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Abstract: The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.
Currently there lacks a compact approach to model the hybrid dynamics, especially in modern machine tool application, due to the
difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics. The extended
transfer matrix method (E-TMM), which extends elements in three-dimensional space with higher matrixes, is proposed to simplify the
modeling process of the hybrid dynamics. The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body, joint
and flexible body are studied in details. A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to
demonstrate the E-TMM modeling process. By using E-TMM, the spindle head unit is simplified as a topological network consisting of
the three types of element, i.e., 3D vibrant rigid body, joint and flexible body, including 11 rigid bodies, 14 joints and 1 3D-Timoshenko
beam. Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector
transformation. The dynamic characteristics of the spindle head, such as natural frequencies, dynamic flexibility, etc. can be predicted
by solving the obtained model. Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis
of the parallel mill-turn tool spindle head. The E-TMM is capable of modeling the dynamics of machine tool structure with no
requirements of deducing and solving the sophisticated differential equations. Moreover the E-TMM provides a simple and elegant tool
for hybrid dynamic analysis in future dynamic design of machine tools.
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Nomenclature
Tk Transfer matrix of joint element A Cross-sectional area of the beam
Tr Transfer matrix of spatial vibrant rigid element E; Constant matrix during derivation
Tri Transfer matrix of 3-D Timoshenko beam element mz Beam bending moment in Z direction
Tr Transfer matrix of FEM Element with reduced DOF qy Beam shearing force in Y direction
T; Transfer matrix of element i’. P Density of the beam
Ty Transfer matrix of element ‘i with multiple inputs or outputs . . L
! . . 07 Angular displacement in Z direction
on input side.
To; Transfer matrix of element ‘i with multiple inputs or outputs . L
g . Iz Cross sectional moment of inertia
on output side.
Zin State vector of input point E Elastic modulus of the beam
Zous State vector of output point G Shear modulus of the beam
Z,, State vector of connection point between element ‘p’ and P The coordinates square matrix of point ‘B’ relative to point ‘4’. While
element ‘q’; The base plate and the element end are regarded ‘A’ or ‘B’ is written as ‘P;;’, it means the connection point of element
as element ‘0’. ‘7" and ‘.
Zr; Input state vector of element ‘/” with multiple inputs or .
J GAs Shearing rigidity of the beam GAS=GA/x
outputs
; Output state vector of element ‘i’. with multiple inputs or
Zoi i P P Ks Shape factor of the beam
outputs
K The equivalent stiffness matrix of joint element L Identity matrix of i x i
C The equivalent damping matrix of joint element O Zero matrix of i x j
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1 Introduction

The hybrid dynamics of multi-rigid-body and
multi-flexible-body system has become the mainstream
of multi-body dynamics study during recent decades!" .
Many applications has been found in the complex
mechanical systems. In a machine tool, the elements
such as the large-span transverse beam, the links in
parallel mechanism are modeled as flexible bodies
when the detail analysis is required.

Generally, the overall dynamical equations are
implemented to describe the different motions of the
hybrid systems. For instance, the ordinary differential
equations (ODE) are used for modeling the motions of
the rigid-body system, and the partial differential
equations (PDE) are used for describing the motions of
flexible-bodies and the algebraic equations or ordinary
differential equations are used for the boundary
conditions” *!. In most cases, such complicated hybrid
equations can not be practically applied in the real
world. The Finite Element Method (FEM) software has
a great advantage in dealing with single component, but
it has a great limitation for multi-body systems'.
ZAEH proposed a new method for simulation of
machining performance by integrating finite element
and multi-body simulation (MBS) for machine tools'.
To predict the machining results exactly, large
movements on flexible structures have to be calculated.
With the specific integration of FEM and MBS for the
domain of machine tools it is possible to predict the
dynamic machine behavior. The simulation system is
based on the relative nodal method for large
deformation problems. Some other commercial
software packages for multi-body dynamics analysis
may be powerful in dealing with multi-body systems,
but there is also the limitation when modeling the
flexible bodies and joints.

