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Some Representation Theorem for nonreflexive

Banach space

ultrapowers under the Continuum Hypothesis.
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Abstract

In this paper it will be shown that assuming the Continuum Hypothesis

(CH) every nonreflexive Banach space ultrapower EI/U is isometrically
isomorphic to the space of continuous, bounded and real-valued functions
on the Stone-Cech remainder ω∗. This Representation Theorem will be
helpful in proving some facts from geometry and topology of nonreflexive
Banach space ultrapowers.
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1. Introduction

Although the ultrapower construction was initially developed within Model

Theory it exerted the great impact on almost all other branches of mathematics
(especially such as Algebra and Set Theory). In the field rendered as Banach

Space Theory this construction was introduced in the mid 60s by Bretagnolle,
Dacunha-Castelle and Krivine ([4, 5]). Recall that a Banach space E is said
to be finite dimensional if and only if its unit ball is compact, i.e., if and only
if for every bounded family (xi)i∈I and for every ultrafilter U on the set I the
so-called U−limit

lim
i,U

xi

exists. But if a Banach space E is infinite dimensional, then it is possible to
enlarge E to a Banach space Ê by adjoining to every bounded family (xi)i∈I

in E an element x̂ ∈ Ê such that ‖x̂‖ = lim
i,U

‖xi‖. This construction is termed

Banach space ultrapower. Suppose that (Ei)i∈I is an index family of Banach
spaces. Then define

ℓ∞ (Ei) = {(xi) : xi ∈ Ei and ‖(xi)‖∞ < ∞} .

It is easily observed that ℓ∞ (Ei) is the Banach space of all bounded families

(xi) ∈
∏

i∈I

Ei endowed with the norm given by ‖(xi)‖∞ = sup
i∈I

‖xi‖Ei
. If U
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is an ultrafilter on the index set I, then it is always possible to determine
lim
i,U

‖xi‖Ei
. Then it is seen that N ((xi)) =lim

i,U
‖xi‖Ei

is a seminorm on ℓ∞(Ei).

Consequently, the kernel of N is given by

NU =

{
x = (xi) ∈ ℓ∞(Ei) : lim

i,U
‖xi‖ = 0

}
.

It follows that NU is a closed ideal in the Banach space ℓ∞(Ei). Thus it is
possible to define the quotient space of the form:

ℓ∞ (Ei) /NU .

This quotient is said to be the ultraproduct of the family of Banach spaces
(Ei)i∈I . If Ei = E for every i ∈ I, then the space ℓ∞(Ei)/U is called the
ultrapower of E and is symbolized by ℓ∞(E)/NU (or by EI/U). Therefore, it
can be observed that - from the model-theoretical point of view - the above
construction can be considered as the consequence of eliminating the elements
of infinite norm from an ordinary (i.e., algebraic) ultrapower and dividing it by
infinitesimal ([1, 3, 4, 5, 10, 11]).

Recall that the famous  Loś Theorem - also known as the Fundamental The-

orem on Ultraproducts - asserting that any first-order formula is true in the

ultraproduct M =
∏

i∈I

Mi/U (where M is any first order structure) if and only

if the set of indices i such that the formula is true in Mi is a member of U
can be easily adapted to the case of the so-called positive bounded formulas

which are more adequate for considering metric structures (cf. Proposition 9.2
in [11]).

If (xi) is a family in ℓ∞(E)/NU , then let us denote by (xi)U the equiva-

lence class of (xi) in the ultrapower ℓ∞(E)/NU . If E is any Banach space
and ℓ∞(E)/NU is its ultrapower, then the mapping x → (xi)U , where xi = x
for every i ∈ I, constitutes an isometry of E into ℓ∞(E)/NU . Consequently,
it becomes obvious that E is a subspace of ℓ∞(E)/NU . The above mentioned
isometric embedding generally is not onto. On the other hand, the above isome-
try is surjective if the ultrafilter U is principal or the space E is finite dimensional
([11]).

