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Computing averages over a target probability density by statistical re-weighting of a set of

samples with a different distribution is a strategy which is commonly adopted in fields as diverse

as atomistic simulation and finance. Here we present a very general analysis of the accuracy and

efficiency of this approach, highlighting some of its weaknesses. We then give an example of how

our results can be used, specifically to assess the feasibility of high-order path integral methods.

We demonstrate that the most promising of these techniques – which is based on re-weighted

sampling – is bound to fail as the size of the system is increased, because of the exponential

growth of the statistical uncertainty in the re-weighted average.
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1. Introduction

Averaging is to the theoretical and computational sciences what measuring is to empirical
science, and it is hard to imagine a problem with more general implications. Formally, the
problem of computing an expectation value for a quantity a(x) over a given probability
distribution p(x) can be stated as

〈a〉p =

∫
a(x)p(x)dx. (1.1)

Very often, it turns out that x spans a very high dimensional space, which makes
it impossible to evaluate the integral on a grid of points. Instead, importance sampling

algorithms [1–3] are used which generate a set of points x
(p)
i distributed in accordance

with the target probability p. Then, the expectation value can be computed as an average
over that set of points,

〈a〉p ≈ ā(p)n = n−1
n
∑

i=1

a
(

x
(p)
i

)

. (1.2)

The error in the estimate (1.2) decreases with n−1/2, provided that the sample points
are uncorrelated. In a number of circumstances obtaining uncorrelated samples from
p is an exceedingly difficult problem, either because generating an individual point
is computationally demanding, or because the sampling algorithm produces strongly
correlated points, so that each one contributes very little to the reduction of the statistical
error.
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In these cases one is led to explore the possibility of performing re-weighted sampling,
i.e., generating points according to a different distribution p0(x), which is easier to sample
efficiently, and then computing the average relative to p using a correction weight w(x) =
p(x)/p0(x) involving the ratio of the probability densities:

〈a〉p =
〈aw〉p0
〈w〉p0

≈ ān =

∑n
i=1 a

(

x
(p0)
i

)

w
(

x
(p0)
i

)

∑n
i=1 w

(

x
(p0)
i

) . (1.3)

Many methods have been developed which are fundamentally based on the re-weighted
average (1.3), which has found applications in physical chemistry [4–6], theoretical physics
[7, 8], economics and statistics [2, 9]. Section 2 will be devoted to a thorough analysis of
the statistical properties of re-weighted sampling, and we will discuss under quite general
assumptions the conditions required to apply this technique successfully.

Our analysis allows one to assess the efficacy of re-weighting in each of the contexts in
which it is applied. One instance of an important problem which has recently been tackled
by re-weighted sampling concerns the use of high-order path integration techniques in
computer simulations which allow for the quantum nature of atomic motion. Conventional
path integral (PI) methods [10–12] involve a significant overhead compared to a purely
classical treatment, and a considerable effort has been devoted to the quest for less
computationally demanding approaches. High order discretizations of the path have been
available for some time [13–15], but it has only recently become apparent that one can
circumvent the calculation of the bothersome second derivatives of the physical potential
that arise in these discretizations by using re-weighted sampling [16, 17]. If successful,
this approach would make high order path integration generally applicable and very
attractive for many applications.

To provide an example of the utility of the results established in Section 2, we shall
therefore proceed in Section 3 to focus on the role of re-weighted sampling in high order
PI simulations. We shall show in particular that this form of path integration is eventually
bound to fail because of the reduced statistical efficiency introduced by the re-weighting.
Simulations of small clusters and/or mildly quantum mechanical problems constitute a
niche in which this approach might be beneficial [17], but its performance is bound to
degrade for larger systems.

2. Statistics of re-weighting

A key issue which is often overlooked is that averaging according to (1.3) will have a
lower statistical efficiency than sampling p directly as in (1.2), i.e., for the same number
of uncorrelated sample points, the statistical error in the re-weighted average will often
be larger. Working out a simple, analytical expression for this drop in sampling efficiency
would be extremely useful, as it would allow one to make an informed choice as to whether
the computational gain of sampling p0 is overshadowed by the concomitant statistical
inefficiency.