Transfer matrix method (TMM) was first proposed
by Prohl"”). Subsequently, the effects of damping and
stiffness of the fluid film bearing were included by
Koenig™, Guenther and Lovejoy™. Lund"® achieved
significant advances in the TMM by considering the
effects of gyroscopic, internal friction and aerodynamic
cross-coupling forces. The TMM, without the
requirement of the overall dynamical equations of the
system, demonstrates the better modeling flexibility
when applied to the 1~2 dimensional dynamic systems
such as the rotor, spindle and gear transmission
chain .Bansal and Kirk!""! applied the TMM in modal
analysis for calculating the damped natural frequencies
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and examining the stability of flexible rotors mounted
on flexible bearing supports. Lund"?' presented a
scheme for estimating the sensitivity of the critical
speeds of a rotor to change the design factors. LEE!"
used TMM to analyze the steady-state responses of
rotor-bearing systems with an unbalancing shaft.

TMM is also easier to program with less calculations
so that it has found the successful engineering
applications. RUI Xiaoting!"* ' firstly applied TMM in
the gun dynamics analysis.

The TMM uses a mixed form of the element
force-displacement relationship and transfers the
structural behavior parameters (state array) from one
section to the other. Hence, the transfer matrix method
produces a system of equations that are simpler in
comparison to those produced by the stiffness method.
Meanwhile, the TMM still has a great limitation when it
applied to the hybrid dynamic systems with
multi-dimensional multi-rigid /flexible bodies.

The work in this paper extends the TMM, so called
extended Transfer Matrix Method(E-TMM), to meet the
requirement for modeling the hybrid dynamic system
especially for the machine tools. The paper is organized
as follows: in section 2, the extended transfer matrix
method is presented. Then, the detailed modeling
process of the parallel Mill-turn tool spindle head
driven by dual-linear motors is proposed in Section 3.
Solution, simulation results and experiment verification
are presented in Section 4. Some concluding remarks
are given in Section 5.

2 Extended Transfer Matrix Method

The classical TMM utilizes a marching procedure,
starting with the boundary conditions at one side of the
system, and successively marching along the structure
to the other side of the system. This method is
particularly suitable for “chain linked” structures such
as rotor systems. The state of the rotor system at a
specific point is transferred between successive points
through transfer matrices. The basic elements in
classical TMM are of 1~2 degree of freedom (DOF)
generally. Its application in machine tools is mainly
concerned with the dynamic analysis of spindle
assembly and the torsional vibration analysis of drive
system[16].

As for the whole machine tool assembly, its structure
is not only a “chain link” but also a complicated
“network” especially for parallel/ hybrid machine tool.
Meanwhile the actual vibration of the whole machine is
always a multi-dimensional issue.

In order to use this method in the dynamic analysis of
the whole machine tool assembly, we extend the basic
elements with 6 DOF in three-dimensional space.
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Each element’s mathematical model is a matrix. The
dynamic modeling of the mechanical system can be
obtained as a higher dimensional matrix by deducing
the complicated elements network with the idea of state
vector transmission. It is easy to acquire the dynamic
characteristics by solving the overall equation with
higher dimensional matrix.

The basic elements including three-dimensional
vibrant rigid body, joint and flexible body are represented
as follows.

2.1 Joint element

In order to model the mechanical system
systematically, we use a generic model, as shown in Fig.
1, to represent the typical joints, such as linear guide,
bolt connection, bearing, etc. The equivalent dynamic
model of the joint element effecting between different
bodies is shown in Fig. 1.

Rigid/Flexible
Body 2

Rigid/Flexible
Body 1

Fig. 1 Definition of joint element

In Fig. 1, the couplings between two bodies are
simplified to 3 orthogonal linear-spring-dampers and 3
orthogonal angular-spring-dampers along the X-Y-Z
axes respectively. Its action spots are point ‘/n’ on Body
1 and point ‘Out’ on Body 2. In this equivalent dynamic
model, all we should do is to set the values of the
stiffness and damping of the spring-dampers in different
joints. For a ball bearing, the value of one angular
spring is near to zero. And for a linear guide, the value
of one linear spring is near to zero. The actual joint can
also be simplified by one or several joint elements
according to your physical demand. The equivalent
stiffness and damping in respective direction are

K = (kx ky kz ka kp ky)",C = (cx ¢y cz ca cB cy)" .

