On hypergraph cliques with chromatic number 3*

D.D. Cherkashin

This work is devoted to a problem in extremal hypergraph theory, which goes back to P. Erdős and L. Lovász (see [1]). Before giving an exact statement of the problem, we recall some definitions and introduce some notation.

Let $H=(V, E)$ be a hypergraph without multiple edges. We call it n-uniform, if any of its edges has cardinality n : for every $e \in E$, we have $|e|=n$. By the chromatic number of a hypergraph $H=(V, E)$ we mean the minimum number $\chi(H)$ of colors needed to paint all the vertices in V so that any edge $e \in E$ contains at least two vertices of some different colors. Finally, a hypergraph is said to form a clique, if its edges are pairwise intersecting.

In 1973 Erdős and Lovász noticed that if an n-uniform hypergraph $H=(V, E)$ forms a clique, then $\chi(H) \in\{2,3\}$. They also observed that in the case of $\chi(H)=3$, one certainly has $|E| \leqslant n^{n}$ (see [1]). Thus, the following definition has been motivated:

$$
M(n)=\max \{|E|: \exists \text { an } n-\text { uniform clique } H=(V, E) \text { with } \chi(H)=3\} .
$$

Obviously such definition has no sense in the case of $\chi(H)=2$.
Theorem 1 (P. Erdős, L. Lovász, [1]). The inequalities hold

$$
n!\left(\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right) \leqslant M(n) \leqslant n^{n}
$$

Almost nothing better has been done during the last 35 years. In the book [2] the estimate $M(n) \leqslant$ $\left(1-\frac{1}{e}\right) n^{n}$ is mentioned as "to appear". However, we have not succeeded in finding the corresponding paper.

At the same time, another quantity $r(n)$ was introduced in [3]:

$$
r(n)=\max \{|E|: \exists \text { an } n-\text { uniform clique } H=(V, E) \text { s.t. } \tau(H)=n\}
$$

where $\tau(H)$ is the covering number of H, i.e.,

$$
\tau(H)=\min \{|f|: f \subset V, \forall e \in E \quad f \cap e \neq \emptyset\}
$$

Clearly, for any n-uniform clique H, we have $\tau(H) \leqslant n$ (since every edge forms a cover), and if $\chi(H)=3$, then $\tau(H)=n$. Thus, $M(n) \leqslant r(n)$. Lovász noticed that for $r(n)$ the same estimates as in Theorem 1 apply and conjectured that the lower estimate is best possible. In 1996 P. Frankl, K. Ota, and N. Tokushige (see [4]) disproved this conjecture and showed that $r(n) \geqslant\left(\frac{n}{2}\right)^{n-1}$.

We discovered a new upper bound for the initial value $M(n)$.
Theorem 2. There exists a constant $c>0$ such that

$$
M(n) \leqslant c n^{n-\frac{1}{2}} \ln n
$$

We shall prove Theorem 2 in the next section.

[^0]
1 Proof of Theorem 2

We shall proceed by citing or proving successive propositions that will eventually lead us to the proof of the theorem.
Proposition 1 (P. Erdős, L. Lovász, [1]). Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$. Let k be an arbitrary integer such that $1 \leqslant k \leqslant n$. Take any set $W \subseteq V$ of cardinality k. Let $E(W)$ denote the set of all edges $e \in E$ such that $W \subseteq e$. Then $|E(W)| \leqslant n^{n-k}$.

Note that in particular, the degree deg v of any vertex $v \in V$ does not exceed n^{n-1} (here $k=1$). This fact entails immediately the estimate $M(n) \leqslant n^{n}$. Although we suppose to prove a much better bound, we shall frequently use Proposition 1 during the proof.

To any n-uniform hypergraph $H=(V, E)$ we assign the set

$$
B(H)=\left\{v \in V: \operatorname{deg} v>\frac{|E|}{n^{2}}\right\}
$$

Proposition 2. Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$. Then the two following assertions hold:

1. $|B(H)|<n^{3}$;
2. any edge $e \in E$ intersects the set $B(H)$.