Recall that an index family (xi)i∈I in any topological space converges to
the point x with respect to an ultrafilter U , i.e., lim

i,U
= x if for every open set

V containing the point x it follows that the set {i ∈ I : xi ∈ V } belongs to U .

It is known that structural questions about Banach space ultrapowers are
really interesting only when it is assumed that the considered ultrafilter U is
countably incomplete, i.e., it is possible to single out a sequence (Un) of members

of U such that
⋂

n

Un = ∅. This requirement holds especially for free ultrafilters

on ω ([1, 2, 10]).
A Banach space E is called superreflexive if and only if each ultrapower

ℓ∞(E)/NU is reflexive ([1, 10]).
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In this study we denote by ω the set of all natural numbers, i.e., ω = {1, 2, ...}
and its Stone-Cech compactification by βω. Then the so-called Stone-Cech re-

mainder of βω, i.e., the space βω\ω is denoted by ω∗ ([14]). The space βω can
be identified with the set of ultrafilters on ω under the topology generated by the
sets of the form {F : U ∈ F} for all sets U ⊆ ω. On the other hand, it should be
mentioned that the set ω corresponds to the set of principal ultrafilters and the
Stone-Cech remainder ω∗ corresponds to the set of free ultrafilters on ω ([14]).
From Set-Theoretical Topology it is known that the so-called Parovicenko space

X is identified with a topological space satisfying the following conditions: 1) X
is compact and Hausdorff, 2) X has no isolated points, 3) X has the weight c,
4) every nonempty Gδ subset of X has nonempty interior, 5) every two disjoint
open Fσ subsets ofX have disjoint closures. In 1963 I. I. Parovičenko proved that
assuming the continuum hypothesis (CH) every Parovicenko space X is isomor-
phic to ω∗ ([14]).

Since Banach space ultrapowers were introduced into the field of Functional

Analysis a considerable numbers of paper employing this methodology can be
observed ([1, 3, 4, 5, 10, 11] and papers cited there). But on the other hand, it
should be noted that there exists relatively little papers concerning the topolog-
ical and geometrical structure of these model-theoretical objects. Consequently,
it is hoped that the following article will be useful in solving the problems con-
cerning these spaces.

In our studies it will be shown that under CH every Banach space ultrapower
can be alternatively represented in the form of the space of continuous, bounded
and real-valued functions defined on the Parovicenko space ω∗. Namely, assum-
ing CH the Representation Theorem for nonreflexive Banach space ultrapowers
will be obtained. This new result ascertains that if CH holds and E is any
infinite dimensional nonsuperreflexive Banach space, then the Banach space
ultrapower ℓ∞(E)/NU is isometrically isomorphic to the space of continuous,
bounded and real-valued functions on the Stone-Cech remainder ω∗. The con-
gruence ℓ∞(E)/NU

∼= C(ω∗) which holds under CH is of central importance in
our further studies. This isometric isomorphism will enable to prove that non-
reflexive Banach space ultrapowers are never dual spaces, the unit ball of any
nonreflexive Banach space ultrapower has an abundance of extreme points and
no smooth points. Also the structure of complemented subspaces of ℓ∞(E)/NU

will be elucidated.
In this place it should be mentioned that our results are obtained under the

assumption that all considered infinite dimensional Banach spaces are nonsuper-
reflexive and - consequently - their ultrapowers are nonreflexive. It is unknown
if the condition of nonsuperreflexivity can be weakened (or modified) in order
to formulate our Representation Theorem.