The state vectors of input point ‘/n’ and output point
‘Out’ in modal coordinate are

zZ, :(XYZABGFxFszTxTyTZ)ITn

Z,. =(XYZABGFxFyFzTx Ty Tz),,

According to the power balance equation, the
mathematical model of joint element can be obtained as

VA T.Z

ou — Lx4p, (1)

where Ty is the transfer matrix of joint element and

16><6 K ’
6x6 6x6

K=diog( ]
kx +jocx ky+jocy kz+ jocz -

-1 -1 -1
ka+joca kf+ jocf k;/+ja)c;/)

2.2 Spatial vibrant rigid body element

As shown in Fig. 2, it is a spatial vibrant rigid body
element with multiple inputs and multiple outputs.
Other elements are connected to the rigid body via
points ‘In1’~‘InM’ and points ‘Outl’~‘OutN’. Define
the state vectors of input point and output point in
modal coordinate as

Z,=(XYZABCFx Fy Fz,Tx, Ty, Tz, ---

Fx, Fy, Fz, Ix, Ty, Tz, - - - Fx,, Fy, Fz, Tx, Ty, sz)lr”
Z,,=(XYZABCFx Fy Fz, Tx, Ty, Tz, - -+

Fx, Fy, Fz, Tx, Ty, Iz, --- Fx, Fy, Fz, Tx, Ty, Tzn)(r,w

Considering a single input single output element, the
state vectors of input point and output point are

Zln:(XYZABCFxFszTxTyTz);

Z, =(XYZABCFxFyFzTxTyTz), .

The mass is m. The inertia matrix is J; relative to the
point ‘/nl’ in the connected coordinate with point ‘/nl’
as origin. The coordinates of point ‘/nl’, ‘Outl’ and
mass centre ‘C’ is shown in Fig. 2. Then the output of
the spatial vibrant rigid body element, according to the
law of mass centre motion and the law of momentum
moment relative to mass center, can be represented as

Eq.(2).

Out — "R In (2)
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Where
Ty is the transfer matrix of Spatial vibrant rigid body
element and

I 3 _PIO 03><3 03><3
T — 03><3 13 03><3 03><3
ol me’I, —maw’ P, I, 0,

mwzpco _wz(m})IO})IC+JI) Py I,

Py, is the coordinates square matrix of output point
relative to input point. P, is the coordinates square
matrix of mass centre relative to input point.

Outl ZOutZ - OutN

Fig. 2 Definition of Spatial vibrant rigid body element

The model of spatial vibrant rigid body with single
input and multiple outputs, multiple inputs and single
output, multiple inputs and multiple outputs, can also be
acquired by the same method according to your
requirement. In those cases, the state vectors of the
element may be different.

2.3 Flexible body element

2.3.1 3-D Timoshenko beam

The theory of Timoshenko beam considers the
moment of inertia caused by beam’s bending
deformation  and  the  shearing  deformation
simultaneously. It greatly improves the previous
theories of beam dynamics. When the beam’s modal
order is not very high and the beam is not slender
enough, its precision of dynamic parameters can greatly
be improved! M8 Thus the Timoshenko beam is
always used to model the cutting tool in the dynamic
analysis of machine tools.

In this paper, we assume the cutting tool as a
Timoshenko beam only with the transverse vibration
along X direction, ignoring the longitudinal and
torsional vibrations.

As shown in Fig. 3, it is the projection view of a
finite Timoshenko beam in the plane of XY and XZ.
Based on the force and torque equilibrium equations,
constitutive equations of bent beam and beam
deformation equations caused by shearing force, the
relationship between Z,,, and Z;, of 3-D Timoshenko

beam can be written as

Z,,=TyZ, 3)

where Ty is the transfer matrix of 3-D Timoshenko beam

element.
The detail derivation of T; is shown in the appendix.

vertical line of
cross section

y ’ neutral axis

q,+dgq, X

\

z/ 94 B 2’%*4’&”/ 0z

4 A
»_ vertical line of
cross section

neufral axis " [ q.+dq.

