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A general coupled-wave model is presented for square-lattice photonic crystal (PC) lasers with
transverse-electric polarization. This model incorporates the high-order coupling effects that are
important for two-dimensional PC laser cavities and gives a general and rigorous coupled-wave
formulation for the full three-dimensional structures of typical laser devices. Numerical examples
based on our model are presented for PC structures with different air-hole shapes. The accuracy of
the results obtained is verified using three-dimensional finite-difference time-domain simulations.
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I. INTRODUCTION

Two-dimensional (2D) photonic crystal surface emit-
ting lasers (PC-SELs) are becoming increasingly impor-
tant due to their enhanced functionality and improved
performance compared to conventional semiconductor
lasers [1]-[14]. By utilizing the band edge of the pho-
tonic band structure, single longitudinal and transverse
mode oscillation in two dimensions has been achieved
with a large lasing area, enabling high-power, single-
mode operation [1, 7]. The output beam of such devices
is emitted in the direction normal to the 2D PC plane
due to first-order Bragg diffraction effects. Importantly,
this surface-emitted beam emanating from a large lasing
area has a small beam divergence angle [7, 8]. Further-
more, both the polarization and pattern of the output
beam can be controlled by appropriate design of the PC
geometry [3, 8]. Recent developments of 2D PC lasers
have allowed the lasing wavelength to be extended from
the near-infrared regime to the mid-infrared [9], terahertz
[10, 11], and blue-violet regimes [12, 13]. In addition, we
have recently demonstrated the operation of a PC-SEL
with entirely new functionality: on-chip dynamical con-
trol of the emitted beam direction, achieved by using a
composite PC structure [14].
Despite the experimental advances that have recently

been made in the field of 2D PC-SELs, theoretical stud-
ies on these types of lasers have thus far been limited.
An important but unresolved issue concerns the mecha-
nisms by which the PC structure determines the output
characteristics of the device, thereby limiting progress
in optimizing the structural design of devices. Com-
puter simulations based on the 2D plane-wave expansion
method (PWEM) [4, 15] or the finite-difference time-
domain (FDTD) method [16–18], can provide valuable
information about the lasing properties of the PC laser
cavity. However, there are some inherent limitations to
these computational approaches. The 2D PWEM is only
applicable to infinite structures, and the FDTD method
requires substantial computational resources in order
to model finite structures with realistically large areas.

Moreover, neither simulation approach provides deep an-
alytical insight into improving the design of devices. A
group of alternative analytical methods [6, 19] have been
developed, based on the concept of one-dimensional (1D)
coupled-wave theory (CWT) [20]. However, these meth-
ods in their initial formulations consider only four basic
waves in the coupled-wave model and disregard 2D op-
tical coupling effects, which are important in 2D square-
lattice PCs. The consequent shortcomings do not allow
accurate explanations of experimental results to be ob-
tained [7]. Sakai et al. later derived a 2D CWT us-
ing an eight-wave model [21, 22] that incorporates both
conventional 1D coupling and the more recently perti-
nent 2D coupling, allowing 2D coherent lasing action to
be explained [7]. This more detailed formulation of the
lasing process underscores the importance of accurately
modeling complicated 2D optical coupling effects in 2D
PC-SELs.

Nevertheless, two fundamental limitations remain in
the 2D CWT approach [21, 22]. First, light propagating
within the PC is in principle a Bloch wave described by
an infinite number of terms in a Fourier series expansion,
and thus it is crucial to include as many wave orders as
possible to model the PC cavity accurately. The eight-
wave model in the CWT mentioned above is applicable
only to PCs in which the air holes have simple symmetric
shapes, such as circular holes. However, it is becoming
increasingly clear that the use of air holes with asymmet-

ric shapes, such as equilateral triangles and right-angled
isosceles triangles [23, 24], is often beneficial; these shapes
are potentially important for improving the output power
and slope efficiency of 2D PC-SELs. Therefore, an exten-
sion of the coupled-wave model to the analysis of more
complicated PC geometries requires the inclusion of more
higher-order terms. The second limitation of the existing
2D CWT is that the approach is confined to 2D models
in which the structure is assumed to be uniform in the
vertical direction. However, realistic PC-SELs require
three-dimensional (3D) analysis because the waveguide
structure breaks the structural uniformity in the vertical
direction. Although effective dielectric constants of the
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PC materials [4, 25] have previously been used to com-
pensate for relatively small optical confinement in the
vertical direction, this approach is inadequate to model
the 3D structure in cases where the transverse field pro-
file of the individual waves must be treated very carefully,
as will be shown below. Thus, it is necessary to derive
a more rigorous formulation by considering a 3D system
instead of a 2D system.
In this paper, we develop a more general coupled-

wave model for square-lattice PC-SELs with transverse-
electric (TE) polarization in order to overcome the limi-
tations discussed above. Our coupled-wave model incor-
porates a large number of high-order wavevectors in order
to capture all the important coupling effects. We present
a rigorous coupled-wave formulation for a 3D structure
by extending the general coupled-wave approach devel-
oped by Streifer et al. for 1D distributed feedback (DFB)
lasers [26]. This formulation not only models the cou-
pling effects in 3D systems more accurately, but can also
be generally applied to the analysis of PC structures with
air holes of arbitrary shape. We present numerical exam-
ples in which the mode frequency and radiation constant
of PC structures with several different air-hole shapes are
calculated and compared with the results of 3D-FDTD
simulations in order to confirm the validity and accuracy
of the extended CWT model.
This paper is organized as follows. Section II describes

the coupled-wave model, and derivations of the coupled-
wave equations are given. Section III presents our nu-
merical results, which we then discuss. A summary of
our findings is given in Section IV.