2. Notation

Dual of any Banach space E is denoted by E∗. The unit ball of E is sym-
bolized by BE and the unit sphere of E by SE . Denote by A any convex subset
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in a Banach space E. Then the convex hull of A, denoted by co(A), is iden-
tified with the smallest convex set containing A. The closed convex hull of A,
denoted by co(A), is the smallest closed convex set which contains the subset
A. If A is convex, then any point x ∈ A is said to be an extreme point of
A if whenever x = λx1 + (1 − λ)x2 for 0 < λ < 1, then x = x1 = x2. Al-
ternatively, the point x is an extreme point of the subset A if A\{x} is still
convex. Denote by ∂e(A) the set of all extreme points of the subset A. On
the other hand, the smooth points of the unit ball of the space C(T ), where
T is compact and Hausdorff, are identified with the functions f ∈ C(T ) such
that ‖f‖ = sup {|f(t)| : t ∈ T } = 1. This means that these functions peak at
some t0 ∈ T , i. e., |f(t0)| = 1 > |f(t)| for all t ∈ T such that t 6= t0. If some
function f peaks at isolated points of the space T , then f is said to be the
point of Fréchet differentiability of the supremum norm on the space C(T ) ([2]).
The symbol ∼= is used in order to denote the relation of isometric isomorphism
between Banach spaces.

If E and F are two Banach spaces, then an operator Q : X → Y is said to
be compact (weakly compact, respectively) if the closure of Q(BE) is compact
(weakly compact, respectively) ([2]).

3. The Representation Theorem for nonreflexive Banach space ul-

trapowers

Identifying any Tychonoff space T with completely regular and Hausdorff
space it can be shown that its Stone-Cech compactification βT can be repre-
sented in the following form. Suppose that C(T ) is the Banach space of all
continuous, bounded and real-valued functions on T with the norm defined by
‖f‖ = sup {|f(t)| : t ∈ T } and assume that BC(T )∗ denotes the closed unit ball
of the dual space C(T )∗. If we identify every element t ∈ T with the evaluation
functional φt ∈ BC(T )∗ , where φt(f) = f(t) for f ∈ C(T ), then it is possi-
ble to represent βT as the weak∗-closure of the set {φt : t ∈ T } in BC(T )∗ and
T can be understood as a dense subset of βT . Consequently, every function
f ∈ C(T ) has a unique norm-preserving extension f̂ ∈ C(βT ) (cf. [12, 13]).
If the set of all natural numbers ω has the discrete topology and E is any
Banach space, then ℓ∞(E) = C(ω). If we define the restriction mapping

R : C(βω) → C(ω) by R(f̂) = f̂ ↾ ω for each f̂ ∈ C(βω), then it can be
concluded that R is a linear isometry of C(βω) onto C(ω). Hence, the following
proposition can be asserted:

Proposition 1 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space and let ℓ∞ (E) be the ℓ∞−sum of countably many copies of E.

Then ℓ∞ (E) is isometrically isomorphic to the space C(βω). Symbolically

ℓ∞(E) ∼= C(βω).

Now suppose that I is the closed ideal in the space C(βω) consisting of functions

which vanish on ω∗, i.e., I =
{
f̂ ∈ C(βω) : f̂(t) = 0 for all t ∈ ω∗

}
. Next, as-

sume that the space c0(ω) consists of functions in C(ω) which vanish at infinity,
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i.e., c0(ω) = {f ∈ C(ω) : for each ε > 0, {t ∈ ω : |f(t)| > ε} is finite}. On the
other hand, it is known that if U is a nontrivial ultrafilter on ω and the sequence
(xn) converges to the point x in the topology of the space E, then (xn) converges
to x with respect to U , i.e., lim

U
xn = x. This follows from the simple observation

that if V denotes any neighborhood of x, then the set {i : xi /∈ V } is finite and
the nontriviality of U implies that the set {i : xi ∈ V } belongs to U (cf. Propo-
sition 2.2 in [1]). Basing on this facts it can be claimed that c0(ω) = NU . Also
the restriction mapping R : I → NU defines a linear isometry from I onto NU .
Consequently, we arrive at the following proposition:

Proposition 2 (CH). Let E be any infinite dimensional nonsuperreflexivee

Banach space, NU =
{
(xi) ∈ ℓ∞(E) : lim

U
‖xi‖ = 0

}
be the closed ideal in the

ℓ∞−sum of countably many copies of E and

I =
{
f̂ ∈ C(βω) : f̂(t) = 0 for all t ∈ ω∗

}
be the closed ideal in the space

C(βω). Then both ideals are isometrically isomorphic. Symbolically

NU
∼= I.

