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Abstract: We report a modulational instability (MI) analysis of a mathematical model   appropriate for 

ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope 

approximation. Theoretically predicted MI properties are found to be in good agreement with numerical 

simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a 

cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like 

few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria. 

  

 
1. Introduction 

 

Recently nonlinear optics research beyond the so called slowly varying  envelope 

approximation (SVEA)  have received tremendous boost due to various reasons, primarily for 

richness in physics and possible applications in many diverse areas such as, ultrafast 

spectroscopy, metrology, medical diagnostics and imaging, optical communications, 

manipulation of chemical reactions and bond formation, material processing etc. [1-2]. 

Particularly, the availability of sources of light in the near-single optical cycle has opened 

new possibilities for physicists and scientist to explore and doubt many of the fundamental 

concepts and assumptions [3-4].The validity of SVEA is already questioned by many authors 

in this new domain of optical science [5-10].Many authors have attempted to modify the 

SVEA so that it might be extended to the few cycle regimes. The first widely accepted model 

in this regard has been developed by Brabec and Krausz [5]. Some other authors have offered 

non-SVEA models also [11-12]. However, the model equation proposed by Brabec and 

Krausz have been used most extensively and successfully in various contexts [13-16]. 

Recently, following the model proposed by Brabec and Krausz, Moses and Wise have 

derived a coupled propagation equations for ultrashort pulses in a degenerate three-wave 

mixing process in quadratic (  2
 ) media [17]. In passing, it is worthwhile to mention that 

owing to the efficient  manipulation of spectral and temporal properties of femtosecond 

pulses through cascaded processes in quadratic materials, both theoretical and experimental 

research is getting tremendous boost in recent years [18-21]. Moses and Wise went on to 

present, using cascaded quadratic nonlinearity, theoretical and experimental evidence of a 

new quadratic effect, namely the controllable self-steepening (SS) effect. The controllability 

of the SS effect is very useful in nonlinear propagation of ultrashort pulses as it may be used 

to cancel the propagation effects of group velocity mismatch. It may be noted that, 

traditionally, the intensity dependent refraction (IDR) effects in quadratic media are not 

expected in quadratically nonlinear media owing to the phase mismatch of the fundamental 

harmonic with the higher ones within the SVEA [22]. In this work, we have studied the 

modulation instability (MI) of the single-field equation for the fundamental field (FF) derived 

by Moses and Wise [17]. Our study is mainly motivated by the fact that IDR effect is closely 

related to MI, particularly to the existence of optical solitons in a nonlinear media. It is well 

known that modulation instability is a fundamental and ubiquitous process that appears in 

most nonlinear systems in nature [23-27]. It occurs as a result of interplay between the 

nonlinearity and dispersion in time domain or diffraction in spatial domain. In this work we 

are specifically interested to see the role of group velocity mismatch (GVM) between the 

fundamental (FF) and second-harmonic (SH) field on MI as well as the role of self-

steepening (SS) parameter. Though our study indicates the possibility of getting MI even in 
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the so-called normal dispersion regime, in this work we confine our attention to the 

anomalous dispersion regime only. 

 

2. Theoretical model and MI analysis 

 

The Moses-Wise model for ultrashort pulse propagation in a cascaded-quadratic media, under 

appropriate condition, can be written as follows [17]: 
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Here A is the complex envelope of the fundamental field travelling along z , 2 is the group 

velocity dispersion(GVD) parameter, 0 is the carrier wave frequency,  is the cubic 

nonlinear co-efficient, 1 22k k k   is the wave vector mismatch between the FF and SH 

fields and    
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0 2 1 232 / k k c         . 1k  and 2k are respectively the wave vectors 

associated with FF and SH fields. In this work we assume that, 2 / 0k    . We rewrite 

Eq. (1) in the normalized units [23] as follows: 
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where u is the normalized amplitude,  2sgn   and  
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in which   and   are the normalized propagation distance and time respectively, 0P is the 

peak power of the incident pulse, DL is the dispersion length, N is the so called soliton order 

and s  is the self-steepening (SS) parameter. On the basis of Eq. (2) we would now 

investigate the MI of few cycle pulses. Eq. (2) has a steady state solution given by
2

0 0expu u iu     , where 0u
 
is the constant amplitude of the incident plane wave. We now 

introduce perturbation  ,a   together with the steady state solution to Eq. (2) and linearize 

in  ,a   to obtain: 

 

 
2 *

2 * 2

0 02
0

2

a a a
i u a a i su


 

  

  
    

  
                                                                         (4) 

 

Separating the perturbation to real and imaginary parts, according to 1 2a a i a  , and 

assuming  1 2, exp ,a a i K     where K and   are the wave number and the frequency 

of perturbation respectively, from Eq. (4) we obtain the following dispersion relation  
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From Eq. (5), we observe that the modulation instability exists only if the quantity inside the 

bracket is <0. It may be possible to have MI in the normal dispersion regime, for which

1   , if 0k  and other parameters are chosen judiciously, but we find that task to be a 

difficult one. However in the anomalous dispersion regime, for which 1   , the occurrence 

of MI is possible under appropriate conditions and judicious choice of parameters are easy. 