Proof. We start by proving the first assertion. Fix an $H=(V, E)$. Let $B=B(H)$. We know that $\sum_{v \in V} \operatorname{deg} v=n|E|$. Furthermore,

$$
\sum_{v \in V} \operatorname{deg} v \geqslant \sum_{v \in B} \operatorname{deg} v>\frac{|B||E|}{n^{2}}
$$

Thus, $\frac{|B||E|}{n^{2}}<n|E|$, which means that actually $|B|<n^{3}$.
To prove the second assertion fix an arbitrary edge e. Since H is a clique, any $f \in E$ intersects e. Therefore, $\sum_{v \in e} \operatorname{deg} v \geqslant|E|$. By pigeon-hole principle, there is a vertex $v \in e$ with $\operatorname{deg} v \geqslant \frac{|E|}{n} \geqslant \frac{|E|}{n^{2}}$. So $v \in B$, and the proof is complete.
Proposition 3. Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$. Let $t \in\{1, \ldots, n\}$ and suppose there is an edge $e \in E$ that intersects the set $B=B(H)$ by at most t vertices. Then there is a vertex $v \in V$ with $\operatorname{deg} v \geqslant \frac{|E|}{t+1}$.

Proof. Fix a hypergraph $H=(V, E)$ and an $e \in E$ with $|e \cap B| \leqslant t$. Put $f=e \cap B$ and $a=|f| \leqslant t$. We know that for any $v \in f$, one has $\operatorname{deg} v>\frac{|E|}{n^{2}}$. We also know that for any $v \in(e \backslash f)$, one has $\operatorname{deg} v \leqslant \frac{|E|}{n^{2}}$. Finally, we know that H is a clique. Consequently,

$$
\sum_{v \in f} \operatorname{deg} v=\sum_{v \in e} \operatorname{deg} v-\sum_{v \in(e \backslash f)} \operatorname{deg} v \geqslant|E|-(n-a) \frac{|E|}{n^{2}}
$$

By pigeon-hole principle, there is a vertex $v \in f$ with

$$
\operatorname{deg} v \geqslant \frac{|E|-(n-a) \frac{|E|}{n^{2}}}{a}
$$

The right-hand side of the above inequality decreases in $a \leqslant t$, so that anyway

$$
\operatorname{deg} v \geqslant \frac{|E|-(n-t) \frac{|E|}{n^{2}}}{t}=|E| \cdot \frac{n^{2}-n+t}{n^{2} t} \geqslant \frac{|E|}{t+1}
$$

where the last inequality is true, since $t \in\{1, \ldots, n\}$. Proposition 3 is proved.
Proposition 4. Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$. Let $t \in\{1, \ldots, n\}$. Then either $|E| \leqslant t n^{n-1}$, or for any $e \in E$, we have $|e \cap B(H)| \geqslant t$.

Proof. Fix an $H=(V, E)$ with $B(H)=B$. Assume that $|E|>t n^{n-1}$ and there exists an $e \in E$ such that $|e \cap B| \leqslant t-1$. By Proposition 3 we can find a vertex v with $\operatorname{deg} v \geqslant \frac{|E|}{t}>n^{n-1}$, which is in conflict with Proposition 1. Thus, our assumption is false, and the proof is complete.
Proposition 5. Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$ and $|E|>n^{n-\frac{1}{2}}$. Suppose that $n \geqslant 100$. Then there exist edges $e, f \in E$ such that $[\sqrt{n}] \leqslant|e \cap f| \leqslant n-[\sqrt{n}]$.

Proof. Fix an $H=(V, E)$ with $B(H)=B$. Put $t=[\sqrt{n}]$. Since $t n^{n-1} \leqslant n^{n-\frac{1}{2}}<|E|$, Proposition 4 tells us that for any $e \in E$, we have $|e \cap B| \geqslant t$.

