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I explain a simple definition of causality in widespread use, and indicate how it links to the
Kramers Kronig relations. The specification of causality in terms of temporal differential eqations
then shows us the way to write down dynamical models so that their causal nature in the sense used
here should be obvious to all. In particular, I apply this reasoning to Maxwell’s equations, which is
an instructive example since their casual properties are sometimes debated.

I. INTRODUCTION

Causality is a basic concept in physics - so basic, in
fact, that it is hard to conceive of a useful model in
which effects do not have causes. Indeed, the whole point
of a physical model could be said to describe the pro-
cess of cause and effect in some particular situation. But
what do we generally mean by word like “causality”, and
phrases such as “cause and effect”? Usually, we mean
that the cause of any event must not be later than any
of its effects. But even such simple-sounding statements
are rarely as uncomplicated as they seem: when trying
to clarify the details and built-in assumptions, it is easily
possible to get into philosophical discussions [1, 2], issues
regarding statistical inference and induction [3], or par-
ticular physical arguments [4]. Here I instead follow the
physics tradition characterized by Mermin as “shut up
and calculate” [5]. But what should we calculate, and
how?

A good starting point uses the fact that I can test
whether some effect R occurs after its cause Q by means
of a mathematical step function h(t) which has h(t) = 0
for t < 0, and h(t) = 1 for t ≥ 0. The definition of causal-
ity applied by this temporal step function is the same as
that enforced by the famous Kramers Kronig relations
[6, 7] that apply to spectral quantities. Therefore I call
the step-like causality discussed here “KK causality”, to
distinguish it from any alternative definitions.

This step function is fine for analysing causal relation-
ships present in existing data or mathematical functions,
but it does not specify causal relationships. To do this
we need to use temporal differential equations, which can
then of themselves generate the step function criteria.
Note that common expressions such as F = ma do not
express a causal relationship in the sense used here. Al-
though an equation such as F = ma does tie together the
force F and acceleration a, there is no means of telling
whether F is supposed to cause a, or a cause F , or even
if the equation is instead intended as a constraint of some
kind.

Differential equations containing temporal derivatives
are useful because they are open-ended specifications for
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the future behaviour. They require only a knowledge of
initial conditions and the on-going behaviour of the en-
vironment to solve. This is why they can be regarded as
being causal, while (e.g.) F = ma is not. After discussing
the role of differential equations in section II, I consider
causality in the spectral domain in section III, present
a simple example in section IV, and consider Maxwell’s
Equations in section V. After a discussion in section VI,
I summarize in section VII.
The presentation introduces at an undergraduate level

the basic ideas and constraints arising from considera-
tions of causality, with specific reference to the construc-
tion of causal models, as opposed to the philosophical,
statistical, or more abstract technical aspects of casual-
ity. Further, I address only purely temporal causality,
and not spacetime causality which also allows for the ef-
fect of the finite speed of light.

II. CAUSAL DIFFERENTIAL EQUATIONS

Let us first write down a simple model, where some
system R responds to its environment Q. Here R can
be any quantity – e.g. a position or velocity, a level of
excitation of some system, and even – if a position r is
also specified – a probability distribution or wave func-
tion. Likewise Q might be anything, depending on some
pre-set behaviour, the behaviour of R or other systems,
or (e.g.) spatial derivatives of fields, potentials, distri-
butions, and so on. Whatever the specific meaning of R
(or indeed of Q), if keeping things simple we would most
likely start by writing something like

∂tR(t) = Q(t), (1)

where ∂t is just the time derivative d/dt. To deter-
mine how causal this model equation is, consider the case
where the environment generates a cause in the form of
a brief delta-function impulse, i.e. Q(t) = Q0δ(t − t0).
Reassuringly, if I integrate eqn. (1), then R(t) will gain
a step at t0 – i.e. the effect of the impulsive Q is to cause
R to increase discontinuously by Q0 at t0; as depicted
on fig. 1. Thus we see how the step function h(t) arises
quite simply from the most basic temporal differential
equation.
I describe this situation, where an impulse gives rise

to a stepped response (as opposed to e.g. a ramp or
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FIG. 1: An impulse Q at a time t0 causes an effect (a step-
change in value) on R as a result of the causal model specified
in eqn. (1).