II. FORMULATION OF COUPLED-WAVE

MODEL

A schematic cross-section of the PC-SEL device con-
sidered here is shown in Fig. 1, which can be approxi-
mated by a multilayer waveguide. The PC layer is em-
bedded in the waveguide structure, which is assumed to
support only a single waveguide mode. The structural
parameters of each layer are summarized in Table I. The
average dielectric constant of the PC layer is given by
εav = f · εa + (1 − f) · εb, where εa is the dielectric
constant of air, εb is the dielectric constant of the back-
ground dielectric material (GaAs), f is the filling factor
(FF) given by f = Sair−hole/a

2 (i.e., the fraction of the
area of a unit cell occupied by air holes), and a is the lat-
tice constant. The PC layer consists of a square lattice
with air holes perpendicular to the xy plane, as shown in
Fig. 2(a). In this paper, the shape of the air-holes is not
restricted to circular but can be arbitrary. Figure 2(b)
depicts examples of air-hole shapes that are considered
later in this paper: (i) circles, (ii) equilateral triangles,
and (iii) right-angled isosceles triangles.
Light propagating inside a PC must obey Bloch’s the-

orem, which states that the amplitude of the light must
conform to the imposed periodicity [27]. The Bloch wave

FIG. 1. Schematic cross-sectional view of a PC-SEL. This
multilayer waveguide structure represents an approximation
of a realistic laser device.

TABLE I. Waveguide structural parameters

Layer Thickness (a) Dielectric constant

n-clad(AlGaAs) ∞ 11.0224
Active 0.3 12.8603
PC 0.4 εav

GaAs 0.2 12.7449
p-clad(AlGaAs) ∞ 11.0224

state ψ can be expressed as

ψk(r) = uk(x, y, z)e
−ik·r =

∑

Gm,n

aGm,n
(z)e−i(k+Gm,n)·r

(1)

where the periodicity implies that uk(x, y, z) = uk(x +
a, y, z) = uk(x, y + a, z). Here, k is a wavevector in the
first Brillouin zone; aGm,n

is the field amplitude of a given

FIG. 2. (a) Schematic diagram of a square-lattice photonic
crystal. (b) Examples of air-hole designs: (i) circular, (ii)
equilateral triangular, (iii) right-angled isosceles triangular.
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reciprocal lattice vector, defined as Gm,n = (mβ0, nβ0)
wherem and n are arbitrary integers, and β0 = 2π/a. At
the second-order Γ-point k becomes zero [21], thus Eq.
(1) can be rewritten as a Fourier series of plane waves:

ψ(r) =
∑

m,n

am,n(z)e
−i(mβ0x+nβ0y), (2)

where am,n represents the field amplitude of a wave with
wavevector (mβ0, nβ0). It is implied by Eq. (2) that the
Bloch wave excited in the vicinity of the Γ-point is com-
posed of multiple wavevectors, including the wavevec-
tors indicated by arrows in the reciprocal space diagram
in Fig. 3, as well as wavevectors outside the plotted
range. The shaded arrows close to the center of the plot
(m2 + n2 ≤ 2) indicate the eight waves considered in the
existing CWT approach. In order to make our analysis
generally applicable to air-hole geometries that require a
large number of Fourier coefficients to model accurately,
we will extend the existing coupled-wave model by in-
cluding not only these eight wavevectors but also many
high-order wavevectors.

FIG. 3. Bloch wave state represented by wavevectors (arrows)
in reciprocal space. A large number of high-order wavevectors
are included, in addition to the eight wavevectors around the
center (shaded arrows), which were considered in the previous
CWT model.

For TE polarization, the Bloch wave state ψ can be
described by either the magnetic-field component (Hz)
or the electric-field components (Ex, Ey). At the second-
order Γ-point, not only the in-plane guided waves but also
waves that are diffracted into the vertical (z) direction ex-
ist, as shown in Fig. 4 [7]. It is important to include these
diffracted waves in the coupled-wave model because they
determine the output (loss) of the PC laser cavity. We
choose to start our formulation from Maxwells equations
using the electric-field components, because scalar wave
equations for the magnetic field (Hz) [21] cannot include
waves diffracted in the vertical direction (we note that
there is no Hz component for these waves).

FIG. 4. Schematic diagram showing the in-plane guided waves
and waves diffracted vertical to the PC plane.