In order to evaluate such an estimate, let us first simplify the notation of Eq. (1.3)
by labelling ai the i-th sample for the observable a, and wi the ratio of the probability
densities p(xi)/p0(xi). Averages with respect to the target distribution p will be written
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as 〈·〉p, while averages relative to p0 will be written as 〈·〉. With this notation,

ān =
n
∑

i=1

aiwi/
n
∑

i=1

wi, and lim
n→∞

ān =
〈aw〉

〈w〉
= 〈a〉p . (2.1)

Our objective is to unravel the statistical properties of the weighted average (2.1) for a
finite number n of sample points, and to compare them with those resulting from sampling
the target distribution directly. We will assume that different samples are completely
uncorrelated, since different sampling distributions and algorithms can be compared on
the basis of the computational cost of generating a new uncorrelated sample point.

It is shown in the appendix that an asymptotic expression for the expectation value
and the variance of ān can be obtained under very weak assumptions about the joint
probability distribution

p0(a,w) =

∫
δ (a− a(x)) δ (w −w(x)) p0(x)dx

of a and w. To first order in n−1,

〈ān〉 ≈
〈aw〉

〈w〉
+

〈aw〉
〈

w2
〉

− 〈w〉
〈

aw2
〉

n 〈w〉3
, (2.2)

σ2(ān) ≈

〈

a2w2
〉

〈w〉2 − 2 〈aw〉
〈

aw2
〉

〈w〉+ 〈aw〉2
〈

w2
〉

n 〈w〉4
. (2.3)

Eq. (2.2) shows that for any finite number of samples the re-weighted average is a biased
estimator of 〈a〉p, i.e., that 〈ān〉 is affected by a systematic error which decreases with

n−1, while Eq. (2.3) shows that the statistical error in the re-weighted mean decreases

asymptotically as n−1/2.
In order to perform a comparison between the weighted and the un-weighted sampling

strategies, it is necessary to evaluate the coefficients which enter Eqs. (2.2) and (2.3).
To do this we introduce an additional assumption, namely that a and h=− lnw are
correlated Gaussian variates, with means 〈a〉 and 0, variances σ2(a) and σ2(h), and
covariance 〈ah〉, all with respect to p0. We introduce h because in many cases – certainly
the vast majority of those occurring in the physical sciences – the probability density
is proportional to the exponential of an extensive state function (e.g. a difference
Hamiltonian). It is not difficult to justify the assumption of Gaussian statistics, since
the observable and the logarithm of the weight are often computed by summing a large
number of fluctuating contributions, and will therefore have nearly Gaussian statistics by
virtue of the central limit theorem. In any case the objective here is simply to discuss the
qualitative features of re-weighted sampling, and the Gaussian limit provides a convenient
framework in which to do this.

Under the assumption of a Gaussian joint probability distribution for (a, h), all
expectation values of the form 〈apwq〉 can be computed analytically in terms of the
parameters of the distribution. Eqs. (2.2) and (2.3) then simplify to

〈ān〉 ≈ 〈a〉 − 〈ah〉+ 〈ah〉 eσ
2(h)/n, (2.4)

σ2(ān) ≈
(

σ2(a) + 〈ah〉2
)

eσ
2(h)/n. (2.5)
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These equations convey in a more transparent way the message that is inherent in their
more general counterparts. The systematic bias depends on the cross-correlation between
the observable a and h=− lnw, and both the systematic and statistical error grow
exponentially with σ2(h). Whenever the fluctuations of h are smaller than 1, there will be
little difference between the efficiency of sampling directly based on the target distribution
and that of the re-weighted method. However, as soon as σ(h) becomes larger than one,
both the systematic bias and the statistical error of the re-weighted approach will require
a much larger number of samples for convergence to within a given threshold.
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Figure 1. Numerical results for the mean and standard deviation in the mean for n independent samples
obtained from re-weighting a Gaussian-distributed observable with zero mean and variance σ2(a) = 1,
based on a difference Hamiltonian h with variance σ2(h), and cross-correlation 〈ah〉 with a. The full lines
correspond to the predictions of Eqs. (2.4) and (2.5).