Fig. 3 Forces, moments, and torques acting on a finite
Timoshenko beam

2.3.2 FEM Element with reduced DOF

For other flexible parts in machine tools, we use
FEM Element with reduced DOF to describe. It has
been verified by plenty of experiments that there are
only a few lower order modal taking effect in actual
mechanism. So when analyzing the dynamic
performance of a mechanism, it is enough to get several
lower order modals so long as it can satisfy the
engineering precision requirement !,

In order to get the model of FEM DOF reduced
element, many existing FEM softwares can be used like
ANSYS, Nastran, ect. Choosing different DOF
condensation methods like R.J. Guyan static
condensation method, P.Mario dynamic condensation
method or modal condensation method, according to
different requirements, the FEM DOF reduced element
model can be easily obtained as a stiffness matrix, mass
matrix and damping matrix. In modal coordinate we
have

(-Mo* +ijCo+K)Q=F 4)

Assuming the input and output state vectors as Z,,
and Z,,,, we have

TF(EIZIn +E2Z0ut):E3Z1n +E4Z0m (%)
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where Ty is the transfer matrix of FEM Element with
reduced DOF and

T,=-Mo’ +jCo+K,

E,, E,, E; and E, are constant adjusting matrixes.

Thus we get the FEM Element with reduced DOF
that is described by main DOF. However, the new
model is still a physical model, of which the
condensation mass and stiffness are still equivalent
physical parameters. Consequently the FEM Element
with reduced DOF can be easily applied in E-TMM.

In the modeling process of the following section we
mainly use the 3-D Timoshenko beam element, spatial
vibrant rigid body element and joint element.

3 Dynamic modeling of spindle head

3.1 Mechanism of spindle head unit

A novel mill-turn tool spindle head driven by dual
linear motors, as shown in Fig. 4, is designed for a CNC
machine tool as a test bed in lab®". It is a functional
unit with one translation and one rotation using two
asymmetrical parallel linear motors. It is characterized
by a fixed platform, a moving platform (the spindle and
cutting tool in our case), and two kinematic chains
named main kinematic chain and secondary kinematic
chain linking between the fixed platform and the
moving platform. The main kinematic chain is a PR
assembly, which has one prismatic pair and one
revolute pair. The secondary kinematic chain is a PRR
assembly, which has one prismatic pair implemented by
linear guide system and two revolute pairs implemented
by knuckle bearings. For its simple kinematic chain,
high stiffness, high precision, and controllability, it can
be equipped in the turning-milling composite machine
tools.

Fig. 4 A novel spindle head driven by dual linear motors

3.2 Elements classification and element network
topology
As shown in Fig. 5, elements 2 and 4 are primary

sections of linear motors, element 11 is the electric
spindle, and element 26 is the tool. Element 11 is fixed
with element 8 via a clamp. Element 9 and 10 are
installed in element 1 by tapered roller bearings. Both
ends of link element 6 are connected with element 5
and element 7 via knuckle bearings. Element 5 is fixed
with element 3 by bolts, while Element 2 is fixed with
element 1 and element 4 is fixed with 3 by bolted
connection. Element 1 and element 3 are connected
with element O which is the base plate by linear guide
systems. Therefore, a simplified model of the
mechanism is shown in Figure 6.

Fig. 5 Moving parts assembly and coordinate systems

It can be clearly detected from Fig.6 that the
simplified model of the spindle head is not only a
simple “chain linked” structure but also a complicated
network with chain, branch and loop included.
According to the characteristic of the spindle head,
elements 1~11 are 3-D vibrant rigid bodies, elements
12~25 are joints, and element 26 is 3-D Timoshenko
beam. The relationship between the connection points
of the elements can represented by using a 12x1 state
vector, including 6 position variables and 6 force
variables.

Fig. 6 Topology network of the elements
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3.3 Elements state vectors and transfer equations
With regard to the element with one input and one
output, the state vector has the same form as

Z=(XYZABCFxFy FzTxTy Tz)"

As for the element with multi-inputs and

multi-outputs, such as element 1, 3 and 8, the state
vectors are different.