In a 3D waveguide structure, as shown in Fig. 1, the
electric field can be expressed as E(r, t) = E(r)eiwt. By
eliminating the magnetic field from Maxwell’s equations,
we obtain

∇×∇×E(r) = k20ñ
2(r)E(r), (3)

where k0(= ω/c) is the free-space wavenumber, ω is the
angular frequency, c is the velocity of light in free space
and ñ is the refractive index (a complex number) that
satisfies [26]

k20ñ
2(r) = k20n

2(r) + 2ik0n(r)α̃(r)− α̃2(r), (4)

where n(r) is the real part of ñ(r) and α̃(z) repre-
sents the gain (α̃ > 0) or loss (α̃ < 0) in each region.
In the following derivation, we neglect the third term
α̃2(z) because |α̃| << k0n0 [26]. For TE polarization
E(r) = (Ex(r), Ey(r), 0), and we obtain the following
three scalar equations from Eq. (3):

[
∂2

∂z2
+

∂2

∂y2
+ k20ñ

2]Ex − ∂2

∂x∂y
Ey = 0, (5)

[
∂2

∂z2
+

∂2

∂x2
+ k20ñ

2]Ey −
∂2

∂x∂y
Ex = 0, (6)

∂

∂z
[
∂Ex

∂x
+
∂Ey

∂y
] = 0. (7)

In order to solve these equations, we expand
Ex(r), Ey(r) and n

2(r) according to

Ex(r) =
∑

m,n

Ex,m,n(z)e
−iβmx−iβny, (8)

Ey(r) =
∑

m,n

Ey,m,n(z)e
−iβmx−iβny, (9)

n2(r) = n2
0(z) +

∑

m 6=0,
n6=0

ξm,n(z)e
−iβmx−iβny. (10)

Here, βm = mβ0, βn = nβ0, β0 = 2π/a (m,n are arbi-
trary integers), n2

0(z) = ε0(z), ε0(z) is the average dielec-
tric constant of the material at position z, and ξm,n(z)
is the high-order Fourier coefficient term. We note that
ξm,n(z) is zero outside the PC region. Inside the PC
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region, n2
0(z) and ξm,n(z) can be expressed as

n2
0(z)= εav = f · εa + (1− f) · εb, (11)

ξm,n(z)=
1

a2

∫∫ a/2

−a/2

n2(x, y)eiβmx+iβnydxdy. (12)

In order to simplify the formulation, we have assumed
that air holes within the PC region have perfectly verti-
cal sidewalls (a formulation for air holes with tilted side-
walls will be given elsewhere) such that n2

0 and ξm,n are
independent of z within this region.
By substituting Eqs. (4) and (8)-(10) into Eqs. (5)-

(7), and collecting all terms that are multiplied by the
factor e−iβmx−iβny, we obtain

[
∂2

∂z2
+ k20n

2
0 + 2iα̃k0n0(z)− n2β2

0 ]Ex,m,n +mnβ2
0Ey,m,n

= −k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

Ex,m′,n′ , (13a)

[
∂2

∂z2
+ k20n

2
0 + 2iα̃k0n0(z)−m2β2

0 ]Ey,m,n +mnβ2
0Ex,m,n

= −k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

Ey,m′,n′ , (13b)

∂

∂z
[mEx,mn + nEy,mn] = 0. (13c)

In this work, the derivative terms of Ex and Ey with re-
spect to x and y have been eliminated because we assume
an infinite periodic PC structure (the corresponding for-
mulation for a finite periodic PC structure will be given
elsewhere).
The wavevectors can be classified into three groups ac-

cording to their in-plane wavenumber,
√
m2 + n2β0.

• Basic waves:
√
m2 + n2 = 1,

• High-order waves:
√
m2 + n2 > 1,

• Radiative waves: m = 0, n = 0.

In the resonant case at the second-order Γ-point [21, 22],
we assume that the basic waves can be expressed as

Ex,1,0 = 0, Ey,1,0 = RxΘ0(z), (14a)

Ex,−1,0 = 0, Ey,−1,0 = SxΘ0(z), (14b)

Ex,0,1 = RyΘ0(z), Ey,0,1 = 0, (14c)

Ex,0,−1 = SyΘ0(z), Ey,0,−1 = 0. (14d)

Here, Rx and Sx represent the amplitudes of basic waves
propagating in the +x and −x directions, respectively,
and likewise Ry and Sy represent the amplitudes of waves
propagating in the +y and −y directions, respectively.
These four basic waves are assumed to have identical
field profiles in the z-direction, denoted by Θ0(z), which
is the same as the field profile of the fundamental waveg-
uide mode for a waveguide with no periodic structure

[26, 29]. We express the wave equation for the funda-
mental waveguide mode in terms of Θ0(z) as

∂2Θ0

∂z2
+ [k20n

2
0(z)− β2]Θ0 = 0, (15)

where β is the propagation constant. The solutions for β
and Θ0(z) in Eq. (15) can be obtained by employing the
transfer matrix method (TMM) [28].
In order to obtain the equations satisfied by the basic

waves, Eqs. (14a)-(14d) are substituted into Eqs. (13a)-
(13c) for (m,n) = {(1, 0), (−1, 0), (0, 1), (0,−1)}. With-
out any loss of generality, we focus here on the case where
(m,n) = (1, 0). We then only need to consider Eqs. (14a)
and (13b). Substitution of Eq. (14a) into Eq. (13b) gives