Further, assume that the mapping σ : C(βω)/I → C(ω∗) defined by σ
(
f̂ + I

)
=

f̂ ↾ ω∗ for each function f̂ ∈ C(βω) constitutes a linear isometry from C(βω)/I
onto C(ω∗). Then the following corollary can be easily obtained:

Corollary 3 (CH). Let E be any infinite dimensional nonsuperreflexivee

Banach space and ℓ∞(E)/NU be its ultrapower. Then the Banach space ul-

trapower is isometrically isomorphic to the space of continuous, bounded and

real-valued functions defined on the Stone-Cech remainder C(ω∗), i.e.,

ℓ∞(E)/NU
∼= C(ω∗).

Corollary 3 can be regarded as the Representation Theorem since it as-
serts that - under CH- each Banach space ultrapower ℓ∞(E)/NU (where E is
any infinite dimensional nonsuperreflexive Banach space) can be isometrically
isomorphic represented in the form of the space of continuous, bounded and
real-valued functions on the Parovicenko space C(ω∗).

4. Nonreflexive Banach space ultrapowers are never dual spaces

Suppose that T is a compact Hausdorff space. Then B denotes the σ−algebra
of Borel subsets of T and rca(T,B) is the Banach space of regular and countably
additive Borel measures µ on T endowed with bounded variation. This norm

is given by the variation µ on T , i.e., ‖µ‖ = |µ| (T ) = sup
n∑

i=1

|µ (Ai)| where

the supremum ranges over all finite partitions {A1, A2, ..., An} of the space T .
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Now, define in rca(T,B) the norm closed proper cone containing positive nor-
mal measures. Denote this cone by N+ (T,B). The measure µ is said to be
normal if µ(B) = 0 for each Borel set B which is meager in T . Also assume
that N+ (T,B) generates the closed ideal in the space rca (T,B) which is de-
noted by N (T,B). Every measure µ in the space rca (T,B) is supported on the

set of the form S(µ) =
⋂

{F ⊆ T : F is closed and |µ| (F ) = |µ| (T )}. Recall

that the compact Hausdorff space is said to be hyperstonian if T is extremally

disconnected and the sum
⋃

{S(µ) : µ ∈ N+ (T,B)} constitutes the dense set

in T . A. Grothendieck in ([9]) proved that any compact Hausdorff space T is
congruent to a dual space if T is hyperstonian. Namely, the following theorem
can be formulated:

Theorem 4 (Grothendieck). If T is a compact Hausdorff space and X is

any Banach space, then L : C(T ) → X∗ is an isometric isomorphism of C(T )
onto X∗ and J : X → X∗∗ is the canonical embedding, then

i) T is hyperstonian,

ii) L∗ ◦ J is an isometric isomorphism of X onto N(T,B).

Also in ([6]) the converse of this theorem was proved. Namely, it was demon-
strated that if T is hyperstonian, then N(T,B)∗ is congruent to C(T ). These
considerations can be easily adapted to the case of Banach space ultrapowers.
The following conclusion can be obtained:

Theorem 5. Let E be any infinite dimensional nonsuperreflexive Banach

space and ℓ∞(E)/NU be its ultrapower. Then its ultrapower ℓ∞(E)/NU is not

a dual space.

Proof. From our Representation Theorem for nonreflexive Banach space
ultrapowers it follows that ℓ∞(E)/NU

∼= C(ω∗). From this identification and
from the fact that ω∗ is not extremally disconnected ([14]) it is straightforward
to see that the Banach space ℓ∞(E)/NU is not a dual space. �

5. Geometry of nonreflexive Banach space ultrapower ℓ∞(E)/NU

5.1 Extreme points of the unit ball Bℓ∞(E)/NU
.

It will be shown that the unit ball Bℓ∞(E)/NU
(where E is any infinite di-

mensional nonsuperreflexive Banach space) has an abundance of extreme points.
Even it can be proved thatBℓ∞(E)/NU

= co
(
∂e

(
Bℓ∞(E)/NU

))
.

it will be demonstrated that every extreme point of the unit ball Bℓ∞(E)/NU
can

be represented as the image (with respect to some quotient mapping) of an ex-
treme point in Bℓ∞(E) (cf. [12]).