In Figure 1 we present the results of some numerical experiments in which we
generated correlated Gaussian variables a and h, and computed the weighted average
of a according to (1.3). The results confirm the asymptotic nature of our estimates,
which describe the behaviour of 〈ān〉 and σ2(ān) in the large-n regime. The small-n limit
can instead be pin-pointed very easily by considering the n= 1 case, in which the average
converges to the un-weighted value 〈a〉, and the variance is just σ2(a).

While it is common knowledge that the fluctuations of the “difference Hamiltonian”
h=− lnw must be small in order to apply re-weighting successfully, we believe it will
come as a surprise to many that fluctuations of the order of a few units in h will decrease
the sampling efficiency by orders of magnitude. The message here is that in re-weighted
simulations the joint probability distribution of a and h should be monitored carefully.
The value of exp[σ2(h)] provides a direct indication of the statistical inefficiency due to
re-weighting, and the cross-correlation 〈ah〉 provides an equally direct indication of the
systematic bias in 〈ān〉. Both of these are straightforward to converge, as they involve
un-weighted averages.
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While Eqs. (2.4) and (2.5) cannot be used quantitatively in the case of non-Gaussian
statistics, they provide useful guidelines to judge the quality of sampling in a re-weighted
calculation. Whenever the fluctuations of h are large and the weighted average is much
closer to 〈a〉 than to 〈a〉 − 〈ah〉, it is very likely that the numerical results obtained
from (1.3) will be meaningless. In order to provide an illustration of the utility of these
estimates, we will now show that they can be used to predict the situations in which
high-order PI schemes based on re-weighted sampling can be used successfully, and those
in which they cannot.

3. High order path integration

(a) Suzuki-Chin path integration

Path integral methods aim at approximating the quantum mechanical partition
function, Z =Tre−βH , by factoring it in such a way that the resulting expression can
be evaluated within a classical framework. The simplest such factorization makes use
of the well-known Trotter product formula [18], and results in an expression which is
equivalent to a purely classical partition function in an extended phase space consisting
of many replicas (beads) of the system, connected by harmonic springs to form a closed
path (necklace) [10–12, 19] . The overall Trotter Hamiltonian reads

H(T ) =

P
∑

j=1

p2j
2m

+
m

2

(

β~

P

)2

(qj − qj+1)
2 + V (qj), (3.1)

where {qj} and {pj} are the coordinates and momenta of the different beads, and V (q) is
the physical potential. The classical partition function computed with this Hamiltonian
at P times the physical temperature converges to the fully quantum mechanical partition
function Z, with an error that is second-order in β/P . The number of beads necessary for
convergence is in general a small multiple of β~ωmax, where ωmax is the fastest physical
vibration in the system. The computational cost therefore becomes very large for low
temperatures and/or stiff vibrational modes, and considerable effort has been devoted to
the quest for faster-converging factorizations in order to reduce this cost.

It has been shown [20] that factorizations with an error that is of an order higher than
two in β/P must contain composite operators which have the form of nested commutators

between the kinetic energy operator T̂ and the potential V̂ . The complexity of the nested
commutators increases with the order of the factorization and is only really manageable
up to fourth-order. Among the different fourth-order factorizations developed so far [13–
16, 21], the one proposed by Suzuki [14] and simplified by Chin [15] has better convergence

properties than most others. It also only contains the double commutator [V̂ , [T̂ , V̂ ]],
which is proportional to the square modulus of the force and hence of a manageable
complexity.

This Suzuki-Chin (SC) factorization results in a Hamiltonian

H(SC) =

P
∑

j=1

p2j
2m

+
m

2

(

β~

P

)2

(qj − qj+1)
2 + Ṽj(qj, β) (3.2)
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which contains a bead-dependent modified potential

Ṽj(qj , β) =wjV (qj) +
wjdj
m

(

β~

P

)2
∣

∣V ′(qj)
∣

∣

2
. (3.3)

The coefficients wj and dj take different values for odd and even beads, namely w2j =2/3,
w2j+1 =4/3, d2j =α/6, d2j+1 = (1− α)/12, where α is a free parameter which can be
varied in the range [0, 1]. While tuning α can improve the convergence in specific cases
[16, 17], there is no universally optimal choice, so in the present work we used α=0.