In Fig.6, it shows clearly that element 3 has two
inputs from element 12 and 13, and one output to
element 14. Its state vector Z;; can be written as :

Z1,3 = E1Z3,12 + E2Z3,13 (6)

I
where E, = ( 12X12j ,
0.
E,= (012><6 012><6j'

For element 8, it has three inputs and one output.
Define the state vector as

Z[,s = E3Zx,17 + E4Zx,19 + E5Zx,20 (7

1
Where E, =[ 1212 ] ,
0.
012x6 012><3 012><3
E4 — 03><(> R31 03><3 ,
03><(> 03><3 R31
06><6 06><3 06><3
Oy Oy Oy
E;=0,;, R, O, s
0, O,; R,
cosf,, —sind, O
R, =|sing, cosf, O
0 0 1

For element 1, it has two inputs and two outputs.
Define the state vector as

Z1,1 = E6Z1,24 + E7Z1,23 3

Zo,l = E6Z1,22 + E7Z1,21 )

where E,=E,, E, =E,.

The transfer equations of each element are as
follows:

To,lzo,l = TIJZI,l Zs,14 :7‘1423,14
Zz,zs = Tzzz,o Z(),IS = Tlszs,ls

z,,=12z,, |Z,=T.Z,,
z,,=-1z, |Z,=T,Z,

z, =12, |Z,,=TZ,
Z,,=TEZ,, |Z,,=T,Z,, 10)
Z,,=TE,Z, AZ, =TyZ,,
Z,,=T2,, |Z,,=T,Z,

Zz,,=1,Z7,, Zz,,=T,Z
Z,=T,Z,, |Z,=T,Z,,
Z,,=T,Z,,; Zz.,=T,7,,
Z,,=T,Z,, Zys . =T,52Z,, 5
Z,,=T1,Z, Z,,=T.72

L3 26,0 26425,26

,22

where T;;and T, ; are the transfer matrix of rigid body
with two inputs and two outputs; T; is the transfer
matrix of rigid body with two inputs and one output; T
is the transfer matrix of rigid body with three inputs and
one output ; T, T, Ts T, T, T, T;, and T;; are the
transfer matrixes of rigid bodies with one input and one
output; T,,~ T,, are the transfer matrixes of joints; T4
is the transfer matrix of 3-D Timoshenko beam.
In Eq.(10), the Eg and Eg are defined as

R21 03x3 03x3 03x3
Eg_ 03x3 R2l 03x3 03x3 ’
03x3 03x3 R2l 03x3
03x3 03x3 03x3 R2l
R32 03><3 03><3 03><3
Eg — 03><3 R32 03><3 03><3 4
03><3 03><3 R32 03><3
03><3 03><3 03><3 R32

0 0

—

cos#,, -sind,,
R, =|sinf,, cosb,, 0

cosb,, —sinb,,
R, =|sinf, cosf, 0|’
0 0 1}

where R,; and R;, are the coordinate transformation
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matrixes.

For elements with multiple inputs and multiple

outputs, we have

1;)1(E6Z122+EZ121) T}I(EGZ124+E7Z123) (11)
Z3,14 = T3 (E1Z3,12 + E2Z3,13) (12)
Z8,18 = Tx(E3Zx,17 + E4Zx,19 + E5Zx,2o) (13)

3.4 Equations of geometrical harmony
For element 3, it has the geometrical relationship as

(I(vx(v 0(7><12 ) 13 (I(vx(v 0(7><(7 ) Z3,12

I -P
_ [ 33 LERETCYE ](IM7 (5 )Z3,13

03><3 I

3x3

We can use Eq.(10) to obtain

E10Z12,0 = E11Z4,0 (14)
where E10 (sts O(»x(») 12

IX _Pzw 313
Ell:( . Bt ](I(»x(» 06><6) T

1

3x3

In the same way, for element 8 we have

Elzzl,zz:EnZl, =E,Z

ElSZ4,O (15)

