CHINESE JOURNAL OF MECHANICAL ENGINEERING
Vol. 24, No. *, 2011

DOI: 10.3901/CJME.2011.0 *.*** available online at www.cjmenet.com; www.cjmenet.com.cn

Iterative Learning Control Algorithm with a Fixed Step

WANG Yan" * and NIU Jianjun®

1 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
2 International petroleum exploration and production corporation, China Petroleum & Chemical Corporation,
Beijing 100083, China

Received June 3, 2010; revised January 24, 2011; accepted January 26, 2011; published electronically January 28, 2011

Abstract: Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control
implement with no need of mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still
follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and
integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm
data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is
proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of
the control error, which could enormously reduce the computation and demanded storage size, also improve the robust of the algorithm
by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed
step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a
time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing, and
evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder
system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the
relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new
algorithm proposed here. And it is worth to notice that this algorithm is still simple and keeps strong robust after improvements, which
provides new ideas to the research of iterative learning control algorithms.
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Generally, the methods of ILC have many advantages
and are widely applied in control systems” ™. For example
they are suitable to many linear or nonlinear dynamic
systems with high uncertainty, but in simple algorithm
forms they demand less knowledge about the plant. The
computation for the methods is not complicated. Moreover,
it is easy to obtain high precision control with ILC.
Consequently, how to apply them to solve problems has
been the interest of many scholars. In particular, there is
extensive research on combining ILC with other methods to
(1) enhance performance. For instance, ILC integrated with

fuzzy sliding-mode-control is used on hydraulic servo
system and achieves a satisfying control effect”’. TAYEBI,

1 Introduction

It was UCHIYAMA, who firstly created the concept of
ILC in 1978 on robot trajectory track!'!, but because Ref[1]
was written in Japanese, little attention had been paid to the
context till ARIMOTO, et al®!, at Osaka University
published their pioneering works based on essence of ILC.
They put forward a D type learning regulation for ILC:

U ()=, O+ Lé (1), k=12:N

where, kis the iteration number; u,,,(f) is the k+1th
iteration learning control input at time ¢; u, (¢)is the & th
iteration learning control input at time ¢; L is the
iterative learning rate; ¢, (¢) is the derivative of the control

error e, (t); N is anatural number.
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et al'"”, proposed robust ILC and applied on robot control.
BRISTOW!"" reported about a method combining a
time-varying filter with ILC for systems with uncertainty.
WANG, et al''?!, put forward fuzzy adaptive ILC. MI, et al
(31" combined ILC with PID for ABS system for vehicles
and QIAN, et al'"*!, designed parallel ILC and PID control
to alleviate the speed fluctuating for speed control on
synchronous motor.

The above ILC methods are just the varied or improved
ones from the original ILC idea proposed by ARIMOTO in
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that the iterative learning rate is deduced from linear or
nonlinear combination form control errors and their
derivative and integral, the crux for these methods is to find
a suitable iterative learning rate to ensure sound
convergence and stability!’”. And in the process of
computing iterative learning rate, the data needed to be
stored includes reference trajectory data, control errors and
integrals. Therefore conventional ILC methods demand
controllers with a big storage capacity and quick computing
speed. Consequently, the ILC approaches would challenge
the commonly used control units such as
Single-Chip-Micyoco  (SCM) and  small  sized
Programmable Logic Controller (PLC) with two problems.
One is that SCM is not good at dealing with floating data,
let alone mass data computation. Another is that SCM has a
small storage capacity, for example, for 89C52 SCM, the
inner storage size is 8 KB, while the maximum outside
extended storage size is 32 kB.

Therefore, it is essential to find new methods that
demand less memory and computation resources but have
satisfying control precision and convergence speed based
on ILC. Different form ARIMOTO's idea, a new approach
for ILC with a fixed step is proposed. The essence of the
new method is to select a suitable fixed step for ILC, while
the positive or the negative of the control error will decide
the plus or minus of the control step, and the value of the
control error itself is irrelevant to control law design. The
following sections include how to design ILC with fixed
steps, the stability analyses for the new approach, and the
validity verification of the method through simulation
researches and real plant control.

2 Scheme of ILC with Fixed Step

Inspired by the principle of ILC, meanwhile taking into
factors such as nonlinear property of a plant, incomplete
model of a system and outside disturbance, we propose a
new ILC method with a fixed step as illustrated in Fig. 1.