Consider the family $\mathcal{B}_{t}=C_{B}^{t}$ consisting of all the t-element subsets of the set B. By the first assertion of Proposition 2, we have

$$
\left|\mathcal{B}_{t}\right|=C_{|B|}^{t} \leqslant|B|^{t}<n^{3 t}
$$

Also we know that any $e \in E$ must contain a set $T \in \mathcal{B}_{t}$, since $|e \cap B| \geqslant t$.
At the same time, $|E|>n^{n-\frac{1}{2}}>n^{5 t}$ as $n \geqslant 100$. Thus, taking into account the notation $E(W)$ from the statement of Proposition 1, we see that there exists a set $T \in \mathcal{B}_{t}$ such that $|E(T)|>n^{5 t} / n^{3 t}=n^{2 t}$.

Clearly for any $e, f \in E(T)$, we have $T \subseteq(e \cap f)$, so that $|e \cap f| \geqslant t=[\sqrt{n}]$. If there exist $e, f \in E(T)$ with $|e \cap f| \leqslant n-[\sqrt{n}]=n-t$, then the proposition is proved. Otherwise, every two edges from $E(T)$ intersect by at least $n-t+1$ vertices.

Take an arbitrary $A \in E(T)$. Put $s=n-t+1$ and consider the family $\mathcal{A}_{s}=C_{A}^{s}$ consisting of all the s-element subsets of the set A. We know that simultaneously a) $\left.|E(T)|>n^{2 t} ; \mathbf{b}\right)$ any $e \in E(T)$ contains a set $S \in \mathcal{A}_{s}$ (since $|e \cap A| \geqslant s$); c) $\left|\mathcal{A}_{s}\right|=C_{|A|}^{s}=C_{n}^{s}=C_{n}^{t-1}<n^{t}$. Therefore, there is a set $S \in \mathcal{A}_{s}$ such that $|E(S)|>n^{t}$. Since $|S|=s$, by Proposition 1, we have $|E(S)| \leqslant n^{n-s}=n^{t-1}$, which is a contradiction. Proposition 5 is proved.
Remark 1. Note that the proof of Proposition 5 can be easily extended to support the following assertion: Let $H=(V, E)$ be an n-uniform clique with $\chi(H)=3$. Let an $F \subseteq E$ be such that $|F|>n^{n-\frac{1}{2}}$. Suppose that $n \geqslant 100$. Then there exist edges $f_{1}, f_{2} \in F$ such that $[\sqrt{n}] \leqslant\left|f_{1} \cap f_{2}\right| \leqslant n-[\sqrt{n}]$. Note also that a hypergraph $H^{\prime}=(V, F)$ does not necessarily have chromatic number 3 . It can be bipartite as well.
Proposition 6. Let $n \in \mathbb{N}, t \in\{1, \ldots, n\}$,

$$
t^{\prime}=\min \{t, 4 \sqrt{n} \ln n\}, \quad N(t)=(t+1)\left(n-\frac{\sqrt{n}}{4}\right)^{t^{\prime}-1} n^{n-t^{\prime}}
$$

Then $N(t)=O\left(n^{n-\frac{1}{2}} \ln n\right)$.
Proof. First, assume that $t \leqslant 4 \sqrt{n} \ln n$. Then

$$
N(t) \leqslant(t+1) \cdot n^{t-1} \cdot n^{n-t}=(t+1) n^{n-1}=O\left(n^{n-\frac{1}{2}} \ln n\right),
$$

and we are done. Now, assume that $t>4 \sqrt{n} \ln n$. In this case,

$$
N(t) \leqslant(n+1)\left(n-\frac{\sqrt{n}}{4}\right)^{t^{\prime}-1} n^{n-t^{\prime}}=(n+1) \cdot n^{n-1}\left(1-\frac{1}{4 \sqrt{n}}\right)^{4 \sqrt{n} \ln n-1}=O\left(n^{n-1}\right)
$$

and we are done again. Proposition 6 is proved.
Remark 2. Note that we may write, say, $N(t) \leqslant 10 n^{n-\frac{1}{2}} \ln n$ for $n \geqslant n_{0}$ and all t.
Completion of the proof of the theorem. Fix an n-uniform clique $H=(V, E)$ with $\chi(H)=3$ and $n \geqslant \max \left\{n_{0}, 10000\right\}$. We shall prove that $|E| \leqslant 10 n^{n-\frac{1}{2}} \ln n$. This will be enough to complete the proof of Theorem 2.