Now onwards we take 1.   The expression for the so-called gain spectrum  g   could 

be put in the following form: 
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where, 
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We note that for the occurrence of MI, one must have 2 2

B A  . The maximum of the gain 

occurs at two frequencies given by: 
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Now, we would try to see the role of various controllable parameters such as the self-

steepening (SS) s and  wave-vector mismatch k  on MI. Fig.1 depicts the modulation 

instability gain spectrum  g  vs.   for different values of   for .01s   and 0 1u  . 

 

 
Fig. 1 (Color online) Modulational instability gain as a function of normalized frequency for four different 

values of   with 0u =1 and 0.1s  . 

 

It can be clearly seen that the gain spectrum is symmetric with respect to 0 . We observe 

from Fig. 1 that, for the given input power and a fixed self-steepening parameter, the 

modulation instability gain increases with increase in . Physically speaking, MI gain 

increases with a decrease in the wave-vector mismatch k , as the parameter   is directly 

related to it through Eq. (7). If a probe wave at a frequency 0   were to propagate with 

the CW beam at 0 , it would experience a net power gain given by Eq.(6) as long as 



Im( ) 0K  .Eventually, due to MI gain, the CW beam would break up spontaneously into a 

periodic pulse train known as solitons. These soliton-like pulses exist whenever the 

conditions 2 2

B A   and 0k  are satisfied. The appearance of the sidebands located 

around 0 is the clear evidence of modulation instability. 

 
Fig. 2 (Color online) Modulation instability gain as a function of normalized frequency for three different values 

of 0u with 2   and 0.1s  . 

 

Fig.2 shows, quite expectedly, that with increase with the amplitude, the MI gain also 

increases. On the other hand we find that MI gain decreases with increase in the SS 

parameter, s , as could be observed from Fig.3. In fact our calculations show that MI gain 

vanishes if  s  is increased beyond 0.55s  for the given parameters. As the SS parameter is 

inversely related to both the carrier-wave frequency, 0 , and pulse width, 0T , we may  

 

 
 

Fig. 3 (Color online) Modulation instability gain as a function of normalized frequency for four different values 

of s with 2   and 0 1u  . 

 



conclude that there is a threshold value of the pulse-width for a given operating frequency at 

which the MI could be invoked, and thereby generating solitonic pulses, in a cascaded 

quadratic media like the one considered in this work.  

 

3. Numerical Simulation 

 

To get more physical insight of the obtained properties of MI and dynamics of a CW beam 

under the MI gain, we numerically solve Eq. (2) using the so-called split-step Fourier method 

[23] in the anomalous dispersion regime. The incident field launched at 0   into the 

nonlinear medium is taken to be:     0 00, 1 cos mu u a    , where 
0a is the normalized 

modulation amplitude and m is the normalized angular frequency of a weak sinusoidal 

modulation imposed on the CW beam. We choose 
0 01, 0.05u a  and 1m   for our  

 

 
Fig. 4 (Color online) Temporal distribution of the normalized field distribution at two different normalized 

propagation distances with 1   for (a) 0s  (b) 0.05s  and (c) 0.1s   

 

numerical simulation. Fig. 4 depicts the temporal distribution of the field intensity at 

distances  =0 and 2 for various values of SS parameter with a fixed value of  .We observe 

that the co-sinoidally modulated plane wave evolves into a train of pulses with much higher 

amplitude than the initial modulation. Pulses got distorted with increasing value of the SS- 

parameter. In fact we find that arbitrary increase of  s  results in vanishing of MI, confirming 

our analytical results. In order to get an idea how the generation of MI is affected with 

increase of  , in Fig. 5 we plot the temporal evolution of the normalized intensity for three 

different values of   taking s =0. It can be clearly seen that as   increases the co-sinoidally 

modulated plane wave evolves into a train of shorter pulses. The breaking of the plane wave  



 

Fig. 5 (Color online) Temporal distribution of the normalized field distribution at two different normalized 

propagation distances for (a) 0.5  (b) 1.5  and (c) 3.5   

 

into much shorter pulses get enhanced with increase in , as could be expected owing to the 

increase of MI gain, predicted by our analytical calculations. Finally, we solve Eq. (2) 

numerically to test the stability of soliton propagation in a cascaded quadratic nonlinear  

 
Fig. 6 (Color online) Spatio-temporal evolution of soliton   

 

media like the one considered in this work. The input pulse is taken to be of the form:

   0,u Sech  . We choose s =0.01and  =1. The spatio-temporal evolution of the soliton 

pulse is depicted in Fig. 6, from which clear stable propagation may be observed.  

 

4. Conclusion 

 

To conclude, we have studied the modulation instability of the Moses-Wise model for 

ultrashort pulse propagation in a cascaded-quadratic media. A nonlinear dispersion relation is 

worked out using standard methods. We find that subject to the fulfilment of the MI criteria 



and judicious choice of the parameters, MI could be generated in a cascaded quadratic-cubic 

media in the anomalous dispersion regime. Numerical simulation confirms our theoretical 

predictions. Stable soliton propagation is also observed with appropriate choice of 

parameters. We hope that this work would throw some light or stimulate research work 

related to the control of MI generation and soliton formation in cascaded quadratic media. 
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