[
∂2Θ0

∂z2
+ (k20n

2
0 + 2iα̃k0n0(z)− β2

0)Θ0]Rx

= −k20
∑

m′ 6=1,
n′ 6=0

ξ1−m′,
−n′

Ey,m′,n′ . (16)

Next, Eq. (15) is substituted into Eq. (16) to yield

(β2 − β2
0)RxΘ0 + 2iα̃k0n0(z)RxΘ0

= −k20
∑

m′ 6=1,
n′ 6=0

ξ1−m′,
−n′

Ey,m′,n′ . (17)

Specifically, we express the radiative waves, i.e., the field
amplitudes of the waves with (m,n) = (0, 0) as

Ex,0,0 = ∆Ex(z), Ey,0,0 = ∆Ey(z). (18)

Finally, we can obtain the coupled-wave equation for
(m,n) = (1, 0) bymultiplying Eq. (17) by Θ∗

0(z) on both
sides and integrating over (−∞,∞) along the z direc-
tion. Three more coupled-wave equations for (m,n) =
{(−1, 0), (0, 1), (0,−1)} can be derived in analogous fash-
ion. We write the four coupled-wave equations in the
following form:

(δ+iα)Rx = κ2,0Sx

− k20
2β0P

ξ1,0

∫

PC

∆Ey(z)Θ
∗
0(z)dz (19a)

− k20
2β0P

∑

√
m2+n2>1

ξ1−m,
−n

∫

PC

Ey,m,n(z)Θ
∗
0(z)dz,

(δ+iα)Sx = κ−2,0Rx

− k20
2β0P

ξ−1,0

∫

PC

∆Ey(z)Θ
∗
0(z)dz (19b)

− k20
2β0P

∑

√
m2+n2>1

ξ−1−m,
−n

∫

PC

Ey,m,n(z)Θ
∗
0(z)dz,

(δ+iα)Ry = κ0,2Sy

− k20
2β0P

ξ0,1

∫

PC

∆Ex(z)Θ
∗
0(z)dz (19c)

− k20
2β0P

∑

√
m2+n2>1

ξ−m,
1−n

∫

PC

Ex,m,n(z)Θ
∗
0(z)dz,
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(δ+iα)Sy = κ0,−2Ry

− k20
2β0P

ξ0,−1

∫

PC

∆Ex(z)Θ
∗
0(z)dz (19d)

− k20
2β0P

∑

√
m2+n2>1

ξ −m,
−1−n

∫

PC

Ex,m,n(z)Θ
∗
0(z)dz,

Here,

δ = β − β0 = neff (ω − ω0)/c (20)

is the deviation from the Bragg condition, ω0 is the Bragg
frequency, neff is the effective refractive index of the PC
layer, and α is the mode gain/loss given by

α =
k0
β0P

∫ ∞

−∞
n0(z)α̃(z)|Θ0(z)|2dz, (21)

where P is a normalization factor given by

P =

∫ ∞

−∞
|Θ0(z)|2dz. (22)

The parameters κ±2,0, κ0,±2 are the conventional 1D
(forward-backward) coupling coefficients given by

κ±2,0 = − k20
2β0P

ξ±2,0

∫

PC

|Θ0(z)|2dz, (23a)

κ0,±2 = − k20
2β0P

ξ0,±2

∫

PC

|Θ0(z)|2dz. (23b)

The integrals in Eqs. (23a)-(23b), as well as those in
Eqs. (19a)-(19d), extend only over the PC region because
ξmn = 0 outside that range.
As the fields of the radiative waves (∆Ex(z), ∆Ey(z))

and the high-order waves (Ex,m,n(z), Ey,m,n(z)) are un-
known, we cannot yet evaluate the right-hand sides of
Eqs. (19a)-(19d). In order to determine these fields,
Eqs. (13a)-(13c) must be solved for these waves. We will
assume, following Ref. [26], that: (1) Only basic waves
are important in generating radiative waves and high-
order waves; (2) α̃ is small and thus may be neglected.
These assumptions allow us to modify Eqs. (13a)-(13c)
as follows:

[
∂2

∂z2
+ k20n

2
0 − n2β2

0 ]Ex,m,n +mnβ2
0Ey,m,n

= −k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

Ex,m′,n′ , (24a)

[
∂2

∂z2
+ k20n

2
0 −m2β2

0 ]Ey,m,n +mnβ2
0Ex,m,n

= −k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

Ey,m′,n′ , (24b)

∂

∂z
[mEx,mn + nEy,mn] = 0. (24c)

Here, (m′, n′) = {(1, 0), (−1, 0), (0, 1), (0,−1)} and
(m,n) is limited to the cases of radiative waves and high-
order waves. Below, we describe how these equations can

be used to obtain solutions for radiative waves and high-
order waves.