Theorem 6 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space. If q : ℓ∞(E) → ℓ∞(E)/NU is the quotient mapping, then

∂e(Bℓ∞(E)/NU
) = q(∂e(Bℓ∞(E))).

Proof. From the Representation Theorem it is known that the spaces
ℓ∞(E)/NU and C(ω∗) are congruent. Consequently, it must be prove that

∂e[BC(βω∗)] = π[∂e(BC(βω))] (or isometrically isomorphic: ∂e[Bℓ∞(E)/NU
] =
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π[∂e(Bℓ∞(E))]) where π : C(βω) → C(ω∗) is identified with the quotient map-
ping defined by π(f) = f ↾ ω∗ for every f ∈ C(βω). Recall that if T is a compact
Hausdorff space, then |f(t)| = 1 for all t ∈ T . Suppose that p̂ is an extreme point
of BC(βω∗). Then |p̂(t)| = 1 for all t ∈ ω∗. It is possible for each t ∈ ω∗ to single
out an open neighborhood Vt of t in ω∗ such that p̂ ↾ Vt is constant. Also it is
possible to find out an open neighborhood V̂t of t in βω such that Vt = V̂t∩(ω∗).

From the fact that βω =
⋃{

V̂t : t ∈ ω∗} ∪ {{n} : n ∈ ω
}
is compact it can be

deduced that there exists a finite family
{
V̂t1 , ..., V̂tk , {n1}, ..., {nj}

}
covering

βω. Also it can be claimed that ni /∈ V̂tl for any i, l. Then it is possible to
introduce the mapping p : βω → R defined by:

p(t) = p̂ ↾ Vti for t ∈ V̂ti , i = 1, ..., k

or

p(t) = 1 for t = ni, i = 1, ..., j.

It can be observed that the mapping p is continuous. Namely, if t0 ∈ ω, then
{t} is an open neighborhood of t0. If t0 ∈ ω∗, then t0 ∈ Vti ⊆ V̂ti for some i
such that 1 ≤ i ≤ k. If it is assumed that the net tδ → t0 is in βω, then (tδ) is

eventually in V̂ti and eventually

p(tδ) = p̂ ↾ Vti(tδ) = p̂ ↾ Vti(t0) = p(t0).

Therefore, it follows that p(tδ) → p(t0) and p is continuous at t0. From the fact
that p : βω → R it is obvious that p ∈ C(βω) and |p(t)| = 1 for all t ∈ βω
and - consequently - p ∈ ∂e[BC(βω)]. It can be also observed that p̂ = p ↾ ω∗ =
π(p). Consequently, it is straightforward that ∂e[BC(βω\ω)] ⊆ π(∂e[BC(βω)]).
Undoubtedly, this inclusion can be reversed and the theorem is proved. �

Recall that a closed subspace M of a real normed linear space E is said to
be proximinal in E if for each point x ∈ E it is possible to find out the point
y ∈ M such that ‖x− y‖ = inf {‖x− z‖ : z ∈ M}. Then it is possible to state
the following theorem (cf. [12]):

Theorem 7 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space, ℓ∞(E) be the ℓ∞−sum of countably many copies of E and NU ={
(xi) ∈ ℓ∞(E) : lim

U
‖xi‖ = 0

}
be the closed ideal in ℓ∞(E). Then the ideal NU

is proximinal in ℓ∞(E).
Proof. Recall that NU is isometrically isomorphic to the ideal I = {f ∈

C(βω) : f(t) = 0 for all t ∈ ω∗} and ℓ∞(E) is congruent to the space C(βω)
(i.e., NU