Let

$$
T=\max \{t: \forall e \in E \quad|e \cap B| \geqslant t\}
$$

By the second assertion of Proposition 2, $T \in\{1, \ldots, n\}$.
Define T^{\prime} in the same way as t^{\prime} was defined by t in Proposition 6. Since $n \geqslant 10000$, we have $T^{\prime}<n$, and thus $T^{\prime} \in\{1, \ldots, n-1\}$. Also, since $n \geqslant n_{0}$, we have $N(T) \leqslant 10 n^{n-\frac{1}{2}} \ln n$ (see Remark 2).

Assume that $|E|>10 n^{n-\frac{1}{2}} \ln n$. So we automatically assume that $|E|>N(T)$. By the definition of the value T, there exists an edge $e \in E$ that intersects B by at most T vertices. Hence, by Proposition 3 there is a vertex $v \in V$ with

$$
\operatorname{deg} v \geqslant \frac{|E|}{T+1}>\frac{N(T)}{T+1}=\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-1} n^{n-T^{\prime}}
$$

Put $I=\{v\}, i=1$. Then

$$
\begin{equation*}
|E(I)|=\operatorname{deg} v>\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-1} n^{n-T^{\prime}}=\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i} n^{n-T^{\prime}} \tag{1}
\end{equation*}
$$

If $T^{\prime}=1$, then inequality (1) contradicts Proposition 1. Therefore, assume that $T^{\prime} \in\{2, \ldots, n-1\}$.
Let inequality (1) serve as the base for an inductive procedure with $\leqslant T^{\prime}$ steps. So assume that we have already found a set $I \subset V$ with $|I|=i \in\left\{1, \ldots, T^{\prime}-1\right\}$ (do not forget that $T^{\prime} \geqslant 2$) and

$$
|E(I)|>\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i} n^{n-T^{\prime}}
$$

We shall prove that either we can take an $a \in(V \backslash I)$ such that

$$
\begin{equation*}
|E(I \cup\{a\})|>\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-1} n^{n-T^{\prime}} \tag{2}
\end{equation*}
$$

or we can take $a, b \in(V \backslash I)$ such that

$$
\begin{equation*}
|E(I \cup\{a, b\})|>\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-2} n^{n-T^{\prime}} \tag{3}
\end{equation*}
$$

(Here for all $i, T^{\prime}-i-2 \geqslant-1$ and $i+2 \leqslant T^{\prime}+1 \leqslant n$, so that the choice of the parameters is correct.)
Indeed, to prove (2) or (3) let

$$
E_{I}=\{e \in E: e \cap I \neq \emptyset\}
$$

By Proposition $1\left|E_{I}\right| \leqslant i n^{n-1}$. Hence, $\left|E_{I}\right|<T^{\prime} n^{n-1} \leqslant 4 n^{n-\frac{1}{2}} \ln n$. Putting

$$
E^{I}=\{e \in E: e \cap I=\emptyset\}
$$

we immediately get the estimate

$$
\left|E^{I}\right|=|E|-\left|E_{I}\right|>10 n^{n-\frac{1}{2}} \ln n-4 n^{n-\frac{1}{2}} \ln n=6 n^{n-\frac{1}{2}} \ln n>n^{n-\frac{1}{2}}
$$