First, we consider the radiative waves ∆Ex(z) and
∆Ey(z) for (m,n) = (0, 0). In this case, Eqs. (24a)-
(24c) are reduced to the following two expressions:

[
∂2

∂z2
+ k20n

2
0(z)]∆Ex(z) = −k20

∑

m′,n′ 6=0

ξ−m′,−n′Ex,m′,n′

≃ −k20(ξ0,−1Ry + ξ0,1Sy)Θ0(z), (25a)

[
∂2

∂z2
+ k20n

2
0(z)]∆Ey(z) = −k20

∑

m′,n′ 6=0

ξ−m′,−n′Ey,m′,n′

≃ −k20(ξ−1,0Rx + ξ1,0Sx)Θ0(z). (25b)

These equations can be solved by employing the Green
function approach [29], where the Green function G(z, z′)
satisfies

[
∂2

∂z2
+ k20n

2
0]G(z, z

′) = −δ(z, z′), (26a)

G(z, z′) ≃ −i · e
−iβz|z−z′|

2βz
, (26b)

in which βz = k0n0(z) represents the wavenumber of ra-
diative waves in the z direction. In terms of G(z, z′), the
radiative waves can then be expressed as

∆Ex(z) = k20(ξ0,−1Ry + ξ0,1Sy)

∫

PC

G(z, z′)Θ0(z
′)dz′,

(27a)

∆Ey(z) = k20(ξ−1,0Rx + ξ1,0Sx)

∫

PC

G(z, z′)Θ0(z
′)dz′.

(27b)

By multiplying both sides of the above equations by
Θ∗

0(z) and integrating over the PC region along the z
axis, we obtain

∫

PC

∆Ex(z)Θ
∗
0(z)dz= k20(ξ0,−1Ry + ξ0,1Sy) · (28a)

∫∫

PC

G(z, z′)Θ0(z
′)Θ∗

0(z)dz
′dz,

∫

PC

∆Ey(z)Θ
∗
0(z)dz= k20 · (ξ−1,0Rx + ξ1,0Sx) · (28b)

∫∫

PC

G(z, z′)Θ0(z
′)Θ∗

0(z)dz
′dz.

As a consequence, the second terms of the right-hand
sides of the coupled-wave equations (19a)-(19d) can be
replaced by terms only associated with the basic waves.

Next, we obtain solutions for high-order waves,
Ex,m,n(z) and Ey,m,n(z), where

√
m2 + n2 > 1. It is dif-

ficult to solve Eqs. (24a)-(24c) directly, thus we introduce
a proper linear combination of Ex,m,n(z) and Ey,m,n(z)
in order to modify Eqs. (24a)-(24c) and obtain a set of
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equations of the form

[
∂2

∂z2
+ k20n

2
0](mEx,m,n + nEy,m,n) =

−k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

(mEx,m′,n′ + nEy,m′,n′), (29a)

[
∂2

∂z2
+ k20n

2
0 − (m2 + n2)β2

0 ](nEx,m,n −mEy,m,n) =

−k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

(nEx,m′,n′ −mEy,m′,n′), (29b)

∂

∂z
[mEx,m,n + nEy,m,n] = 0. (29c)

The substitution of Eq. (29c) into Eq. (29a) yields

n2
0(mEx,m,n + nEy,m,n) =

−
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

(mEx,m′,n′ + nEy,m′,n′). (30)

It is worthwhile noting that Eq. (30) is equivalent to
the transversality constraint; i.e., ∇ · (D(r)) = ∇ ·
(ε(r)E(r)) = 0 must be satisfied. Next, we solve Eqs.
(29b) and (30) to obtain solutions for the high-order

waves Ex,m,n(z) and Ey,m,n(z). The linear combination
(nEx,m,n−mEy,m,n) can be solved from Eq. (29b) by us-
ing a similar Green function approach. The Green func-
tion Gm,n(z, z

′) satisfies

[
∂2

∂z2
+ k20n

2
0 − (m2 + n2)β2

0 ]Gm,n(z, z
′) = −δ(z, z′),

(31)

where

Gm,n(z, z
′)≃ e−βz,m,n|z−z′|

2βz,m,n
,

βz,m,n=
√

(m2 + n2)β2
0 − k20n

2
0(z). (32)

Thus, we obtain

(nEx,m,n −mEy,m,n) = k20
∑

m′ 6=m,
n′ 6=n

ξm−m′,
n−n′

·

∫

PC

(nEx,m′,n′(z′)−mEy,m′,n′(z′))Gm,n(z, z
′)dz′.

(33)

Under the assumption that only the basic waves are
important in generating high-order waves, Eqs. (30) and
(33) can be rewritten as

mEx,m,n + nEy,m,n ≃ − 1

n2
0

(nξm−1,
n
Rx + nξm+1,

n
Sx +mξ m,

n−1
Ry +mξ m,

n+1
Sy)Θ0(z) , E+(z), (34a)

nEx,m,n −mEy,m,n ≃ k20(−mξm−1,
n
Rx −mξm+1,

n
Sx + nξ m,

n−1
Ry + nξ m,

n+1
Sy)

∫

PC

Gm,n(z, z
′)Θ0(z

′)dz′ , E−(z).