some smoother response) as “barely causal”. That is, it
is causal by the terms of our definition, but it is (in a
sense) on the edge of allowed causal behaviour: a finite-
valued effect is simultaneous with the cause – albeit only
an infinitesimal slice. Nevertheless, having part of the ef-
fect being simultaneous with the cause is not usually re-
garded as indicating a problem with the casuality of the
model. Other model equations, such as those for a sim-
ple damped pendulumn, or the Drude model or Lorentz
oscillator used in electromagnetism [8], are more compli-
cated and contain higher-order time derivatives – and can
therefore be regarded as being more comfortably causal.
Simple examples from kinematics can illustrate the

meaning of “causal” as used here. If we were to write
down ∂tx = v, then we could make the statement that
“velocity v causes a change in position x”; likewise
∂tv = a means that “acceleration a causes a change in
velocity v”; and ∂2

t x = a means “acceleration a causes
changes in position x”.
More general differential equations can be written

down as weighted sums of different orders of time deriva-
tives e.g.

N
∑

n=0

Tn∂
n
t R(t) =

N−1
∑

m=0

am∂m
t Q(t), (2)

for parameters Tn, am, and a defined maximum order
of derivatives N . These will remain KK causal as long
as the derivatives on the RHS are always of lower order
than those on the LHS [9].
We might consider recasting the differential equations

used here in an integral form; e.g. for an evolution start-
ing at a time ti, eqn. (1) becomes

R(t) =

∫ t

ti

Q(t′)dt′, (3)

although in most cases this is not as easy as writing down
the differential equation. Also, as discussed next, differ-
ential equations make it easier to consider the spectral

properties. And on a more intuitive note, writing down
a differential equation does not imply you have solved it
– it is a notation more compatible with the concept of an
unknown future outcome, dependent on as-yet unknown
future causes.

III. CAUSALITY AND SPECTRA

Often, the more complicated a model response is, the
more likely it is that its spectral response will be analyzed
in the frequency domain. That is, we take a known func-
tion of time S(t) and use the well known Fourier trans-

form (FT) [10, 11] to convert it into a spectrum S̃(ω).
Although it is quite common to write down (or use) two
complementary forms, i.e. the sin and cosine Fourier
transforms, it is most convenient to combine them using
e−ıωt = cos(ωt) + ı sin(ωt). This gives us the complex
valued FT

S̃(ω) =
1√
2π

∫ +∞

−∞

S(t)e−ıωtdt. (4)

Note that even for real-valued S(t), the spectrum S̃(ω)
can be complex valued. Since if S(t) is consistent with

casuality, then its spectrum S̃(ω) must also be so, and
this insistence that measured spectral data must be con-
sistent with causality can be of considerable use [12]. So
useful, in fact, that even quite long articles on causality
and dispersion [13] can get away without any discussion
of time-domain dynamics at all!
Let us therefore take our simple eqn. (1) and Fourier

transform it from the time domain into the frequency
domain. Since ∂tA(t) transforms to −ıωÃ(ω), we get

−ıωR̃(ω) = Q̃(ω) (5)

=⇒ R̃(ω) = +ı
Q̃(ω)

ω
. (6)

If Q(t) is a delta function impulse, then spectrally this
gives Q(ω) = Q0, since the Fourier transform of a delta
function is a constant, so that

R̃(ω) = +ı
Q0

ω
. (7)

Since we already know that the solution for R contains
a step at t0, then we now also know (and can check) that
the Fourier transform of a step function is proportional
to 1/ω.
An important and useful was of checking and /or en-

forcing causality on spectral data or spectral models are
the Kramers Kronig (KK) relations [6, 7, 12]. Derivations
of KK relations tend to be complicated, but if we leave
the technical details aside, their construction is based on
two concepts:

1. The Hilbert transform [11, 14], is a transform based
on the step function h(t). This step h(t) establishes

2
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FIG. 2: A historical record S(t) taken at a time t0 can only
contain data prior to that time.

or enforces the one sided nature of effects that are
generated causally:

(a) A cause at t = t0 can only have effects R(t)
that appear for times t ≥ t0, so that multiplying
by h(t− t0) has no effect, i.e. R(t) = R(t)h(t− t0),
as on fig. 1.