Control value Uy (t) . Plant Vi (t) Ya (t) Expected output
register g an data bank
A
u, (1) Au :':

(@)

AAu

M ——

M e, (1)

(b)

Fig. 1. Scheme of ILC with the fixed step

In Fig. 1, y,(t) isthe Fk thiterative output attime ¢ ;

ya(t) s
expected output at time ¢; M is the step for the iterative

Au is the iterative learning increment value;

learning increment value.

Fig. 1 and Eq. (1) show that the iterative learning step for
the new ILC has special definition. Replacing Lé, (¢) in
Eq. (1) by Au results in

u,O=u,O)+Au, k=12, N . 2)
We further defined
Au=sgn(e, (1))-M, M>0. 3)

When compared with conventional ILC, the iterative
learning increment value expressed in Eq. (3) has three
apparent advantages: less computation with only addition
or subtraction but no time-consuming, laborious differential
and integral operating; smaller storing requirement with
only »,(#), u,,,(f), and M to be stored; smoother
operating process for the system because no error
amplification result forms differential term.

3 Convergence Analyses for the Method

Take a linear system with repetitive output task as
example, and let equation in status space be

{fck (t) = A(t)x, (1) + B(t)u, (1) @

Y @) =C)x,(?)

where, k=12,-,N ; x,(t)eR"is the k th iterative
state vector at time ¢; u,(f)e R is the kth iterative
input at time ¢; y,(f)e R is the kth iterative output
at time ¢; A(¢), B(¢), and C(¢) are matrices to the
equation of state for the system.

Define
1 f@= C(t)ﬁ@(t,r)B(t)dr , te[0,T],
where, T is the period of one cycle; @(¢,7) is the state

transfer matrix for the matrix A(¢).
(2) A=max(f(¢)).

Theorem

To a system described by Eq. (4) under control by
algorithm of ILC with the fixed step M, only
if f(1)>0(¢te[0,7]), then when k > , y,(¢) will
convergent to y,(r) within 7e[0,7]and the iterative

control error will meet the expression |e|<M -A.

Proof
It is presumed that the system initial state is set the
same for each of iterations. Thus it is ensured that each of
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3.

iterations has the same initial condition, that is
X1 0)= X 0). (%)
At the very beginning of the £ th iteration, the solution

to the system described by Eq. (4) to the control
inputu, (t) is

X, (1) = (1,0, (0) + [ (1, D)B(0)u, (7)dz (6)

X ()= D(1,00x,.,,(0) + [ Dt DBy, ()T . (7)

In the k& +1th iteration, the iterative control error is

€)=y, (O) =y, (@) )
In the £ th iteration, the iterative control error is
e ()=y,()=y, ). ©)
Combining Eq. (8) and Eq. (9) results in
e =6, (0= 7,0, 0
=C(O[x, ()= x,,(0]. (10)

Applying Eq. (6) and Eq. (7) to Eq. (10) results in

€1 (t) —& (t)

= COf @B (7) -, (DM . (1)
Applying Eq. (2) to Eq. (11) results in

e.,t)—e (t)=—Au- C(t)f; D(t,7)B(r)dr. (12)

Applying Eq. (3) to Eq. (12) results in
¢1(0) = ¢, (1) ~sgn(e, (DM - C)[ D(1. D)B(D)d7 . (13)

And according to definition (1), Eq. (13) can be
rewritten as

e (D =e,()-sgn(e, M - f(1).  (14)
From Eq. (3), M >0 is known. Therefore, for the
iterative control error in Eq. (14), only if f(r)>0
(t€[0,7]), the system expressed in Eq. (4) is convergent
under the ILC with the fixed step.
Applying definition (2) to Eq. (14) results in

e (1) =e (1) —sgn(e, ()M -A. (15)

From Egq. (15) it can be concluded that under the novel

control law in Eq. (2) the system by Eq. (4) is convergent,
and absolute value of iterative control error is confined by
formulation:

lel<M-A. (16)
Permit completed.

Because A is decided by the system nature in Eq. (16),
the value of |e| is proportional to the value of M: the
bigger M is, the bigger the iterative control error is. But in
most cases, a compromise must be made between the
convergent speed and the control error constraint in a
control process. Therefore the value of M cannot be

selected randomly as a very small value.
In the theorem, the convergent condition for a system in
Eq. (4)is

£t =C@) J.;@(t,z')B(t)dz' , 1e[0,7].

But to a time-variant system, @(f,7) has a complicated
form, and it is necessary to rely on computer or other
means to obtain f(¢). The following is the example of

derivation for f(¢) in two typical linear systems.