(34b)

We then obtain

Ex,m,n(z) =
mE+ + nE−

m2 + n2
, (35a)

Ey,m,n(z) =
nE+ −mE−

m2 + n2
. (35b)

By multiplying both sides of Eqs. (35a)-(35b) by Θ∗
0(z)

and integrating over the PC region, we obtain
∫

PC

Ex,m,n(z)Θ
∗
0(z)dz =

∫

PC

mE+ + nE−

m2 + n2
Θ∗

0(z)dz,

(36a)
∫

PC

Ey,m,n(z)Θ
∗
0(z)dz =

∫

PC

nE+ −mE−

m2 + n2
Θ∗

0(z)dz.

(36b)

These equations can be expressed in terms of basic waves
(note the definitions of E+ and E− in Eqs. (34a)-(34b)).
Finally, the substitution of Eqs. (28a)-(28b) and Eqs.

(36a)-(36b) into the coupled-wave equations (19a)-(19d)

leads to an eigensystem that can be written in matrix
form as

(δ + iα)







Rx

Sx

Ry

Sy






=







C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44













Rx

Sx

Ry

Sy






,

(37)

where the matrix elements Cmn with (m,n) ∈ {1, 2, 3, 4}
are dependent on the PC geometry and the multilayer
waveguide structure and can be determined analytically.
It is informative to examine the physical interpreta-

tion of the coupled-wave equations (19a)-(19d). The
first terms on the right-hand sides represent the conven-
tional 1D coupling effects, i.e., the coupling between two
counter-propagating basic waves. The second terms rep-
resent coupling between the radiative waves and the basic
waves. Analytical expressions that describe these cou-
pling effects can be obtained by substituting Eqs. (28a)-
(28b) into the coupled-wave equations (19a)-(19d). For
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FIG. 5. (Color online) Schematic illustration of electric-field (Ex or Ey) profiles in the vertical direction for wavevectors with
different in-plane wavenumbers: (a) basic waves, (b) radiative waves, (c) high-order waves with (m,n)=(1,1).

example, by substituting Eq. (28b) into the second term
of the right-hand side of Eq. (19a), we obtain

− k20
2β0P

ξ10

∫

PC

∆Ey(z)Θ
∗
0(z)dz = ζ(1,1)Rx + ζ(1,2)Sx,

(38)

where

ζ(1,1) = − k40
2β0P

ξ10ξ−10

∫∫

PC

G(z, z′)Θ0(z
′)Θ∗

0(z)dz
′dz,

(39a)

ζ(1,2) = − k40
2β0P

ξ10ξ10

∫∫

PC

G(z, z′)Θ0(z
′)Θ∗

0(z)dz
′dz.

(39b)

These are in general complex numbers and are similar
in form to the radiation coupling coefficients derived for
second-order DFB lasers using conventional CWT [29].
The third terms on the right-hand sides of the coupled-
wave equations represent the 2D optical coupling of high-
order waves. In the case of TE polarization, basic waves
propagating in directions perpendicular to each other
within the plane do not couple directly. Coupling in-
stead takes place via high-order waves that propagate
at oblique angles, a phenomenon that has been demon-
strated by the previous CWT model [21]. However, the
contribution of only four high-order waves was previously
taken into account. The 2D coupling described by our
extended coupled-wave equations is far richer in nature;
the infinite summations allow us to include an infinite
number of high-order waves, thus making it possible to
capture all the important 2D optical coupling effects.
The generalized formalism above is capable of treating
air holes of any arbitrary shape by inclusion of the ap-
propriate high-order Fourier components.
Another important feature of our CWT model is that

the formulation has been rigorously derived for a 3D
structure. Unlike 2D PCs, the structure in this case is not

uniform in the vertical direction and thus the TE -field
profile might be different for each individual wavevector.
As mentioned above, these wavevectors are classified into
three groups: basic waves, radiative waves and high-order
waves. The TE -field profiles for these wavevectors are
depicted schematically in Fig. 5. The profiles were cal-
culated for the waveguide structure shown in Fig. 1 with
FF=0.16, by employing Eqs. (15), (27) and (35), respec-
tively (the real part of the electric field is plotted). It is
clearly apparent that for a 3D structure, the individual
wavevectors do not have identical field profiles. The ba-
sic waves have the same field profile as the fundamental
waveguide mode, the amplitude of which has a peak at
the active layer and decays slowly towards the upper and
lower cladding layers. The radiative waves possess an os-
cillating field profile along the z direction and emanate
in the direction normal to the PC plane to constitute the
laser output (surface emission). The field profile of the
high-order waves is more complicated because it is deter-
mined by both Eqs. (34a) and (34b). We calculated field
profiles for several cases with different (m,n) and found
that in general, the profile is characterized by Eq. (34b).
A typical profile is shown in Fig. 5(c) for high-order
waves with (m,n) = (1, 1). It is apparent that the high-
order waves are more strongly confined within the PC
layer compared to the basic waves, and that they decay
evanescently outside the PC layer. This evanescent char-
acter is described by the Green function Gm,n(z, z

′) in
Eq. (32) (note that β2

m + β2
n = (m2 + n2)β2

0 > k20n
2
0(z)).