∼= I and ℓ∞(E) ∼= C(βω), respectively) (Propositions 1 and 2). Then
it must be shown that the closed ideal I is proximinal in the space C(βω).
Suppose that f ∈ C(βω) and F = f ↾ ω∗ ∈ C(ω∗). From Tietze’s Extension
Theorem it is possible to find out the function h ∈ C(βω) such that h ↾ ω∗ =
F = f ↾ ω∗ and ‖h‖ = ‖F‖ = sup

t∈ω∗

|h(t)|. It is clear that f − h ∈ I and

‖f + I‖ = ‖h+ I‖ = inf{‖h− g‖ : g ∈ I} ≤ ‖h‖ = ‖h ↾ ω∗‖ = ‖f ↾ ω∗‖. Also
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for any g ∈ I it follows that ‖h− g‖ ≥ ‖(h− g) ↾ ω∗‖ = ‖h ↾ ω∗‖ = ‖f ↾ ω∗‖.
Consequently, ‖f ↾ ω∗‖ = ‖f + I‖. Suppose that g0 = f − h, then g0 ∈ I and
‖f − g0‖ = ‖h‖ = ‖f ↾ ω∗‖ = ‖f + I‖ and ‖f − g0‖ = inf{‖f − g‖ : g ∈ I}.
Therefore, I is proximinal in C(βω) and from the identification of NU with I it
follows that the ideal NU is proximinal in ℓ∞(E). �

In order to prove our main corollary we are forced to refer to the theorem
obtained by Godini (cf. [8]). Namely:

Theorem 8 (Godini). If E is any real normed linear space, M ⊆ E is a

closed subspace and r : E → E/M is the quotient mapping, then the following

conditions are equivalent:

1/ r(BE) = BE/M ,

2/ r(BE) is closed in E/M ,

3/ M is proximinal in E.

Then it is possible to state the following corollary:

Corollary 9 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space and ℓ∞(E)/NU be its ultrapower. Then

Bℓ∞(E)/NU
= co

(
∂e

(
Bℓ∞(E)/NU

))
.

Proof. It can be immediately seen that Bℓ∞(E)/NU
= SBℓ∞(E)

=
r(co(∂e(Bℓ∞(E)))) = co(r(∂e(Bℓ∞(E)))) = co(∂e(Bℓ∞(E)/NU

)). �

5.2 Smooth points of the unit ball Bℓ∞(E)/NU
.

In the previous section it was indicated that the quotient mapping q :
ℓ∞(E) → ℓ∞(E)/NU for any infinite dimensional nonsuperreflexive Banach
space E preserves extreme points of the unit ball Bℓ∞(E)/NU

. But this does
not hold for smooth points. It can be demonstrated that the unit ball Bℓ∞(E)/NU

has no smooth points (cf. [12]).

Theorem 10 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space and ℓ∞(E)/NU be its ultrapower. Then the unit ball Bℓ∞(E)/NU

has no smooth points.

Proof. From the identification (under CH) of Banach space ultrapower
ℓ∞(E)/NU with the space C(ω∗) it follows that it must be demonstrated that
for the function f ∈ C(ω∗) such that ‖f‖ = 1 the set A = {t ∈ ω∗ : |f(t)| =
‖f‖ = 1} is nonempty and contains more than one element. It can be observed

that the set A =

∞⋂

n=1

{
t ∈ ω∗ : |f(t)| > ‖f‖ − 1

n

}
is Gδ subset of ω∗. From ([14])

it is known that A has nonempty interior and - consequently - contains a clopen
subset of the Stone-Cech remainder ω∗. From the fact that ω∗ has no isolated
points it is deducible that card(A) ≥ 2. Then it is obvious that the function f
is not a smooth point of the unit ball BC(ω∗) and our theorem is proved. �

