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Monte Carlo (MC) simulation is commonly considered to be the most accurate dose 

calculation method in radiotherapy. However, its efficiency still requires 

improvement for many routine clinical applications. In this paper, we present our 15 

recent progress towards the development a GPU-based MC dose calculation 

package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to 

achieve high efficiency, while maintaining the same particle transport physics as in 

the original DPM code and hence the same level of simulation accuracy. In GPU 

computing, divergence of execution paths between threads can considerably reduce 20 

the efficiency. Since photons and electrons undergo different physics and hence 

attain different execution paths, we use a simulation scheme where photon transport 

and electron transport are separated to partially relieve the thread divergence issue. 

High performance random number generator and hardware linear interpolation are 

also utilized. We have also developed various components to handle fluence map 25 

and linac geometry, so that gDPM can be used to compute dose distributions for 

realistic IMRT or VMAT treatment plans. Our gDPM package is tested for its 

accuracy and efficiency in both phantoms and realistic patient cases. In all cases, 

the average relative uncertainties are less than 1%. A statistical t-test is performed 

and the dose difference between the CPU and the GPU results is found not 30 

statistically significant in over 96% of the high dose region and over 97% of the 

entire region. Speed up factors of 69.1 ~ 87.2 have been observed using an NVIDIA 

Tesla C2050 GPU card against a 2.27GHz Intel Xeon CPU processor. For realistic 

IMRT and VMAT plans, MC dose calculation can be completed with less than 1% 

standard deviation in 36.1~39.6 sec using gDPM.  35 
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1. Introduction 

 

Radiation dose calculation plays a crucial role in  radiotherapy treatment planning and 

verification. Monte Carlo (MC) simulation is known to be the most accurate dose 

calculation method for radiotherapy. In this method, one computes how a particle 5 

propagates step by step according to fundamental physics principles. To achieve a desired 

level of statistical accuracy, a large number of particle histories are needed, consuming a 

long computation time. During past a few decades, a number of MC algorithms have 

been developed, such as EGS4/5 (Nelson et al., 1985; Bielajew et al., 1994; Hirayama et 

al., 2010), EGSnrc (Kawrakow, 2000), MCNP (Briesmeister, 1993), PENELOPE (Baró 10 

et al., 1995; Salvat et al., 1996; Sempau et al., 1997; Salvat et al., 2009), GEANT4 

(Agostinelli et al., 2003). Meanwhile, efforts have been devoted to develop high 

efficiency dose calculation packages for radiotherapy, for instance VMC++ (Kawrakow 

et al., 1996), MCDOSE/MCSIM (Ma et al., 1999; Li et al., 2000; Ma et al., 2002), and 

DPM (Sempau et al., 2000), etc. These packages employ variance reduction techniques 15 

or simplify particle transport physics to gain computation speed. Despite these 

developments along with the increasing of CPU clock speed, there is still room for 

improving the efficiency of MC dose calculation.  

Porting MC packages onto parallel computing architectures is a straightforward way 

for boosting their efficiency. Since each computing unit can work on a portion of the total 20 

particle histories without interfering with each other, roughly linear scalability of 

computation efficiency with respect to the number of computing units is commonly 

expected. This is indeed the case for CPU cluster based MC simulation. For instance, 

DPM has been parallelized on a CPU cluster and almost linear speed-up has been 

observed with the number of processors, when up to 32 nodes are used (Tyagi et al., 25 

2004). Recently, graphics processing unit (GPU) has been utilized to speed up 

computationally intensive tasks in medical physics. Though GPU has been demonstrated 

to be extremely powerful in solving many problems (Xu and Mueller, 2005; Sharp et al., 

2007; Yan et al., 2008; Samant et al., 2008; Jacques et al., 2008; Hissoiny et al., 2009; 

Men et al., 2009; Gu et al., 2009; Jia et al., 2010b; Gu et al., 2010; Men et al., 2010a; 30 

Men et al., 2010b; Gu et al., 2011), it is quite hard to achieve high speed-up factors for 

MC dose calculations on GPU for the following two inherent conflicts between the 

stochastic nature of a MC process and the GPU hardware architecture. First, GPU 

employs an architecture called single-instruction multiple-thread (SIMT) (NVIDIA, 

2010b), where the multiprocessor of a GPU executes a program in groups of 32 parallel 35 

threads termed warps. If the paths for threads within a warp diverge due to, e.g., some if-

else statements, the warp serially executes one thread at a time, while putting all other 

threads in an idle state. Thus, high computation efficiency is only achieved when all 

threads in a warp process together along a same execution path. Unfortunately, in a MC 

calculation the work paths on different threads are statistically independent, essentially 40 

resulting in an almost serialized execution within a warp. Second, GPU memory speed is 

typically very slow compared to CPU memory and it is quite expensive to have frequent 

and random memory access. In the MC simulation, all threads share the usage of GPU 
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global memory and each thread visits different memory addresses in a completely 

unpredictable pattern. This fact also slows down the MC simulation considerably. 

