\left\|\int_{0}^{t} \mathcal{P}\left(v_{z}^{k}-v_{z}^{k-1} ; t^{\prime}, t\right) d t^{\prime}\right\|_{H^{s}(\Omega)} \\
& \leq T C(\gamma, s) e^{\nu \gamma^{2} T} \sup _{t \in[0, T]}\left\|v_{z}^{k}-v_{z}^{k-1}\right\|_{H^{s}(\Omega)} \\
& \leq T C(\gamma, s) e^{\nu \gamma^{2} T} \sup _{t \in[0, T]}\left\|v^{k}-v^{k-1}\right\|_{H^{s+1}(\Omega)} . \tag{65}
\end{align*}
$$

Let

$$
\begin{equation*}
T=\min \left\{\left[8 C(\gamma, s) e^{\nu \gamma^{2}}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right)\right]^{-1},\left[2 C(\gamma, s) e^{\nu \gamma^{2}}\right]^{-1}, \frac{1}{2 M}, 1\right\} . \tag{66}
\end{equation*}
$$

Then, we have

$$
\left\|U^{k+1}-U^{k}\right\|_{X} \leq \frac{1}{2}\left\|U^{k}-U^{k-1}\right\|_{X}
$$

This proves that the sequence U^{k} converges to a fixed point of the map $\Phi: X \rightarrow X$, and the limiting fixed point $U=(v, \omega)$ is a solution of the 3D model with partial viscosity. Moreover, by passing the limit in (59)-(60), we obtain the following a priori estimate for the solution v and ω :

$$
\begin{align*}
& \|v\|_{H^{s+1}(\Omega)} \leq 2\left\|v_{0}\right\|_{H^{s+1}(\Omega)}, \tag{67}\\
& \|\omega\|_{H^{s}(\Omega)} \leq C(\gamma, s) e^{\nu \gamma^{2} T}\left(\left\|\omega_{0}\right\|_{H^{s}(\Omega)}+2 T\left\|v_{0}\right\|_{H^{s+1}(\Omega)}\right), \tag{68}
\end{align*}
$$

for $0 \leq t \leq T$ with T defined in (66).
It remains to show that the smooth solution of the 3D model with partial viscosity is unique. Let $\left(v_{1}, \omega_{1}\right)$ and $\left(v_{2}, \omega_{2}\right)$ be two smooth solutions of the 3 D model with the same initial data and satisfying $\left\|v_{i}\right\|_{H^{s+1}(\Omega)} \leq M$ and $\left\|\omega_{i}\right\|_{H^{s}(\Omega)} \leq M$ for $i=1,2$ and $0 \leq t \leq T$, where M is a positive constant depending on the initial data, γ, s, and T. Since $s>3 / 2$, the Sobolev embedding theorem [1] implies that

$$
\begin{align*}
& \left\|v_{i}\right\|_{L^{\infty}(\Omega)} \leq\left\|v_{i}\right\|_{H^{s+1}(\Omega)} \leq M, \quad i=1,2, \tag{69}\\
& \left\|\mathcal{K}\left(\omega_{i}\right)_{z}\right\|_{L^{\infty}(\Omega)} \leq\left\|\mathcal{K}\left(\omega_{i}\right)_{z}\right\|_{H^{s}(\Omega)} \leq C_{s}\left\|\omega_{i}\right\|_{H^{s}(\Omega)} \leq C_{s} M, \quad i=1,2 . \tag{70}
\end{align*}
$$

Let $v=v_{1}-v_{2}$ and $\omega=\omega_{1}-\omega_{2}$. Then (v, ω) satisfies

$$
\left\{\begin{array}{l}
v_{t}=4 v \mathcal{K}\left(\omega_{1}\right)_{z}+4 v_{2} \mathcal{K}(\omega)_{z} \tag{71}\\
\omega_{t}=v_{z}+\nu \Delta \omega
\end{array}, \quad(\mathbf{x}, z) \in \Omega=\Omega_{\mathbf{x}} \times(0, \infty),\right.
$$

with $\left.\omega\right|_{\partial \Omega \backslash \Gamma}=0,\left.\quad\left(\omega_{z}+\gamma \omega\right)\right|_{\Gamma}=0$, and $\left.\omega\right|_{t=0}=0,\left.v\right|_{t=0}=0$. By using (69) $-(70)$, and proceeding as the uniqueness estimate for the heat equation in (14), we can derive the following estimate for v and ω :

$$
\begin{align*}
& \frac{d}{d t}\|v\|_{L^{2}(\Omega)}^{2} \leq C_{1}\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\omega\|_{L^{2}(\Omega)}^{2}\right) \tag{72}\\
& \frac{d}{d t}\|\omega\|_{L^{2}(\Omega)}^{2} \leq C_{3}\left(\|v\|_{L^{2}(\Omega)}^{2}+\|\omega\|_{L^{2}(\Omega)}^{2}\right) \tag{73}
\end{align*}
$$

where $C_{i}(i=1,2,3)$ are positive constants depending on M, ν, γ, C_{s}. In obtaining the estimate for (731), we have performed integration by parts in the estimate of the v_{z}-term in the ω-equation and absorbing the contribution from ω_{z} by the diffusion term. There is no contribution from the boundary term since $\left.v\right|_{z=0}=0$. We have also used the property $\left\|\mathcal{K}(\omega)_{z}\right\|_{L^{2}(\Omega)} \leq C_{s}\|\omega\|_{L^{2}(\Omega)}$, which can be proved directly by following the argument in the Appendix of [5]. Since $v_{0}=0$ and $\omega_{0}=0$, the Gronwall inequality implies that $\|v\|_{L^{2}(\Omega)}=\|\omega\|_{L^{2}(\Omega)}=0$ for $0 \leq t \leq T$. Furthermore, since $v \in H^{s+1}$ and $\omega \in H^{s}$ with $s>3 / 2, v$ and ω are continuous. Thus we must have $v=\omega=0$ for $0 \leq t \leq T$. This proves the uniqueness of the smooth solution for the 3D model.

References

[1] L. C. Evans, Partial Differential Equations, American Mathematical Society Publ., 1998.
[2] G. B. Foland, Real Analysis - Modern Techniques and Their Applications, WileyInterscience Publ., Wiley and Sons, Inc., 1984.
[3] G. B. Foland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N.J., 1995.
[4] T. Y. Hou and Z. Lei, On the stabilizing effect of convection in 3D incompressible Flows, Comm. Pure Appl. Math. 62 (2009), no. 4, 501-564.
[5] T. Y. Hou, Z. Shi and S. Wang, On Singularity Formation of a 3D Model for Incompressible Navier-Stokes Equations, submitted to Adv. Math., 2011.
[6] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.

[^0]: *Applied and Comput. Math, Caltech, Pasadena, CA 91125. Email: hou@acm.caltech.edu.
 ${ }^{\dagger}$ Applied and Comput. Math, Caltech, Pasadena, CA 91125. Email: shi@acm.caltech.edu.
 ${ }^{\ddagger}$ College of Applied Sciences, Beijing University of Technology, Beijing 100124, China. Email: wangshu@bjut.edu.cn