The modified Hamiltonian resulting from the SC factorization contains the square
modulus of the physical force. A path integral molecular dynamics (PIMD) calculation
based on the corresponding classical equations of motion therefore requires one
to evaluate the derivative of the squared force term, which contains the Hessian.
Unfortunately, this is prohibitively expensive to evaluate for large systems with all
but the simplest inter-atomic potentials. One way around this difficulty is to exploit
the possibility of sampling based on a quasi-Trotter Hamiltonian which resembles
Eq. (3.1) but has the physical potential on each bead weighted by wj [16]. The
statistics corresponding to the SC Hamiltonian can then be recovered by re-weighting
configurations with the weighting factor w= e−h ≡ exp(−β∆H/P ), where the difference
Hamiltonian has the form

∆H =

P
∑

j=1

wjdj
m

(

β~

P

)2
∣

∣V ′(qj)
∣

∣

2
. (3.4)

The effect that re-weighting configurations based on (3.4) has on the statistical efficiency
of sampling is the fundamental drawback of this approach, as will be discussed in the
next subsection, based on the general results of Section 2.

(b) The curse of system size

The high-order path integral strategy we have just described may appear to be
superior to Trotter PI in all respects [16]. However, one must not overlook the question
of statistical efficiency, which could imply that longer trajectories are required to obtain
the same level of sampling accuracy, a factor which must be considered when comparing
the computational viability of different approaches.

Given the analysis in Section 2, all we need to evaluate the errors due to finite
sampling in this context is an estimate of the variance of ∆H. Consider first the
case of a simple harmonic oscillator with frequency ω, in the strongly-quantum regime,
where the distribution of configurations is well approximated by the ground-state density
P (q)∝ exp(−mωq2/~). Then, the squared fluctuations of |V ′(q)|2 read

〈

|V ′(q)|4
〉

−
〈

|V ′(q)|2
〉2

= ~
2m2ω6/2.

Under the simplifying assumption that the statistics of q for a finite-P path integral
simulation are the same as those of the quantum oscillator at full convergence, one can
write down the squared fluctuations of the temperature-scaled difference Hamiltonian
h≡ β∆H/P as

σ2(β∆H/P )≈ (P/2)k(β~ω/P )6/162, (3.5)

where k varies between one (if one assumes that there is no correlation between the forces
on different beads) and two (if one assumes that the forces on all beads are the same).
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Eq. (3.5) implies that it is possible to reduce the fluctuations of the weights w= e−h

at will by increasing the number of replicas. However, one should remember that keeping
this number low was the primary reason for attempting a high-order factorization in
the first place. Since the relative error in the energy due to the discretization of the
fourth order PI grows as (β~ω/P )4, it is clear that – for a given discretization error –
the sampling problems inherent in re-weighted SC PIMD are bound to get worse as the
quantum nature of the problem becomes more pronounced.

Moreover, the issue of statistical efficiency is exacerbated once one considers a system
with f degrees of freedom. Since the difference Hamiltonian is size-extensive, its variance
will scale linearly with f , leading to an exponential dependence of the statistical and
systematic finite-sampling errors on the size of the system. For a multi-dimensional
harmonic system with frequencies ωi one can estimate – in the worst-case scenario of
complete correlation of the forces on different replicas – that the total squared fluctuations
will be of the order of

σ2(β∆H/P )≈

(

β~ω̄

P

)6 fP 2

648
, ω̄ =

(

1

f

f
∑

i=1

ω6
i

)1/6

. (3.6)

In practice, this means that the high-order path integral integration scheme which
we have described in the previous section will yield a small statistical uncertainty up to
a critical system size, above which the statistical efficiency will decrease exponentially.
Our analysis of the harmonic limit yields an estimate of this critical size for a given value
of β~ω̄. For instance, flexible water can be simulated successfully by Trotter PI with
P & 32, and has ω̄ ≈ 2700 cm−1. For T =300 K and P =32, Eq. (3.6) suggests that the
fluctuations in the difference Hamiltonian will be of the order of one in a simulation of a
few tens of water molecules. This is the sort of system size up to which re-weighted SC
PIMD is therefore predicted to be advantageous.