We have previously developed a GPU-based MC dose calculation package, gDPM 

v1.0 (Jia et al., 2010a), based on a publically available dose calculation package, DPM. 

By simply distributing particles to all GPU threads and treating them as if they were 5 

independent computational units, it is found that only 5.0~6.6 times speedup can be 

achieved due to the aforementioned intrinsic conflicts between the randomness of the MC 

simulation and the GPU SIMT architecture. Recently, Hissoiny et. al. (Hissoiny et al., 

2011) have developed a MC dose calculation package, GPUMCD. By integrating various 

particle transport physics reported in literature and rewrite the code specifically designed 10 

for GPU, high computation efficiency has been reported. Despite its great speed, this 

code does not contain necessary features for dose calculation of realistic treatment plans. 

We have recently made a tremendous progress towards the further improvement of 

our gDPM code with emphases on the following two aspects. First, while focusing on 

algorithm optimization for GPU architecture, we also maintain same particle transport 15 

physics as in the original DPM so as to ensure simulation accuracy. In this v2.0 version, 

it is found that the efficiency is 69.1 ~ 87.2 times higher than the original DPM package 

on CPU and the CPU and the GPU results are in well agreement. Second, our 

development also emphasizes on clinical practicality of our code by integrating various 

key components such as generating particles according to planned fluence maps. To our 20 

knowledge, gDPM is the first GPU based MC packages that enables the dose calculation 

for real treatment plans. It is capable of calculating dose in an IMRT plan or a VMAT 

plan in a sub-minute time scale. 

The roadmap of this paper is as follows. In Section 2, we will briefly describe DPM 

physics, algorithm structure, and some key issues in our implementation. Section 3 25 

presents experimental results of our dose calculation in both heterogeneous phantoms and 

realistic IMRT and VMAT plans. Finally, we conclude our paper in Section 4 and present 

some discussions. 

 

2. Methods and Materials 30 

 

2.1 DPM Physics 

 

The original sequential DPM MC code was previously developed for fast dose 

calculations in radiotherapy treatment planning (Sempau et al., 2000). It targets at 35 

simulating coupled photon-electron transport with a set of approximations valid for the 

energy range considered in radiotherapy. Specifically, the photon transport is handled by 

using the Woodcock tracking method which greatly increases the simulation efficiency of 

the boundary tracking process (Woodcock et al., 1965). As for the electron transport, 

DPM implements a condensed history technique. Step-by-step simulation is used for 40 

inelastic collisions and bremsstrahlung emission involving energy losses above certain 

cutoffs. It also employs new transport mechanics and electron multiple scattering 

distribution functions to allow long transport steps. These mechanisms enable the 
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electron cross a few heterogeneity boundaries in one step and hence increase the 

simulation efficiency. The continuous slowing down approximation is employed for 

energy losses below some preset energy thresholds. Positron transport is treated as 

electron and two photons are created at the end of the positron path to account for the 

annihilation process. The accuracy of DPM has been demonstrated to be within     for 5 

both clinical photon and electron beams (Chetty et al., 2002; Chetty et al., 2003). In our 

gDPM code, we will maintain all the physics unchanged, while seeking for efficiency 

boost using various computational techniques. 

  

2.2 CUDA implementation 10 

 

A GPU typically consists of a large number of scalar processor units. Though the clock 

speed for each processor is lower than a typical CPU, the overall computational power is 

much higher due to the large amount of processors available on GPU. Our gDPM v2.0 is 

coded under the Compute Unified Device Architecture (CUDA) platform developed by 15 

NVIDIA (NVIDIA, 2010b), which enables us to extend the C language to program an 

NVIDIA GPU. 

 

2.2.1 Simulation process 

 20 

The main structure of our code is shown in the left panel of Fig. 1. Once the simulation 

starts, the code is initialized with all the necessary data including the voxelized geometry, 

material properties, and all cross section data. Random number seeds are also initialized 

in this step. All of these data are transferred to GPU memory during this step. After the 

initialization stage, simulation is then performed in a batched fashion. We evenly divide 25 

the total number of histories into    batches, e.g.      . For each batch, we simulate 

the particle transport and record the dose deposition to each voxel. The details of this step 

will be discussed later. After the simulations for all batches, statistical analysis is 

performed to obtain average dose to each voxel and corresponding uncertainties. Finally, 

the program transfer data from GPU to CPU and output results before exit.  30 

Within each batch, particle transport will be simulated in parallel with each GPU 

thread responsible for one particle. In this process, divergence between GPU threads will 

take place mainly due to 1) the different physical transport processes that photons and 

electrons undergo and 2) the randomness of the transport process for a given particle. 