(b) A linear response function u(t) = u(t)h(t),
where R(t) =

∫

∞

0
u(t − t′)Q(t)dt′ only depends on

past values of Q(t).

(c) A change of sign to h(−t) allows us to assert
that any historical record S(t) at a time t0 must
only contain data on the past (t ≤ t0), i.e. S(t) =
S(t)h(t0 − t), as on fig. 2.

2. The Fourier transform is a transform based on the
exponential e−ıωt (see eqn. (4)). It is widely used
to re-represent a time history S(t), response R(t),
or response function u(t) in a spectral form. This
requires that the Fourier transforms of S, R, or
u are well behaved enough to exist, which usually
requires them to be normalizable and to vanishes
fast enough as ω → ∞.

The Hilbert and Fourier transforms combine to
turn time-domain “step” restrictions on the real-valued
X(t) ∈ {R, u, S} into spectral constraints on the com-

plex X̃(ω). Following a well known theorem of Titch-
marsh [12, 15], which enables us to state that for some
causal (i.e. step-like) function X(t) which depends only
on the past (i.e. t < 0), the real and imaginary parts of
its frequency spectrum are connected by

X̃(ω) =
σ

ıπ
P

∫ +∞

−∞

X̃(ω′)

ω′ − ω
dω′. (8)

Eqn. (8) is a compact (re)statement of the KK relations,
with the factor ı in the prefactor serving to cross-link
the real and imaginary parts of X̃; the parameter σ =
±1 allows us to swap the preferred direction for “the
past”; with the operator P taking the principal part [16]
of the integral1. This eqn. (8) thus informs us as to the

1 I.e., the value corresponding to that we would get for the integral

if those points at which the integrand diverges were skipped.

spectral effect of temporal causality. However, it is not
necessary to understand the mathematics it relies on –
integral transforms and (complex) contour integration –
in order to appreciate what it tells us.
What the KK relations tell us is that local proper-

ties are tied to global ones, as noted later on fig. 4. If
X̃(ω) represents a response function, then the KK rela-
tion can be said to link the global dispersive properties
(Re[X̃(ω′)]) to losses at a specific frequency (Im[X̃(ω)]);

as well as to link global loss properties (Im[X̃(ω′)]) to the

response at a specific frequency (Re[X̃(ω)]). More gen-
erally, any effect requiring complicated behaviour for the
real part of the spectra (usually described as “disper-
sion”) usually has an associated imaginary component,
which for passive systems can usually be interpreted as
loss. This is the origin of commonly made (and not al-
ways true) statements along the lines of “dispersion re-
quires (or induces) loss” [17, 18].

IV. A DRIVEN, DAMPED OSCILLATOR

Let us now consider a causal response more compli-
cated than the simple case shown in eqn. (1). An ideal
example is that of a driven, damped oscillator such as
a mass on a spring [19, 20], whose temporal differential
equation matches that often used in electromagnetism to
model the Lorentz response in a dielectric medium [8].
For the mass on a spring, with a spring constant k, we
have a resonant frequency of ω0 =

√

k/m, and a friction
(or “loss”) parameter γ; likewise the Lorentz response
also has a resonant frequency and loss. Given these pa-
rameters, the displacement of the pendulumn bob x(t)
(or dielectric polarization P) could then be affected by
the driving force per unit mass F (t)/m (or electric field
E) according to equations of the form

∂2
t x(t) + γ∂tx(t) + ω2

0x(t) = F (t)/m, (9)

∂2
tP(t) + γ∂tP(t) + ω2

0P(t) = αE(t). (10)

Here a delta function impulse in force F (t) = p0δ(t)
does not induce an initial step change in position, but
in velocity ∂tx(t) ≃ p0/m; with the likewise initial re-
sponse of a linear (or ramp-like) change in position, with
x(t) ≃ tp0/m. In the same way, in an electromagnetic
Lorentz dielectric medium, an impulsive E(t) = j0δ(t)
gives rise to an initial step change in polarization current
∂tP(t) ≃ αj0, and a concomittant ramp/linear change in
polarization initially, i.e. P(t) ≃ αtj0. Fig. 3 shows some
typical oscillating (under-damped) time responses to an
impulsive driving force.
Both eqns. (9) and (10) are linear, so that the model

can also be expressed in terms of a response function
u(t) – e.g. for the dielectric, we would have that P(t) =
∫