(c) An example: liquid water

In order to verify the predictions of Eq. (3.6) and those of Section 2 for a realistic
condensed-phase example, we have examined the case of a flexible water model [23],
simulated at a temperature of 298 K and at the experimental density. We chose to perform
simulations with 216 water molecules, so as to be in a regime in which – according to the
arguments of Section 3b – the statistical inefficiency of re-weighting should be apparent.

We explored numbers of beads ranging between P = 4 and P = 128, and for each set
of parameters performed 16 independent simulations, each of which comprised 20 ps
for the initial equilibration and 1 ns during which averages were accumulated. The
calculations were accelerated using the ring-polymer contraction technique [24], with the
same parameters as we have employed in previous simulations [22]. Canonical sampling
was enforced by applying targeted Langevin thermostats to the internal modes of the
ring polymer, and a global stochastic velocity rescaling with a time constant of 10 fs
to the centroid [25, 26]. The quantum mechanical kinetic energy of the water molecules
was accumulated using the modified form of the centroid virial estimator proposed by
Yamamoto [17]. This estimator, which is based on a scaling of fluctuation coordinates [27],
can be evaluated by finite differences thereby avoiding the need for high-order derivatives
of the potential.

As an initial test, we examined the convergence of the average kinetic and potential
energies of the liquid as a function of the number of replicas, for both Trotter PI and
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Figure 2. The two panels show the convergence of the average potential and kinetic energy for a simulation
of 216 water molecules as a function of the number of beads P . The reference value – shown as a black
dashed line – corresponds to Trotter PI with P = 128. The results from the PI-GLE accelerated Trotter
PIMD are also reported [22]. Error bars were calculated, but are smaller than the data points on this
scale. For the SC simulations we also report the averages of the observables computed without weights
(joined by dashed lines) and those obtained from the infinite n limit of Eq. (2.4) (continuous lines).

re-weighted SC PI (see Figure 2). As expected, and as witnessed in previous calculations
with a similar water model [16], the higher order of the PI factorization does translate
into faster convergence. However, for the simulations with P . 32, the statistical error in
the mean for the re-weighted SC method was found to be considerably larger than that
of Trotter PIMD. Even more worrying, for re-weighted SC PIMD there is a significant
difference between the weighted average of the kinetic energy and the asymptotic result
predicted for Gaussian statistics [the n→∞ limit of Eq. (2.4)]. These issues will be
considered in more detail below. As a final remark, it can be seen from Figure 2 that
the recently-developed stochastic PI+GLE [22] approach manages to obtain even faster
convergence than SC PIMD, without any of the sampling issues that we are about to
elucidate.

It remains to be verified whether the scenario presented in Section 3b based on
a harmonic model and an analysis of the sampling efficiency in the Gaussian limit
corresponds to the numerical finding in this real example. First of all, one needs to verify
whether the scaling of the variance of the logarithm of the weights follows Eq. (3.6).
Figure 3 demonstrates that both the scaling with P and with the number of degrees
of freedom correspond to the predictions we have made, even if the quantitative values
for σ2(β∆H/P ) are lower by about a factor of 3 than the analytical estimates obtained
from the harmonic model. Taking this correction into account increases to about 100
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Figure 3. The three panels show the fluctuations of the temperature-scaled difference Hamiltonian h=
β∆H/P for a simulation of a flexible water model at T =298 K, for different numbers of replicas P and
numbers of water molecules NW . The top left panel shows the data points as a function of NW ; the
dashed lines are guides for the eye corresponding to σ2 ∝NW behaviour. The bottom left panel shows
the points as a function of P ; here the dashed lines correspond to σ2 ∝ P−4. The right panel shows a
contour plot of the interpolant of the data points as a function of P and NW , with σ2 denoted by the
colour scale. Red indicates regions in which the statistical inefficiency of re-weighted Suzuki-Chin PIMD
is unmanageable, while blue indicates regions in which it is comparable to that of Trotter PIMD. Note
that for a given P , the inefficiency gets worse with increasing system size.

the number of water molecules for which re-weighted SC PIMD is computationally
reasonable.