In addition, it can easily be found from Eq. (32) that
the field profile is largely dependent on the order of the
waves (m,n): the higher the wavevector order, the more
strongly the field is confined in the PC layer. In short, the
field profiles for the individual wavevectors in a 3D struc-
ture are extremely complicated, which represents the fun-
damental difference between 3D and 2D systems. There-
fore, each field profile must be treated very carefully in
order to accurately quantify the coupling effects in a 3D
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system. In the previously reported CWT analyses [4]
[21], an approximation based on the effective refractive
index was used in the 2D calculations. This approxima-
tion implies that all the individual wavevectors have the
same field profile in the vertical direction as that of the
fundamental waveguide mode, an assumption that might
lead to inaccurate results. In the following section, we
present detailed numerical examples in order to illustrate
this fundamental difference.

III. NUMERICAL RESULTS AND DISCUSSION

As described above, we have developed a CWT model
that incorporates high-order coupling effects and allows
a more accurate definition of the coupling coefficients in
a 3D system to be derived. When Eqs. (19a)-(19d) are
solved as an eigenvalue problem, we can directly evaluate
two most important properties of the band-edge modes
for square-lattice PC-SELs with infinite periodic struc-
tures, i.e., the mode loss α and the mode frequency ω.
In order to understand the effects of asymmetric air-hole
shapes, we present numerical results for the three shapes
shown in Fig. 2(b): circular (CC), equilateral trian-
gular (ET), and right-angled isosceles triangular (RIT)
shapes. In all the following calculations, we use a waveg-
uide structure characterized by the parameters in Table
I, with the dielectric constants εa = 1.0, εb = 12.7449,
and the lattice constant a = 295 nm.
For a square-lattice PC, there are four band-edge

modes at the second order Γ-point for TE polarization
[25]. We refer to these as modes A, B, C and D, in as-
cending order of frequency. Modes C and D correspond
to the symmetric mode of 1D-DFB lasers, and thus have
significant loss [30]. In contrast, modes A and B corre-
spond to the anti-symmetric mode of 1D-DFB lasers, and
lase more easily than modes C and D. Therefore, we re-
strict the following discussion to modes A and B only. In
order to solve Eqs. (19a)-(19d), we first need to truncate
the summations at a certain order of m and n. Accord-
ingly, we define a quantity D such that |m| ≤ D, |n| ≤ D.
The effects of truncating the summations can be observed
by plotting the radiation constant (a parameter defined
by αr = 2α to quantify the modal power loss) and the
mode frequency as a function of D, as shown in Fig. 6.
For illustration, we only show results for the asymmetric
RIT air-hole shape (FF=0.16), the modeling of which
requires the inclusion of many more high-order waves
than the CC and ET shapes. It is apparent from Fig.
6 that the radiation constant is more sensitive to D than
the mode frequency, which indicates that a large num-
ber of high-order wavevectors must be included in order
to calculate the radiation constant accurately. Both the
radiation constant and mode frequency change little for
D ≥ 10, hence we use a truncation of D = 10 in all of
the following calculations.
In order to confirm the accuracy of the above CWT

analysis results, we also performed 3D-FDTD simulations

FIG. 6. (Color online) Radiation constant and mode fre-
quency as a function of the truncation order D. These plots
were calculated for the asymmetric RIT air-hole shape with
FF=0.16.

[18, 31] for the structure shown in Fig. 1. We used a
computational cell of 40 × 40 × 640 pixels (x × y × z),
corresponding to 1×1×16 lattice periods, with absorbing
boundary layers in the z direction and periodic boundary
conditions in x and y. The Q factor obtained by the
3D-FDTD method was used to compute the radiation
constant via the following relationship [32]:

αr ≃ β0
Q

=
2π/a

Q
. (40)

Figures 7 and 8 show the radiation constant and mode
frequency as a function of FF, obtained by both the CWT
and 3D-FDTD methods. It is clear that the CWT results
are in good agreement with the 3D-FDTD simulations.
The slight deviation of the 3D-FDTD data in the case
of the RIT air hole can be attributed mainly to numeri-
cal effects (i.e., low resolution). However, the calculation
time required for the two methods is markedly differ-
ent. For a specific FF, the 3D-FDTD simulation takes
∼ 4 hours using a supercomputer system (64 cores and
9.0 GB memory), whereas the CWT analysis takes less
than 1 second with a personal computer (1 core@2.20GHz
and negligible memory usage). Although a large number
of wavevectors were included in the CWT analysis, the
calculation time is nevertheless short due to the semi-
analytical nature of the algorithm.
It is noteworthy that the radiation constant for the

symmetric CC air-hole shape is zero (corresponding to
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FIG. 7. (Color online) Radiation constant as a function of FF for (a) CC, (b) ET, and (c) RIT air-hole shapes. Some 3D-FDTD
points are missing in the case of the CC shape because Q is infinitely large.