∞

0
u(t′)E(t− t′)dt′. We can then Fourier transform this,

and when the transform of u(t) is denoted ũ(ω), we have

that P̃(ω) = ũ(ω)Ẽ(ω). Since the Fourier transform of

3
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FIG. 3: Typical temporal responses (e.g. either x(t) or P (t))
to an impulsive driving force. for a damped oscillator in the
underdamped (oscilliatory) regime. The initial ramp-like re-
sponse can be seen close to the vertical axis near t = 0.
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FIG. 4: A typical spectral response ũ(ω) for the damped
ocillator model. The solid line shows the real part of the
response, the dashed line the imaginary part. The real part
of the response at any point (e.g. A at ω ≃ 0.6) depends on
an integral of the imaginary part over all frequencies – i.e.
over the whole dashed line, ω′

∈ [0,∞]. Similarly, likewise
the imaginary part of the response at any point (e.g. B at
ω ≃ 1.4) depends on an integral of the real part over all
frequencies – i.e. over the whole solid line, ω′

∈ [0,∞].

eqn. (10) is

[

−ω2 − ıγω + ω2
0

]

P̃(ω) = αẼ(ω), (11)

the spectral response ũ(ω) is then easily obtained, being

ũ(ω) =
−α

ω2 − ω2
0 + ıγω

. (12)

We can see from eqn. (12) that the real part of ũ(ω),
which in electromagnetism relates to the refractive in-
dex n (squared) [21], has a frequency dependent varia-
tion with an explicit dependence on the loss parameter
γ. Likewise, the loss-like part of the response, i.e. the
imaginary part of ũ(ω), has an explicit dependence on
frequency.

V. MAXWELL’S EQUATIONS

The curl Maxwell’s equations control the behaviour of
the electric and electric displacement fields E(r, t) and
D(r, t), and the magnetic and magnetic induction fields
B(r, t) and H(r, t); and depend on a current density
J(r, t). They have single first order time derivatives as
per our simple causal model of eqn. (1), and are usually
written [8]

∇×H = +∂tD+ J, ∇×E = −∂tB, (13)

although here it is preferrable to write

∂tD = ∇×H− J, ∂tB = −∇×E. (14)

These otherwise independent pairs E,B and D,H [22]
are connected together by the constitutive relations in-
volving the dielectric polarization P and magnetization
M of the background medium, which are

D = ǫ0E+P, B = µ0H+M, (15)

and are subject to the constraint imposed by the diver-
gence Maxwell’s equations, which depend on the free elec-
tric charge density ρ(r, t) and the zero magnetic charge
density, and are

∇ ·D = ρ/ǫ0, ∇ ·B = 0. (16)

Perhaps surprisingly, the causal nature of Maxwell’s
equations remains a subject of debate (see e.g. [23, 24]).
Nevertheless, the curl Maxwell’s equations must be
causal in the “step” KK sense: eqns. (14) have the same
form as our simple causal model in eqn. (1); and the pres-
ence of the spatial curl operator on the RHS’s makes no
difference to the temporal causality, only to the details of
how H affects D, or E affects B. Take as a starting point
the case in vacuum, where P and M are both zero, so
that D = ǫ0E and B = µ0H. Then we can then rewrite
eqns. (14) solely in terms of any pair of electric-like (E
or D) and magnetic-like (H or B) fields; e.g.

ǫ0∂tE = ∇×H− J, µ0∂tH = −∇×E. (17)

These vacuum Maxwell’s equations are self-evidently KK
causal.
More generally, however, the background medium for

the electromagnetic fields can have non-trivial and dy-
namical responses to those fields encoded in P and M.
To avoid specifying particular response models for P and
M, which are many and varied, depending on the prob-
lem under consideration, I will use an abbreviated nota-
tion, i.e.,

δtP = f(·), δtM = f(·), (18)

where these represent differential equations for P and M

along the lines of eqn. (2). As an example, the Lorentz
response in a dielectric, written out explicitly in eqn.
(10), will now be represented by δtP = f(E).