12,0

where
I3x3 Px 17K 19 R31 03><3 03><6

E, R I,IT,-
03><3 3><3 Osxs 31 03><6
1 R o o

E[} 3x3 Pm K20 ( 31 R3x3 3x6JT207}0T21 S
03x3 3x3 03><3 31 03><()

E14 I(>><6 6><(>)T TE ];6]}>E8];5];]]4];El];2

Eys = (I Oy ) T, E, T LET IT, T.E, T, T,

15

For element 1, we have

E16Z1,22 :E17Z1,21 (16)

I, -P
where E :{ 3 Radhin J(I6x6 OM) )
03><3 I3><3

I, -P
E, :{ . ot J(I6x6 06><6)
03><3 I3><3

In addition, for the inputs of element 1 we have

E18Z24,0 = E19Z2,0 (17)
where Eg (16><6 06><6) 24

I3><3 _PP1 24823
E19 :{ o (I6><6 06x6)T23T2
03><3 I3><3

3.5 Establishment of the system transfer equation
Combining Eq.(6)~(13), we have

UIZI,ZZ + UZZI,ZI = U3Z24,0 + U4Z2,0 (18)
ZZ(),O = USZIZ,O + U()Z4,0 + U7Zl,22 + UXZI,ZI

where
U = TO,IE()
U,= T0,1E7

U,=T,,ET,

U,=T ET,T,

U; =L, T [,TLET, LETTETT.T,T.ET,
Us =L, T T, LET,LET TETTT,T.ET,T,
v,=1,1.11,1,E]T,T,

U, =T,T,T T.TTT,T,T,

26

Rewrite the equations above into the matrix form, we

have

U o VA
U1 U2 Z1,22 o 4 112x12 Zz,u 19
V4 - 12x12 12x12 11,0 ( )
U7 Ux 121 VA
012><12 _Us 12,0
012><12 _Us Z4,U

From Eq.(14), we have

(ZI,ZZ ] —
Z1,21

N

%)
S
=)
G

24,0

o
=
N
»
o

(20)

o N~
o ]
o
*
D
o

SRR
SICICIICS
:NN

N

o
R
o
=3
>
=Y

where
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T T
Ezo Ezs U3 012><12 L. .
E. E U 0 Substituting Eq.(20) into Eq.(15), Eq.(16) and
21 26 -1 4 12x12 ..
v U, combining Eq.(14), Eq.(17), we have
E, E,| = (L STRN W
U, U,
7 8
E23 sz OlelZ _Us
Ez4 Ez9 OlelZ _Ua
E16E20 - E17E25 E16E21 - E17E26 EmEzz - E17E27 E16E23 - E17E28 E16E24 _E17E29 Z24,0
Elezo _E13E25 E12E21 _E13E26 E12E22 _E13E27 E12E23 _E13E28 E12E24 - E13E29 Zz,o
E,E,, E,E, E,E,, E,E, -E, E.E, -E; Zn,o = 030><1 (21)
E; -E, 06><12 06><12 06><12 Z12,0
06><12 06><12 06><12 E, -E, Z4,o

Thus, we get the mathematical model of the
mechanic system in the form of matrix, as shown in
Eq.(21). When substituting the boundary conditions and
inputting the parameters of each element into the Eq.(21),
it is easy to acquire the dynamic characters of the spindle
head.

4 Solution and analysis of spindle head
dynamics

4.1 Acquisition of element parameters

The parameters of all elements must be acquired
before solving the equation. For rigid body element and
Timoshenko beam element, their parameters can be easily
acquired in conceptual design stage based on the
geometries and materials. While for joint element, its
parameters are generally acquired by experimental
identification, but when it is difficult to perform the
identification before the physical machine is established,
the empirical values will be adopted.

As for rigid body, its parameters including mass, inertia
matrix, mass centre, input point and output point, can be
acquired from 3D model. Table 1 shows the parameters of
element 8 calculated from CAD software.

Table 1 parameters of element 8

Mass m/ kg 24.07344289

0.14147845 — 0.00397908 — 0.00000009
Inertia matrix

parameters of Timoshenko beam element 26 in the spindle
head unit.