3.1 Ais a upper triangular matrix
and its dimension is 2x2
For a system by Eq. (4), let

a a
A:[él a:j,z;:(bl b)), C=(q ¢),

then the transfer matrix for A is

@, (t-1) alz (ean(lfr) _ ea22 ([71))
e ay,—a, (17)
0 e“zz(l*T)
Applying Eq. (17) to
f@)=C]le" "Bdz
results in
f(f) = hl(eaul _1)+h2(ea221 _1) ’ (18)
1 b
where i, =—(b¢ +M) 5
ay a, —a,
1 a,b,c
h, = (bc, - 1221)'
22 a, —a,

3.2 Ais adiagonal matrix
For a system by Eq. (4), let
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A 0 0 O
0 4 0 0 4.2 Digital simulations
A= o o - ol h#EL# A Based on the principle illustrated in Fig. 1 for a fixed
0 0 0 4 step ILC, considering the control input limitation for the
" plant, the scheme for the plant based on our assumptions is
B= (b b b )T shown in Flg 2.
-1 2 n ’
C= (C1 c, c, ) , Contr s u (1)

then the transfer matrix for A is

el 0 0 0
0 R 0 0

A(t-7)
¢ 7 19
0 0 0 et
Applying Eq. (19) to
S =C[ " Bdr,
results in
f(H= J'; (blclea. (t-7) +b2czej”~(’*” +~~~+bncnei”(H))dr
:%(eiﬂ_1)_;'_%(6121_1)+_..+%(61”1_1)' (20)

4 = z

Meeting condition f(¢) >0 requires

7= 26 (o 1y 2% (o _yy e B 2y,
A 4 p

tel0,T]. n 1)

4 Simulation Verification

In order to verify the feasibility as well as robustness and
validity of our approach for ILC with fixed steps,
simulations are carried out on a second-order plant with
time-variant property. And the matrices for the plant in the
state space are

-1 1 0
A= , B=| |, C
[0 —2—0.01t] [1]

The expected output trail is y,(¢) =12t°(1—¢) and the
initial state is considered asx, (0)=0(k=12,---,N ). In
the whole control process iterative control error must
meet| e(t) |< 0.01,¢€[0,0.8].

(0 1).

4.1 Computation the iterative step M
From the parameter of the plant, we can get

A= max f(1)=0.3991 22)

To meet |e|<0.01 in Eq. (16), we can set M under
condition of M < 0.0251.

+10,

j— 10

Au
-
Data bank
+0.01
e (1) e
—0.01
(b)

Fig. 2. Principle of simulation plant

To the plant, the simulation time span belongs to
t €[0,0.8]s, sampling time period is A¢=0.001s, and M is
0.01V. After 844 iterations with the approach the iterative
control output and corresponding expected results are
shown in Fig. 3 at iteration 844 and the control error curve
is shown in Fig. 4. In order to attest the convergence at the
same time sequence for all iterations, control errors at time
0.6s are shown in Fig. 5.
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Fig. 3. Expected and simulation output
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Fig. 4. Iterations control error curve

Fig. 3 shows that for the simulating plant the output
meets expected value well under ILC with a fixed step after
844 iterations. And from data in Fig. 4, it can be seen that
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in the iterative process the control error satisfies demand.
Results form Fig. 5 show that the control error decreases
and approaches zero with the increasing iterative times.

Displacement error e /m

L L L L L L
300 400 500 600 700 800 900
Iterative times k

0 l(I)O 2;)0
Fig. 5. Control errors at time 0.6 s

4.3 Robustness test

Supposing a random unrepeatable disturbance with
amplitude 0.02 is mixed in the expected output signal, then
the new expected output has the form as follows:

Y (@) =y, (0)+0.02d() , (23)
where d() is the random function.

The control parameters in simulation are set as described
in section 3.2. Fig. 6 shows the resultant control errors of
the 852th iteration and Fig. 7 shows control errors at time
0.6s for all iterations.

x 10

10

Displacement error e /m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time ¢ /s

Fig. 6. Control errors of the 852th iteration
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o < e e
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Fig. 7. Control errors at time 0.6s for all iterations

From Fig. 6 and Fig. 7, the control aim|e|<0.01 is
achieved after 852 iterations and the iteration number
almost keeps the same with the proposed method, although
disturbance amounts to double size of the control aim.
Although the method with fixed step has a simpler structure,
the comparable simulation results proof robustness.

4.4 Relation between M and convergence speed

Eq. (16) shows that both convergence speed and control
precision are closely related to M and comparative
simulation is carried out to further demonstrate the relation
among them. Statistic data in table shows the relation
between step M and iteration numbers at convergent point,
where the control aim is |e|<0.01 and k is iteration
number needed for convergence.