4
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A straightforward expression of Maxwell’s equations
that emphasizes their causal nature is achieved by insist-
ing that any given field should not appear on both the
LHS and RHS of the equations. Thus every field that
has a dynamical response (i.e. is modelled by a tempo-
ral differential equation) can be updated simultaneously.
There is no need to follow some specified sequence, al-
though that can be useful, as in e.g. finite element sim-
ulations [25]. We can even do this even whilst incor-
porating magneto-electric material responses, where the
electric field affects the magnetization, or the magnetic
field affects the dielectric polarization. Maxwell’s equa-
tion are KK causally written as

∂tD = +∇×H− J, quad δtM = f(H,E)
(19)

and ∂tB = −∇×E, δtP = f(E,H).
(20)

Although interdependent, these equations remain explic-
itly KK causal in the sense that H and E are uniquely
defined as causes, and D,P and B,M are affected by
those causes (i.e. show “effects”). In the ordinary (non
magneto-electric) case where δtM = f(H) and δtP =
f(E), the two eqns. (19) and (20) are independent of
one another. This further possible separation is the rea-
son for associating the equation for M with that for D

in eqn. (19), and associating that for P with B in eqn.
(20).
Once the RHS’s of eqns. (19) and (20) have been evalu-

ated, the LHS’s can be integrated directly in an explicitly
KK causal manner – the “cause” fields E,H have affected
changes on D,P and B,M. Then, the usual constitutive
relations can be rearranged to connect the fields accord-
ing to

E = ǫ−1

0 [D−P] , H = µ−1

0 [B−M] , (21)

to allow us to directly update the the “cause” fields E

and H.
Note that if the evolution of M or P were (e.g.) to

be written as dependent on D or B, (so that δtM =
f(B,D)), then there is no longer a perfect separation be-
tween “cause fields” and “effect fields”. Nevertheless,
such a rewriting will not violate causality, since the dif-
ferential equations still have the correct form. Further,
we cannot regard the displacement current ∂tD (or in-
deed its magnetic counterpart ∂tB) as “causes” in the
manner reviewed by Heras [26]; these changes in D and
B are instead effects.
As a final note, we can easily replace an abstract cur-

rent density by incorporating the motion of a particles
of mass mj and charge qj at position xj(t) with velocity
vj(t), by using additional causal equations

∂tvj(t) =
qj
mj

[E(xj(t), t) + vj(t)×B(xj(t), t)] (22)

∂txj(t) = vj(t), (23)

along with the connection between the electric current
density and the particle motion, and the charge density
which are now

J(r, t) =
∑

j

qjδ(r− xj(t))vj(t) (24)

ρ(r, t) =
∑

j

qjδ(r− xj(t)). (25)

VI. SIMULTANEITY, LOCALITY, AND

SMOOTHNESS

It is worth briefly considering some issues related to the
specific definition of causality used here, and whether it
should be modified somehow. Here I discuss two points
raised by the stance of Jefimenko [24], and another re-
garding the permitted smoothness of any casual response.

Local vs retarded causes: One of the benefits of the local
causality advanced in this article is that it works knowing
only the current state and current influences, and makes
only minimal assumptions. In contrast, some (e.g. Je-
fimenko [24], also see Heras [26]) prefer to relate effects
back to their original causes. Thus the electromagnetic
fields would be directly obtained from the integral equa-
tions over the past behaviour of charges and currents (see
eqns. (7,8) in [24]). From a practical perspective, this can
raise difficulties: we often want to solve electromagnetic
problems for free fields on the basis of some stated ini-
tial boundary conditions for the fields – where we do not
know, nor want to calculate, whatever sources may have
been required to generate them. KK causality, being lo-
cal, neither knows or cares about this “deep” past; but
casuality is still enforced and remains testable.

Simultaneity: We might take the position that having
any part (however infinitesimal) of the effect simultane-
ous with the cause is unsatisfactory. Indeed, this is one of
the reasons that Jefimenko [24] considers that Maxwell’s
equations eqn. (14) (and hence even our simple eqn. (1))
are causally ambiguous. This point can be answered in
two ways.

Firstly, I have shown in this article that Maxwell’s
equations remain unambigously casual in the sense
utilised by the Kramers Kronig relations; i.e. they are
KK causal (even if they might not be “Jefimenko causal”
as well).