Table 2 Parameters of Timoshenko beam element

length // m 0.1
density o/ (kg'm®) 7850
cross sectional area s / m? 7.854x107
second moment of area I,/m* 3.14x10°®
second moment of area /,/m* 3.14x10°
elastic modulus E / Pa 2.0x10"
shear modulus G / Pa 8.0x10"
shape factor 0.9

Fig 7 shows the real part and imaginary part of the
normal transfer function from the identification test of the
linear guide joint near element 3. The identified
parameters are listed in Table 3.

g |

% L i

5 :

g0

o .2

£ 5-10 h

a § ! ! 1 1 |
=7 0 1000 2000 3000 4000 5000
~ Frequency f/Hz

407
20

imaginary part of
transefer function Im
o

L I: L ]
2000 3000 4000 5000

Frequency f/Hz

1
0 1000

Fig.7 parameter testing of linear guide joint

-0.00397908  0.19613529 — 0.00000012
J [ kgm’) ~0.00000009 — 0.00000012  0.21549826
Table 3 results of linear guide joint testing
Input point £,/ m (0,0.085.0) Tangential Normal Tangential Normal
Mass centre Pc/ m (-0.01598639, 0.01156835, 0) Stiff Stiff damping damping
Output point Pp / m (0,0,0) Ky/ (N-m™) K,/ (N-m™) Cy/ N-sm™) Cz/ (N'sm’™)
4.94x10’ 2.63x10° 115 360

As for Timoshenko beam element, the required
parameters include length, density, cross sectional area,
second moment of area (/z, Iy), elastic modulus, shear
modulus and shape factor. As shown in Table 2, it is the

4.2 Simulation results
According to the parameters above together with the
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boundary conditions, solving the Eq.(21) can easily
acquire the plot of dynamic flexibility. As shown in Fig. §,
it is the original dynamic flexibility on cutting tool nose in
Z direction. The cross dynamic flexibility plots of element
4’s driving force (linear motor primary) versus the
deformation on tool tip in X, Y, Z directions are illustrated
in Fig. 9. The dynamic flexibilities on cutting tool nose
are main dynamic characters of machine tools. Using the
E-TMM, we can easily obtain the dynamic flexibility of
any point in the mechanism versus the tool nose or other
point in any directions. And these dynamic characters are
worthwhile to determine the machining process
optimization of machine tools.
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Fig. 9 cross dynamic flexibility on tool tip

In addition, using the Eq.(21) and given boundary
conditions, we can also easily acquire the natural
frequencies, principal modes of vibration and static
deformation of any part in condition of some static forces.

4.3 Experiment verification

In order to verify the validity of this modeling
method, some experiments are conducted. As shown in
Fig. 10, the hammer test was implemented to make a
comparison of natural frequency values between
measurement and simulation. The impacting force and the
acceleration were collected to calculate the frequency

response function (FRF) and the natural frequencies.

) >
qr 1
AT N {
@ Small acceleration sensor @ Big acceleration sensor@Force-hammcr

@ Data acquisition card (-5) Charge amplifier @ software

Fig. 10 measurement equipments

As shown in Fig.11, it is the real frequency
characteristic and imaginary frequency characteristic of
the FRF from the measurement. Fig.11(a) is the FRF
when applying the force impact on element 4 in X
direction and measuring the acceleration output on
element 11 in Z direction. Fig.11 (b) is the FRF of when
applying the force impact on element 4 in X direction and
measuring the acceleration output on element 26 in Y
direction.
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According to the FREF, the natural frequencies are listed
in Table 4. It is indicated that the natural frequencies of
simulation and measurement are approximately identical.

Table 4 Natural frequencies Comparison of measurement
and simulation

order n 1 2 3 4 5 6 7

natural frequency of
. . A 96 335 592 682 792 876 1252
simulation fy/Hz

natural frequency of
; 105 355 590 685 795 870 1110
measurement fn,/Hz

Error e/% 8.6 5.6 0.3 0.4 0.4 0.7 12.8

5 Conclusions

(1) The E-TMM is proposed to model and analyze the
complicated mechanisms with hybrid rigid-bodies and
flexible-bodies. A dynamic model of a new type spindle
head unit with 11 rigid bodies, 14 joints and a
Timoshenko beam, is obtained successfully using the
E-TMM.