It should be observed that the smooth points of the unit ball Bℓ∞(E)
∼=

BC(βω) can be identified with the points of Fréchet differentiability of the norm
of ℓ∞(E). It follows from the fact that if f ∈ BC(βω), ‖f‖ = 1 and f peaks at
t0 ∈ βω, then t0 ∈ ω is an isolated point of the Stone-Cech compactification βω.
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7. Complemented subspaces of ℓ∞(E)/NU

It is known that any closed subspace M of any Banach space E is said
to be complemented in E if the Banach space E can be written as a direct
sum of M and a closed subspace N of E. Then the projection operator P :
E → M (i.e., the mapping of E onto M along N) is continuous; M and N are
termed complementary subspaces and E can be written as follows: E = M ⊕N .
Rosenthal (cf. [7]) showed that if the space T is extremally disconnected and a
Banach space E has no copy of the space ℓ∞, then every bounded linear operator
U : C(T ) → E is weakly compact. It will be seen that Rosenthal’s result
can be easily generalized to the case of nonreflexive Banach space ultrapowers
ℓ∞(E)/NU (cf. [12, 13]).

Theorem 11 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space. If M is an infinite dimensional complemented subspace of a

Banach space ultrapower ℓ∞(E)/NU , then M contains a subspace which is iso-

metrically isomorphic to the ℓ∞−sum of countably many Banach spaces.

Proof. In this proof it must be demonstrated that if the subspace M contains
no ℓ∞−sum of countably many Banach spaces E, then M is finite dimensional.
Namely, define the continuous projection operator P : ℓ∞(E)/NU → M (i.e., the
mapping of ℓ∞(E)/NU ontoM along its complement) and the quotient mapping
q : ℓ∞(E) → ℓ∞(E)/NU . From the above mentioned Rosenthal’s result and the
facts that ℓ∞(E) ∼= C(βω) and the space βω is extremally disconnected it follows
that the composition operator U = P ◦ q is weakly compact. Consequently, it
can be seen that U(Bℓ∞(E)) is relatively weakly compact and from Theorem 3
it is deducible that P (Bℓ∞(E)/NU

) = U(Bℓ∞(E)) is also weakly compact. Hence,
we obtain that the projection operator P is weakly compact and - basing on
the relation of congruence ℓ∞(E)/NU

∼= C(ω∗) - it is observed that P 2 = P
is compact. Then it is straightforward to see that the subspace M is finite
dimensional. �

Immediately we get the following result (cf. [12, 13]).

Corollary 12 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space and ℓ∞(E)/NU be its ultrapower. Then ℓ∞(E)/NU has no infinite

dimensional complemented subspaces which are separable or reflexive.

In the next theorem we are going to show that any nonreflexive Banach space
ultrapower ℓ∞(E)/NU is isometrically isomorphic to its square ℓ∞(E)/NU ×
ℓ∞(E)/NU with an adequate norm (cf. [12, 13]).

Theorem 13 (CH). Let E be any infinite dimensional nonsuperreflex-

ive Banach space and ℓ∞(E)/NU be its ultrapower. If the square ultrapower

ℓ∞(E)/NU × ℓ∞(E)/NU has the norm ‖(x, y)‖0 = max(‖x‖ , ‖y‖) where x, y ∈
ℓ∞(E)/NU , then there exists an isometric isomorphism Z of ℓ∞(E)/NU ×
ℓ∞(E)/NU onto ℓ∞(E)/NU .

Proof. Let A and B be two nonempty disjoint clopen subsets of the Stone-
Cech remainder ω∗ such that A∪B = ω∗. Recall that the Parovicenco space ω∗
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is totally disconnected and each nonempty clopen subset of ω∗ has the following
form: clβωD\ω where D ⊆ ω is infinite. Also each such clopen subset is home-
omorphic to ω∗. Then it is possible to find out the following homeomorphisms:
φ : A → ω∗ and φ : B → ω∗. For two functions f, g ∈ C(ω∗) define the operator
Q(f, g) = h such that

h(t) = f(ϕ(t)) if t ∈ A

or

h(t) = g(ϕ(t)) if t ∈ B.