Secondly, it is easy to examine the consequences of
excluding effects simultaneous with the cause: mathe-
matically we simply replace our step function H with by
a new H ′ defined as h′(t) = 0 for t ≤ 0 and h′(t) = 1
for t > 0. From a physicists perspective, this amounts
to an infinitesimal time delay τ in the step w.r.t. the
usual case; it then follows from eqn. (4) that this time
delay gives rise to a phase shift φ = ωτ in the spectra.
In the limit as τ → 0+, we also have φ → 0+. Since
nothing mathematically singular or badly behaved hap-
pens in this limit it is hard to see how any non-negligible
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effects could persist2.
Smoothness: We might feel that a step-like response is
too abrupt, and that something smoother is more appro-
priate: e.g. for short times, the response should be ramp-
like. This requires a minimal causal differential equation,
which would be like a simplified version of the damped
oscillator model in section IV, i.e.

∂2
tR(t) = Q(t). (26)

Further along this line of thought, we may desire the
response to be smoother still – e.g. perhaps N times
differentiable. For N = 2, i.e. where eqn. (26) was
considered causal, we could no longer use ∂tx = v to
say that “velocity causes change in position”, but would
instead need to use ∂2

t x = a to say that “acceleration
causes change in position”.
I will not argue here for (or against) requiring this ex-

tra smoothness, save to mention the following fact: if
we demand our causal responses to be smoother than a
step function, we find that the curl Maxwell’s equations
– with their single time derivative – no longer count as
causal. Perhaps, however, the basic vacuum behaviour
of Maxwell’s equations has nothing to do with a causal
response between the fields themselves, but is rather the
result of the spacetime metric. After all, the vacuum is
not an electromagnetic ether! If this point of view could
be sucessfully argued, then the additional smoothness re-
quirements need to be demanded only from the medium
responses P and M, and the response of charges and cur-
rents to forces generated by the electromagnetic fields.
Relativity: For simplicity, in this article I have not
addressed any relativistic considerations; the causality
as implemented is purely temporal, and the role of the
speed-of-light as a maximum signal velocity is not con-
sidered. However, this is not excluded by the formulation
advanced here, although neither is it enforced. To ensure
that spacetime causality holds as well, the causes need
to be specified in accordance with relativistic principles,
i.e. depending only on information in the past light cone,
with the dynamical equations being written in a covari-
ant way (as in e.g. Maxwell’s equations).

VII. SUMMARY

KK causal models are constructed as temporal differ-
ential equations where the changes with time of the ef-
fect depends on the strength of some cause. The simplest
possible model is written down as eqn. (1), containing a
cause Q, something to be affected R, and a single time
derivative applied to R. In such a case an impulsive cause
leads to a step-like effect. A spectral analysis then gives
rise to the Kramers Kronig relations, which can be used
to apply constraints to measured spectral data; these link
the real and imaginary parts of the spectral functions in
a global-to-local manner.

For example, in kinematics, the KK causality definition
used here along with the equation ∂tx = v, allows us to
make the statement that “velocity v causes a change in
position x”. In contrast, writing down e.g. F = ma
does not allow me to claim either that “ma causes F” or
“F/m causes a”. But I could instead write ∂tv = F/m
and then make the KK causal statement “a given F/m
causes a change in velocity v”.

Finally, a careful writing of Maxwell’s equations allows
us to break down electrodynamic solutions into two in-
dependent steps: integration of explicitly causal tempo-
ral differential equations, and direct recalculation of the
“next causes” using the equality enforced by the consti-
tutive relations. Maxwells equations are unambiguously
causal in the KK sense, whether or not any useful alter-
native definitions of causality exist.

Lastly, the definition of KK causality allows us to see
the validity of Norton’s argument [29] that it is not a

priori necessary to add causality as an extra assump-
tion to physical models. Instead, we need only take the
model under discussion and determine whether or not
it is compatible with KK causality by its construction –
i.e. from its differential equation(s). We have seen that
Maxwell’s equations are compatible with causality, but
even so, it is worth noting that even that fact cannot
preserve causality for us if we insist (e.g. for practical
reasons) on integrating them forward in space [30].
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