FIG. 8. (Color online) Mode frequency as a function of FF for (a) CC, (b) ET, and (c) RIT air-hole shapes.

FIG. 9. Schematic illustration of the interference occurring in
the vertical direction for (a) circular holes and (b) triangular
holes. The arrows represent the propagation directions of the
basic waves and radiative waves, and the sine curves represent
the phases of the fields for these waves.

an infinite Q factor in the 3D-FDTD method) at every
value of FF, whereas it increases with FF when the air-
hole shapes are asymmetric (ET or RIT). This difference
can be physically interpreted by considering the interfer-
ence occurring in the vertical direction, as illustrated in

Fig. 9. The radiation field depends on the phase differ-
ence of the waves diffracted vertically, which arise from
counter-propagating basic waves in the PC plane. In the
case of the symmetric CC air-hole shape, the two basic
waves propagating in the x or y direction are intrinsically
out of phase [30] and their diffracted waves thus have a
phase difference of π. Therefore, destructive interference
occurs and the two diffracted waves cancel each other out.
In contrast, when the air-hole shape is asymmetric, such
as for the ET and RIT shapes, the counter-propagating
basic waves are no longer out of phase and the phase dif-
ference of the diffracted waves will deviate from π. The
destructive interference is consequently suppressed, giv-
ing rise to partial constructive interference. Therefore, a
higher output power can be expected when asymmetric
air-hole shapes are used.

We note that the mode frequency plotted in Fig. 8
was calculated for a 3D structure, which should be dif-
ferent from that calculated for a 2D structure. In order
to elucidate the difference between 3D and 2D calcula-
tions, we evaluated the mode frequency for the CC air-
hole shape using the 2D-PWEM approach [4], which is
plotted versus FF in Fig. 10 together with the CWT re-
sults of Fig. 8(a). A total of 225 plane waves were used
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FIG. 10. (Color online) Mode frequency for CC air holes as
a function of FF, calculated using the CWT and 2D-PWEM
approaches.

in the 2D-PWEM calculation and the effective refractive
index approximation [25] was employed. Comparing the
results for the two methods, it is apparent that the mode
gap between modes A and B (ωB − ωA) calculated using
the present CWT model is significantly larger than that
calculated using the 2D-PWEM approach. We suggest
that a physical explanation can be found by consider-
ing the fact that in a 3D structure, the high-order waves
(generated by basic waves) are more strongly confined
in the PC layer, as depicted in Fig. 5(c). The effective
refractive index approximation used in the 2D-PWEM
calculation implicitly assumes that the transverse field
profile of all the high-order waves is identical to that
of the fundamental waveguide mode, the amplitude of
which slowly decays outside the PC layer, as shown in
Fig. 5(a). Therefore, the 2D optical coupling strength is
greater in a 3D structure than in a 2D structure, leading
to a larger mode gap in a 3D structure.

IV. SUMMARY

In summary, we have presented a generalized CWT
model for 2D square-lattice PC-SELs with TE polariza-
tion. Our model incorporates a large number of high-
order wavevectors, and we have derived a general and
rigorous formulation to describe the coupling effects that
occur in a 3D system. Moreover, our general coupled-
wave formulation can be applied to air holes of arbitrary
shape. The accuracy of our CWT model has been con-
firmed by comparison with 3D-FDTD simulations, which
require significantly greater computational time.

In our CWT analysis, we have shown that the inclusion
of a sufficiently large number of high-order wavevectors is
important for an accurate study of the band-edge modes,
especially in the case of asymmetric air-hole shapes. Fur-
thermore, a 3D characterization allows realistic laser de-
vices to be more accurately modeled than in a 2D anal-
ysis. We have also discussed the fundamental differences
between 3D and 2D systems. By comparison with the
results obtained for a 2D system using the 2D-PWEM
approach, a larger mode gap was calculated for the 3D
structure modeled using the CWT method. This larger
mode gap can mainly be attributed to a much stronger
2D optical coupling via high-order wavevectors, which
are found to be strongly confined in the PC layer. By
evaluating the radiation constant and mode frequency of
the band-edge modes for several different air-hole shapes,
we have found that asymmetric air holes are beneficial
for improving the output power of 2D PC-SELs because
destructive interference in the vertical direction can be
suppressed.

As the purpose of this work is to develop a CWT model
that better describes the coupling effects in 2D square-
lattice PC lasers with TE polarization, we have restricted
our analysis to infinite periodic structures. However, the
theoretical framework constructed here can be extended
to the analysis of finite structures without modifying the
basic methodology. Moreover, extension of our theory to
TM polarization, triangular-lattice PCs, and more com-
plicated PC geometries (such as PCs comprised of air-
holes with tilted sidewalls) is straightforward. We believe
that further theoretical work based on this framework
will enable efficient optimization of the structures of 2D
PC-SELs for a range of applications, as well as providing
a powerful analytical tool to comprehensively understand
the properties of 2D PC-SELs.
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