(2) Investigations have been carried out to study the
dynamic flexibility on cutting tool tip. Some simulation
based on the dynamic model was compared with the
experimental tests. The results demonstrate the E-TMM
model is valid with adequate accuracy. For further
investigation, more characteristics, such as principal
modes of vibration and static deformation, can also be
predicted based on the dynamic model and some
boundary conditions.

(3) The E-TMM proposed in this paper is capable of
modeling the dynamics of machine tool structure with no
requirements of deducing and solving the sophisticated
differential equations. So the E-TMM provides a simple
and elegant tool for dynamic analysis in future dynamic
design of machine tools, especially in multi-rigid-body
and multi-flexible-body system.
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Appendix

Detailed derivation of T7; is as follows.

As shown in Fig. 3, in the plane of XY, basic equations can
be obtained as follows

M:%(L,HM:% 1)
ox ot
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oq,(x,1) _ 0’ y(x,1)
a e 2)

00, (x,t) _ m_(x,t)

ox EI 3)
y_, 4 (x,1)
e G, “4)

Then the transverse vibration equation in XY plane of the
Timoshenko beam can be derived in Eq.(5) based on the
equations above.

pd pl &'y 'y

o'y pAdy pl, &'y _
YEL o o) =0 (5)

ox' " EI o EI ox’or

GA, EI, ot

Displacement of free vibration can be expressed as
y(xt)=Y(x)e” (6)
Substitute Eq.(6) into Eq.(5), we can get

4 y 2
dY+(p @
dx* G

pl.o’

pa’ dY pdw’ (-
d’  EL G4,

e

=0 (7)

The general solution of Eq.(7) is

Y(x)= A cosh A x+ A4, sinh A, x + A, cosA,x + A, sin 1,x

where
p) —\/ /ﬁ’+l(0'71)2 ?1(a+r) ’
b 4 2
5 pAd* o= Pk,\wz (N sz .
EI G E

Considering Eq.(1~4), we get

Y
o B(x) 8
= x)a
. ®
0, ).
where
cosh 4, x sinh 2,x cos A,x sin 4,x
A2 + A7 -2 2 ’
Lsinh A,x T4 cosh Ax T=% gin Ax - 2 cos A, x
Bw=| L "
C, cosh A, x C,sinh 2, x C, cos 4,x C,sin A,x
Ao’ Ao’ Ao’ Ao’
pEO sinh A4, x pLO cosh 4, x pEO sin A,x —%cosﬂ.zx

1 1

a=(A1,A2,A3,A4)T »C =EL(c+4)> C=EL(6-4)-

From Eq.(8), we can get

Y Y
©. B(0 ©. B(/
i | “BOa. || =B
Q.V 0 Q_,V 1
That is
Y Y
©: =B()B™'(0 ©:
M|~ OB (0) M.
9, ) 9, ),
Let be

Uy,
B()B(0)=

Then

Y Y

®: 2 22 ®:
M, - Uy, Uy Uy U M, (9)
0 0

v )i 41

Similarly in the plane XZ we can get

Z vll vl" v13 v14 Z
®‘ Vo Voo Va3 Vi ®‘
M\ B v!l v32 v33 v34 M\ (10)
Q: ! Voo Voo Vs Vu Q 0

Based on the assumption in section 2.3, we have
X) (100 0)X
Al Jo 10 0|4 1"
T.| oo 1 0| (11)
F) 000 1)\F

1
Considering

Z,=(X YZABCFxFszTxTyTz),T”
=(XY Z 40,0, Fx Qy Oz Tx My Mz),

Z,,=(XYZ ABC Fx Fy FzTxTy T2),,
=(XYZ A0, 0, Fx Qy Qz Tx My Mz),

and Eq.(9~11), we have

zZ, =T.7

Out Ti*“In

where
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