Table Step value and iteration number

Parameter Value

Step M /V 0.005 0.010 0.015 0.020 0.025 0.040

ITteration number £ 1 683 844 562 424 341 UA

Note: UA is unachievable.

Data in table show that the bigger value M is, the faster
convergence speed is. But the value of M is restricted by
the control precision as described in Eq. (16).

5 Experimental Verification

After convergence analysis and simulation study of the
ILC with fixed steps, the method is adapted further in order
to verify its ability to work for real control projects.

The plant is the second joint of a printing robot Pb-211
shown in Fig. 8. The second joint of Pb-211 robot is a
swaying cylinder controlled by a servo valve. The transfer
function for the plant is shown in Eq. (24):
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and parameters can be referred to Ref. [9].

Fig. 8. Robot P 5 -211 system

During operation of the robot, the temperature of the
hydraulic oil will rise, this will cause the parameters
including £, B, and k, to change. Therefore the plant is
a time-variant system.

The expected output for the second joint of the P5-211
robot is:

v,(t)=10sin(nt /2), t<[0,2]s. (25)

The control error limit is set as |e|<0.3 with M =
0.001V, 0.005V, 0.01V and 0.05V in order to test the
method.

5.1 M=0.001V
The control results of different iterations are shown in
Fig. 9. After 315 iterations the system reaches| e |< 0.3 .

14F  The215th iteration
The 295th iteration

The 315th iteration

-
2
S
5 8f
=
g I
2 gt The 115th iteration
=1
S
o

at

Expected output
2|
The 15th iteration
O rs
2
0 0.25 0.50 0.75 1.0 125 1.50 1.75 2.0
Time ¢ /s

Fig. 9. Control results for M =0.001V

» (24) 5.2 M=0.005V

The control results of different iterations are shown in
Fig. 10. After126 iterations the system reaches|e|<0.3.

The 66th iteration

2 b 7 A
The 86th iteration The 106th iteration

Rotate angel 0/°

The 126th iteration
The 46th iteration

The 26th iteration
s s

.
Y 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

Time ¢ /s
Fig. 10. Control results for M =0.005V

5.3 M=0.01V
The control results of different iterations are shown in
Fig. 11. After 96 iterations the system reaches|e|<0.3.

14F The 66th iteration

The 84th iteration

10} -
Expected output "
st Y N

™\

The 36th iteration

Rotate angel 0/°
o

The 96th iteration X

L L L L L
0 0.25 0.50 0.75 1.0 1.25 1.50 175 2.0
Time ¢ /s

Fig. 11. Control results for M =0.01V

5.4 M=0.05V

The control results of different iterations are shown in
Fig. 12. Fig. 13 shows the results of iteration 500 and under
the value of M, the plant cannot reach the condition
| e]< 0.3 within the considered time span.



CHINESE JOURNAL OF MECHANICAL ENGINEERING

o] e

The 200th iteration

The 300th iteration

> )

Rotate angel 6/°
=

The 100th iteration

The 500th iteration

0 025 0.50 0.75 1.0 1.25 1.50 1.75 2.0
Time t /s

Fig. 12. Control results for M =0.05V
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Fig. 13. Results of iteration 500 with M =0.005V

From the above results of the robot joint comparative
experiments, the following conclusions can be drawn:

(1) The algorithm of ILC with fixed steps has validity in
real application.

(2) In a relative wide scope of the step value, good
tracking can be achieved under the demanded control
precision.

(3) The convergence can speed up by increasing the step
value, but the control precision will be deteriorated more or
less.

(4) Within the permissible range of the respond speed,
control precision can be enhanced by decrease of the step
value.

6 Conclusions

(1) On the basis of the structure of the algorithm, the
stability of the new ILC approach with a fixed step is
proofed theoretically with the corresponding convergence
condition.

(2) The convergence speed of iterative learning control
algorithm with a fixed step is closely related to step M. The
bigger the value of M is, the faster the convergence rate is.
But the value of M is restricted by the control precision.

(3) The feasibility and merits of the approach are verified
through both simulation system and real tracking control of
a robot joint with time-variant parameters.

(4) Compared with the conventional ILC, our approach
has the following advantages: simpler algorithm structure,
less computation and storing capacity demand, no
and thus enhances
anti-disturbance ability of the method. Considering
permissible ranges of control precision and convergence
speed there is a wide scope to select a suitable step, which
means good robustness of the mean.

derivative amplifying of error,
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