It is obvious that h ∈ C(ω∗), for assume that tδ → t and tδ, t ∈ ω∗. If t ∈ A,
then tδ is eventually in A and the sequence tδ is convergent to t in A. As
the result of this presupposition it is obtained that ϕ(tδ) → ϕ(t) and h(tδ) =
(f ◦ ϕ)(tδ) → (f ◦ ϕ)(t) = h(t). Analogously, if t ∈ B, then h(tδ) → h(t). Thus
h ∈ C(ω∗) and the operator Q : C(ω∗) × C(ω∗) → C(ω∗) is linear. Now we
want to show that Q is onto. Namely, for h ∈ C(ω∗) suppose that f = h ◦ ϕ−1

and g = h ◦ ϕ−1. Then it is obtained that Q(f, g) = h and

‖Q(f, g)‖ = sup {|Q(f, g)(t)| : t ∈ βω\ω}

= max (sup {|f(ϕ(t))| : t ∈ A} , sup {|g(ϕ(t))| : t ∈ B})

= max (‖f‖ , ‖g‖) = ‖(f, g)‖0 .

Therefore, it can be easily observed that Q is an isometric isomorphism of
C(ω∗)× C(ω∗) onto C(ω∗). �

From the above theorem it can be proven that any nonreflexive Banach
space ultrapower ℓ∞(E)/NU can be represented as a direct sum of two closed
subspaces which are isometrically isomorphic to ℓ∞(E)/NU (cf. [12, 13]).

Corollary 14 (CH). Let E be any infinite dimensional nonsuperreflexive

Banach space and ℓ∞(E)/NU be its ultrapower. Then ℓ∞(E)/NU = M ⊕ N
where M and N are closed subspaces of this ultrapower. Both subspaces M and

N are isometrically isomorphic to the ultrapower ℓ∞(E)/NU .
Proof. Suppose that Q is the operator from the proof of the previous theorem

mapping C(ω∗) × C(ω∗) onto C(ω∗). Then these subspaces M and N can be
represented as M = Q(ℓ∞(E)/NU × {0}) and N = Q({0} × ℓ∞(E)/NU ). Con-
sequently, M and N are isometrically isomorphic to the spaces ℓ∞(E)/NU ×{0}
and {0}×ℓ∞(E)/NU (respectively) and each of these spaces is isometrically iso-
morphic to the Banach space ultrapower ℓ∞(E)/NU . From the fact that M and
N are closed subspaces it follows that ℓ∞(E)/NU × {0} and {0} × ℓ∞(E)/NU

are complementary subspaces. Hence, it can be proved that ℓ∞(E)/NU =
Q(ℓ∞(E)/NU × ℓ∞(E)/NU ) = Q(ℓ∞(E)/NU × {0}) ⊕ Q({0} × ℓ∞(E)/NU ) =
M ⊕N . Therefore, the following formula is obtained M ∼= N ∼= ℓ∞(E)/NU . �

6. Concluding remarks

It should be stressed that the relation of isometric isomorphism between
nonreflexive Banach space ultrapowers and the space of continuous, bounded
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and real-valued functions on the Parovicenko space (which occurs under CH),
i.e., ℓ∞(E)/NU

∼= C(ω∗) is very helpful in proving theorems about these model-
theoretical constructions. It was demonstrated that if the Continuum Hypoth-

esis holds and E is any infinite dimensional nonsuperreflexive Banach space,
then its ultrapower ℓ∞(E)/NU is always congruent to the space C(ω∗). This
identification allowed to answer several questions concerning the structure of
nonreflexive Banach space ultrapowers.

In the future it is planned to show (using the above mentioned Representa-
tion Theorem) that all nonreflexive Banach space ultrapowers are (as Banach
spaces) primary. Consequently, this fact will enable to demonstrate that every
nonsuperreflexive Banach space can be represented - from the model-theoretical
point of view - in the form of its primary ultrapower.
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