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 London presented a relation between suppercurrent density and magnetic vector potential[1], Pippard suggested a non-local relation[2], and the 

similar relation can be derived with the BCS theory and some strongly correlated models. However, pairs may have wavefunctions, and this leads 

the supercurrent to being related to a phase function[3,4]. That is to say, the whole microscopic relation between suppercurrent and magnetic vector 

potential has to found. This paper suggests a microscopic equation on the basis of boson features of superconducting pairs and finds some new 

results. Some reproduced results are qualitatively in agreement with experiments, while some new results have to be tested. Particularly, it is found 

that the phase function is determined by the Bose-Einstein distribution of the pairs, and the phase function establishes the relation between 

supercurrent and magnetic vector potential, this is beneficial to explaining why superconductivity requires pairs. 

 

  We assume that the superconducting pairs (for spin singlet pairs) could be described with the bosons, and the bosons have the excitation energies 

qrΩ ),( qAq r

rr
Ω≡ in magnetic field. Because the Bose-Einstein distribution highlights the effects of low energy particles, for approximate isotropic 

systems [5], ),( Aeq
rr

Ω = )0,0(),( Ω=Ω eAq + 2/2qα + 2/22 Ae β , this leads to this supercurrent density equation 
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where the constant numberα andβ  can be determined below, and the Bose-Einstein distribution is 

 )( qBn rΩ =
1

1
/)2( −−Ω TkBqe μr

                                                                            (2) 

where μ2 is the chemical potential of the boson systems whileμ is the chemical potential of other electrons. The determination of the chemical 

potential will not be discussed in this paper.  

  Whether Eq.(1) is reasonable should be examined with experiments. The equation is different from the London equation and Pippard equation, it 

seems more reasonable, and we will find this. We express sqB
q

nn =Ω∑ )( r
r

, and define the phase function  
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this phase function is only determined by the Bose distribution. Eq.(3) shows that the phase function reflects the collective behavior of pairs. Using 

Eq.(1) and (3), we have ')'()'(2)(2)(
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temperature, BTT < , we can express xqi
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under the Bose-Einstein condensation to the total particle number. The term including )1(θ could be neglected when BTT << . Having compared with 

the quantum mechanics form )2( Ae
m
en

j
e

s
rr

h
r

+∇
−

= θ ，we find 
em

C
2
h

=α and )0(

1

Benm
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It is necessary to note )0(
Bn ≠0 unless the electron systems are in the normal state. Eq.(5) shows that the two terms in supercurrent density are strictly 

correlated through the phase function )(xrθ , and this should be very appropriate. However, this result could not be found in the quantum mechanics 

form )2( Ae
m
en
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= θ or others.  

  The Meissner effect has been explained with the London equation or the Pippard equation, from which we know that the penetration depth 

decrease with increasing sn or others. In the past, the temperature dependence of the penetration depth has been attributed to the change of the 

number of pairs or the change of the energy gap. The Meissner effect can be explained with Eq.(5) or (6), too. However, Eq.(4) shows that the 

temperature dependence of the penetration depth is strictly correlated to the Bose-Einstein distribution, this is interesting but has to be confirmed by 



 4 

comparing possible detail calculations with experiments. Eq.(4) obviously shows that the penetration depth will decrease with the decreasing of 

temperature, because of the increase of both sn and )0(
Bn , this qualitative change is consistent with the well-known results, while possible 

quantitative examination have to be investigated. 

  Eq.(6) shows that the local relation in the London equation is due to the Bose-Einstein condensation. We will find that the magnetic flux quantum 

in a superconducting ring is also correlated to the condensation. Using Eq.(6), because of sj
r

=0 inside the superconductor, we have 
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be neglected, this leads to the result ldA
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where )(xg rr = ')'()'(1 3)1(
)0( xdxAxx

nB
∫ −

rrrrθ , and )(xg rr ≠ )(xAc rr
. The superconducting transition temperature is expressed as cT , and the Bose-Einstein 

condensation temperature is expressed as BT . Two cases may appear in various superconductors. The first case is cT < BT , and this leads Eq.(6) to 

being the quantum mechanics result )2( Ae
m
en
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= θ , the magnetic flux quantum in a superconducting ring could be kept. The second case is 

cT > BT . Eq.(7) shows that the term including gr  may break the magnetic flux quantum. In this second case, two ways could keep the magnetic flux 
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quantum, one is to decrease temperature, and another is to use a ring thick enough. However, when the ring is large enough, the fluctuation of the 

earth magnetic field could not be neglected, and the measurement of magnetic field may produce a large discrepancy. Therefore, the possible way to 

keep the magnetic flux quantum is decreasing temperature. Because this case corresponds to cT > BT , this ring favors to be made from high 

temperature superconductors. This clearly shows that the increasing temperature may break the magnetic flux quantum, and this appearance easily 

occurs in high- cT  superconducting ring. The magnetic flux quantum has been examined with some low-temperature superconductors [6,7] under 

some discrepancy, while the origin of this discrepancy has to be investigated, and our suggestion above may shed light on the origin. 

  A superconductor has its critical current density cj
r

, when the current density is larger than the critical current, j
r
≥ cj
r

, the DC resistance of the 

superconductor is not zero. This could be understood with Eq.(5). Using sjB
rrr

0μ=×∇ , we get 
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It shows that 0≠A
r

but B
r

=0 is possible in a superconductor. Moreover, A
r

=0 is impossible in the superconducting region of a superconductor. If we 

take the Coulomb gauge A
rr

⋅∇ =0, we establish this equation 
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thus the magnetic vector potential A
r

 is knew if it has been given in the surface of a superconductor. The magnetic vector potential in Eq. (9) can 
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be such a distribution that the current determined by Eq(5) arrives at its maximum, the critical value. If we exert some external field on the 

superconductor, the magnetic vector potential should consist of two parts, totalA
r

 = .extAA
rr

+ , A
r

 is still determined by Eq.(9) (in superconducting 

state), while .extA
r

is not.  

 In summary, Eq.(1) shows some new physics, some are in agreement with experiments, while some have to be tested. Eq(1) leaves many problems 

to be investigated. For example, what is the form of )0,0(Ω ? )0,0(Ω  may correlate with the medium of electron pairing. What is the form of 

)(xrθ ? )(xrθ must be determined by computer. However, this paper should be beneficial for one to understand some general problems of 

superconductivity. 
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