Having verified that the fluctuations in the difference Hamiltonian closely obey
Eq. (3.6), let us discuss the validity of the relations between these fluctuations and
the error in the mean that we have worked out in Section 2. Figure 4 shows that – for
the case of P = 16, where the variance of the temperature-scaled difference Hamiltonian
h= β∆H/P is much larger than one – the trends do indeed correspond to those derived
in the limit of Gaussian statistics. Averages computed from short trajectories suffer a
large systematic bias, and they slowly approach the limit predicted from the cross-
correlation between the observable and the difference Hamiltonian as the number of
samples is increased. To obtain a converged expectation value and therefore verify the
accuracy of the prediction based on Gaussian statistics, a prohibitively long trajectory
would be required. Also as anticipated, the upper panel of Figure 4 clearly demonstrates
that the statistical variance in the mean for re-weighted SC PIMD decreases much more
slowly than for Trotter PIMD, completely offsetting the benefits of using the higher-order
propagator.

It is important to remark that we have been able to make these issues stand out
clearly because we have considered a relatively simple problem, for which we could run
long trajectories and gather extensive statistics. In real applications one can rarely afford
to perform such a detailed error analysis, and in this respect the analytical results we
have derived provide a useful litmus test. The fluctuations of the temperature-scaled
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Figure 4. The two panels show the convergence of the mean kinetic energy for a simulation of 216 water
molecules, at T = 298 K and for P =16, as a function of the length of the simulation, together with the
relative fluctuations in the mean. In the lower plot, the un-weighted average kinetic energy and that
obtained from the infinite n limit of Eq. (2.4) are also shown.

difference Hamiltonian h should be smaller than one, since for larger fluctuations the
statistical inefficiency rapidly becomes unmanageable. Even more interesting is the cross-
correlation between the observable a and h, which indicates the extent of the systematic
bias.

4. Conclusions

In this paper we have performed a careful assessment of the statistical efficiency of re-
weighted sampling. Our analysis shows a dramatic degradation in performance when
the squared fluctuations of the logarithm of the weight exceed one. While it is common
knowledge that large fluctuations in the weights lead to failure of such techniques, and
that the size-extensivity of the difference Hamiltonian makes these methods unsuitable
for the study of large-scale problems, our analysis shows clearly how dramatic this effect
can be, and also that the problem is quite insidious.

In fact, insufficient sampling in a re-weighted calculation is very difficult to detect.
It mainly manifests itself through the error in the mean decreasing more slowly than
the inverse square root of the number of samples even after a very large number of
samples have been accumulated, indicating that the asymptotic regime has not yet been
reached (see the upper panel of Fig. 4). An even greater concern is that finite sampling
implies a bias in the estimate of the observable, which decreases very slowly and would be
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exceedingly hard to detect in a more complex – or computationally demanding – problem
(see the lower panel of Fig. 4).

As a demonstration of how these results can be used, we have examined the
applicability of high order path integral factorizations to condensed-phase simulations.
The most promising of these techniques relies on re-weighting based on a difference
Hamiltonian [16, 17]. We have worked out the dependence of the fluctuations in this
quantity on the properties of the system being studied, the number of degrees of freedom
involved, and the number of path integral beads. We have shown that for large and/or
strongly quantum systems, a large number of replicas is required, not so much in order
to converge the asymptotic expectation values of quantum observables, but to keep the
fluctuations in the re-weighted average under control. Our analytical results allow one
to predict the break-even point at which the advantages of high-order path integrals
are lost due to statistical inefficiency. These predictions have been qualitatively verified
by numerical experiments on the simulation of a flexible model of water under ambient
conditions. For this system, high-order SC PIMD is advantageous for simulations of up
to around 100 water molecules, but no more.