Since $n>100$, Remark 1 tells us that there exist $f_{1}, f_{2} \in E^{I}$ with $[\sqrt{n}] \leqslant\left|f_{1} \cap f_{2}\right| \leqslant n-[\sqrt{n}]$.
Since H is a clique, any edge e from $E(I)$ intersects both f_{1} and f_{2}. So either e goes through a vertex $v \in\left(f_{1} \cap f_{2}\right)$ or it contains a vertex $v_{1} \in\left(f_{1} \backslash f_{2}\right)$ and a vertex $v_{2} \in\left(f_{2} \backslash f_{1}\right)$. Formally, we may write down the equality

$$
E(I)=\left(\bigcup_{v \in\left(f_{1} \cap f_{2}\right)} E_{v}(I)\right) \bigcup\left(\bigcup_{v_{1} \in\left(f_{1} \backslash f_{2}\right)} \bigcup_{v_{2} \in\left(f_{2} \backslash f_{1}\right)} E_{v_{1}, v_{2}}(I)\right)
$$

where

$$
E_{v}(I)=\{e \in E(I): v \in e\}, \quad E_{v_{1}, v_{2}}(I)=\left\{e \in E(I): v_{1}, v_{2} \in e\right\} .
$$

Of course

$$
|E(I)| \leqslant \sum_{v \in\left(f_{1} \cap f_{2}\right)}\left|E_{v}(I)\right|+\sum_{v_{1} \in\left(f_{1} \backslash f_{2}\right)} \sum_{v_{2} \in\left(f_{2} \backslash f_{1}\right)}\left|E_{v_{1}, v_{2}}(I)\right| .
$$

If a summand in the first sum is greater than $\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-1} n^{n-T^{\prime}}$, then (2) is shown: indeed, the corresponding v is contained in this many edges $e \in E(I)$ that already contain I. If a summand in the second sum is greater than $\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-2} n^{n-T^{\prime}}$, then (3) is shown in turn. So suppose that there are no such summands. In this case, putting $k=\left|f_{1} \cap f_{2}\right|$ we have

$$
|E(I)| \leqslant k\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-1} n^{n-T^{\prime}}+(n-k)^{2}\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-2} n^{n-T^{\prime}}
$$

On the other hand, $|E(I)|>\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i} n^{n-T^{\prime}}$. Having proved that

$$
\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i} n^{n-T^{\prime}}>k\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-1} n^{n-T^{\prime}}+(n-k)^{2}\left(n-\frac{\sqrt{n}}{4}\right)^{T^{\prime}-i-2} n^{n-T^{\prime}}
$$

for any $k \in[[\sqrt{n}], n-[\sqrt{n}]]$, we would get a contradiction which would complete the proof of (2) or (3).
The needed inequality is equivalent to

$$
\left(n-\frac{\sqrt{n}}{4}\right)^{2}>k\left(n-\frac{\sqrt{n}}{4}\right)+(n-k)^{2}
$$

which can be proved by standard analytic calculations.
Thus, (2) or (3) take place. So after $\leqslant T^{\prime}$ steps of the inductive procedure, we get either a set I of cardinality T^{\prime} such that $|E(I)|>n^{n-T^{\prime}}$ or a set I of cardinality $T^{\prime}+1$ such that $|E(I)|>$ $\left(n-\frac{\sqrt{n}}{4}\right)^{-1} n^{n-T^{\prime}}>n^{n-T^{\prime}-1}$. Both estimates are in conflict with Proposition 1. Consequently, our initial assumption $|E|>10 n^{n-\frac{1}{2}} \ln n$ is false, and Theorem 2 is proved.

References

[1] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai, North Holland, 10 (1975), 609-627.
[2] T. Jensen, B. Toft, Graph coloring problems, New York: Wiley Interscience, 1995.
[3] L. Lovász, On minimax theorems of combinatorics, Math. Lapok 26 (1975), 209-264 (in Hungarian).
[4] P. Frankl, K. Ota, N. Tokushige, Covers in uniform intersecting families and a counterexample to a conjecture of Lovász, Journal of Combin. Th., Ser. A 74 (1996), 33-42.

[^0]: *This work was supported by the grant of RFBR N 09-01-00294.