While a niche for the use of Hessian-free high-order PIMD therefore exists for the
study of small clusters, one must consider that accelerated PIMD based on stochastic
dynamics [22] exhibits comparable or faster convergence of quantum observables, without
being affected by any of the statistical issues we have focussed on here. We firmly believe
that this stochastic acceleration is therefore a far more promising approach to large scale
path integral simulations.
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An asymptotic expression for re-weighted averages

In this appendix we present a derivation of the asymptotic expansion of the expectation
value of a re-weighted average of n terms from a general distribution. As usual, we say
that the formal sum

∑∞
j=0 cjn

−j is an asymptotic expansion for fn if for any fixed k

we have fn =
∑k

j=0 cjn
−j +O(n−(k+1)) as n→∞. This does not imply that the sum

converges. Our main result is as follows:

Theorem 1. Let (ai, wi)
n
i=1 be n independent samples from a (correlated) joint

distribution p0(a,w). Suppose that w takes only positive values, and that all moments
of a, w and w−1 are finite. Let

ān =

n
∑

i=1

aiwi/

n
∑

i=1

wi. (A.1)

Then 〈ān〉 and σ2(ān) =
〈

ā2n
〉

− 〈ān〉
2 have asymptotic expansions in n whose coefficients

are determined by the joint moments of p0(a,w), with the leading terms in these
expansions being given by Eqs. (2.2) and (2.3).



The inefficiency of re-weighted sampling 12

The argument below will show how to calculate the higher-order coefficients of the
expansion, although there does not seem to be a simple explicit formula for the general
coefficient cj .

Multiplying the distribution w by a constant (i.e., multiplying all wi by the same
constant) does not affect 〈ān〉, so we assume in the proof that 〈w〉= 1. With this
assumption, Eqs. (2.2) and (2.3) simplify to

〈ān〉 = 〈aw〉+ n−1
(

〈aw〉
〈

w2
〉

−
〈

aw2
〉)

+O(n−2), (A.2)

σ2(ān) = n−1
(

〈

a2w2
〉

− 2 〈aw〉
〈

aw2
〉

+ 〈aw〉2
〈

w2
〉

)

+O(n−2). (A.3)

Explicit calculations can be further simplified by subtracting a constant from a (and
hence from 〈ān〉) to ensure that 〈aw〉=0, but we shall not do this in the following.

Since all the samples are independent and identically distributed, one can write

〈ān〉= n

〈

anwn

zn

〉

= n

〈

aw

w + zn−1

〉

(A.4)

where zn =
∑n

i=1wi is the sum of n independent copies of w, and zn−1 (but not zn) is
independent of the correlated pair (a,w).

Let w̃=w − 1 and z̃n = zn − n=
∑n

i=1 w̃i be the centralized versions of w and zn. We
first consider the properties of z̃n. Even in the (canonical) special case where w is log-
normal, not much can be obtained analytically about the distribution of z̃n [28]. However,
one can obtain its moments using the general formula

κ(k) = µ(k) −
k−1
∑

i=1

(

k − 1

i− 1

)

κ(i)µ(k−i) (A.5)

relating the cumulants κ(k) and moments µ(k) of a distribution. When µ(1) =0 (and hence

κ(1) = 0)), as is the case for the centred variables w̃ and z̃n, Eq. (A.5) can be written as

κ̃(k) = µ̃(k) −

k−2
∑

i=2

(

k − 1

i− 1

)

κ̃(i)µ̃(k−i). (A.6)

We therefore first calculate the cumulants κ̃
(k)
1 of the distribution of w̃ using Eq. (A.6).

The cumulants of z̃n are simply κ̃
(k)
n = nκ̃

(k)
1 , and the moments µ̃

(k)
n of z̃n can be recovered

by inverting Eq. (A.6). By induction on k we find that µ̃
(k)
n is a polynomial in n of degree

⌊k/2⌋; this can also be seen directly by expanding the expectation of the kth power of
the sum of the w̃i.

An asymptotic expansion for 〈ān〉 can now be developed by expanding the
denominator in Eq. (A.4) about its mean. Let X = z̃n/n= zn/n− 1. Using the identity

1/(1 + x) =
∑k−1

j=0(−x)j + (−x)k/(1 + x), we have

〈ān〉=

〈

anwn

zn/n

〉

=

〈

anwn

1 +X

〉

=

=

k−1
∑

j=0

(−1)j
〈

anwnX
j
〉

+ (−1)k
〈

anwn
Xk

1 +X

〉

. (A.7)
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Since X = (z̃n−1 + w̃n)/n and z̃n−1 is independent of (an, wn), the terms in the sum can

be written out in terms of the moments µ̃
(k)
n−1 of z̃n−1:

(−1)j
〈

anwnX
j
〉

= (−n)−j
j
∑

i=0

(

j

i

)

〈

a(w̃ + 1)w̃i
〉

µ̃
(j−i)
n−1 . (A.8)

For each j, the term described by Eq. (A.8) is a (Laurent) polynomial in n with powers

between n−⌈j/2⌉ and n−j. We claim that

R(k)
n =

〈

anwn
Xk

1 +X

〉

=O(n−k/2), (A.9)

so the residual term R
(k)
n shrinks with n. Moreover, summing Eq. (A.8) over j ≤ 2d and

collecting coefficients gives the first terms of the asymptotic expansion of 〈ān〉 down to
order n−d. For example, setting d=1 and discarding the terms with an n−2 dependence
yields Eq. (A.2).

The bound Eq. (A.9) is perhaps most easily seen by applying the Cauchy–Schwartz
inequality twice, or Hölder’s inequality once, to show that in general |〈A1A2A3A4〉| ≤
∏4

i=1

〈

A4
i

〉1/4
. Here A1 = an and A2 =wn contribute constant factors to the product.

With A3 =Xk = (z̃n/n)
k we have

〈

A4
3

〉

= n−4kµ̃
(4k)
n =O(n−2k), so

〈

A4
3

〉1/4
has the

required order O(n−k/2). Finally, A4
4 = (1 +X)−4 = (zn/n)

−4. Since the function x−4

is convex, and zn/n is just the average of the wi, we have A4
4 ≤

∑n
i=1w

−4
i /n, so

〈

A4
4

〉

≤
〈

w−4
〉

, which is by assumption a finite constant, and the bound Eq. (A.9) follows.
For the variance, the argument is very similar, now using the fact that

〈

ā2n
〉

= n(n− 1)

〈

an−1wn−1anwn

n2(1 +X)2

〉

+ n

〈

a2nw
2
n

n2(1 +X)2

〉

,

and the identity (1 + x)−2 =
∑k−1

j=0(j + 1)(−x)j + (−1)k (k+1)xk+kxk+1

(1+x)2
. A similar method

applies to higher moments of ān.
Note that the assumption that all negative moments of w are finite was only used to

control the tail behaviour of 1/(1 +X) = (zn/n)
−1 near 0. In fact, this has much better

tail behaviour than w−1, so much weaker conditions suffice. For example, splitting the

sum zn into groups of m and noting that z−1
m ≤

∏m
i=1 w

−1/m
i , one can check that the

result holds assuming only that 〈w−α〉 is finite for some positive α.
Finally, we should emphasize that one cannot expect the infinite sum corresponding

to Eq. (A.7), or the asymptotic expansion of 〈ān〉, to converge for any fixed n. Indeed,

in the log-normal case where w= e−h, we have µ
(k)
1 =

〈

wk
〉

= exp(σ2(h)k2/2), which

becomes exp(σ2(h)k(k − 1)/2) after normalizing so that 〈w〉=1. Moreover, the kth

central moment µ̃
(k)
1 also contains a component proportional to µ

(k)
1 (it is a linear

combination of this and lower moments). Hence, Eq. (A.8) will contain a component

proportional to
[

exp
(

σ2(h)/2
)]j(j−1)

/nj−1. For any n, this eventually increases with j,
so the infinite sum does not converge. Similar considerations strongly suggest that the
first few terms in the asymptotic expansion will be a good approximation only if σ2(h)
is small compared to (at most a certain constant times) log n.
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