Though the thread divergence caused by the second factor is hard to remove, by carefully 35 

designing the simulation scheme, we can separate the photon and electron transport and 

hence partially relieve the thread divergence issue.      

As such, we design the following data structure. We first allocate a particle array of 

length   to store all the particles currently being simulated. The particles in this array can 

be either photons or electrons, but all of same type at any time during the simulation. The 40 

size of this particle array should be large enough, so that GPU can fully exploit its 

parallelization ability, while not too large to fit in the GPU memory. Moreover, since 

GPU execute simulation in warps, i.e. a group of 32 threads run simultaneously on a 
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multiprocessor, it is beneficial to choose   to be a multiple of warp size to avoid of 

wasting resources. In a typical setup, we choose        . Meanwhile, we use two 

more arrays as stacks to store any secondary particles generated during the simulation, 

one of a length    for photons and one of a length    for electrons. The lengths of them 

are chosen empirically, e.g.,          , to provide large enough space for 5 

secondary particles. 

Along with this data structure, we design a scheme to carry out the simulation within 

each batch, such that photon and electron transport are not performed simultaneously.  

The idea of separating the simulation of electrons and photons was originally proposed 

by Hissoiny et al. (2011) and was found to be effective to speed up MC simulation on 10 

GPU. This scheme is illustrated in the right panel of Fig. 1. Specifically, when the 

program enters Step 3, all the counters and stacks are empty, as well as the particle array. 

The exit criterion of this Step 3 is that a preset number of particle histories for this batch, 

i. e. the total number of particle histories divided by the number of batches, have already 

been simulated and both the electron and the photon stacks are empty. Step 3a justifies 15 

this criterion and the program exits the current batch, if the criterion is met. Step 3b 

checks the number of particles in both stacks. If there are more than   particles left in 

either of them,   particles will be loaded from the corresponding stack to the particle 

array (Step 3d). If neither stack has enough particles, Step 3c will guide the program to 

either loading the rest of particles from the stack (Step 3d) in the case all source particle 20 

histories have been simulated, or generating new source particles in the particle array 

(Step 3e) otherwise. Up to now, the particle array is filled with a set of particles, all of 

 

Figure 1. The flow chart of our gDPM v2.0 Monte Carlo simulation. Detailed steps of the 

batch simulation part (Step 3 in the left panel) are shown on the right panel. 
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same type. Depending on the particle type, a GPU kernel for the electron transport or for 

the photon transport will be launched in Step 3f. Such a kernel will be executed on GPU 

in parallel and each GPU thread simulates one particle in the array, till it exits the 

phantom geometry or is absorbed. In this process, dose deposition to each voxel is 

recorded and any secondary particles created are put into the corresponding stack. After 5 

Step 3f, the program loops back to Step 3a to check if further simulation is needed. 

  

2.2.2 Other modifications 

 

Besides turning the sequential simulation into parallel computation utilizing the scheme 10 

discussed in section 2.2.1, there are three other modifications we have made in the gDPM 

v2.0 compared with the original sequential DPM. First, single-precision floating point 

data type is used throughout our implementation to represent rational numbers instead of 

double-precision as in the original sequential DPM code. This is due to the fact that 

single-precision is sufficient for Monte Carlo dose calculation as demonstrated later in 15 

this paper.   

Second, we have also modified the pseudo-random number generator. In gDPM v2.0, 

the pseudo-random numbers are generated using the random number generator library 

CURAND (NVIDIA, 2010a) provided by NVIDIA. This library provides a light-

weighted GPU function that produces simple and efficient generation of high-quality 20 

pseudo-random numbers using XORWOW algorithm (Marsaglia, 2003), a member of the 

xor-shift family of pseudorandom number generators. The period of such a generator is 

about      and the quality of the random numbers has been tested using the TestU01 

“Crush” framework of tests (L'Ecuyer and Simard, 2007).  

In addition, we have also modified the interpolation method for the cross section data 25 

for better performance. In an MC simulation, an array of a cross section data      at a 

number of discrete energy values      is first loaded into the memory for each type of 

interaction of interest. Interpolation of the cross section data is then necessary during the 

simulation to obtain the cross section value at any arbitrary energy. In the original 

sequential DPM code, cubic spline interpolation was implemented. As such, interpolation 30 

coefficients              are first computed during the program initialization stage for 

each energy interval          , such that the cross section data can be obtained as 

               
     

  for            . Though this provides a high 

accuracy of the interpolation data, each interpolation task requires four times memory 

read to obtain the four interpolation coefficients and a number of arithmetic operations, 35 

which is not efficient considering the slow GPU memory access speed. In the gDPM 

v2.0, we use linear interpolation instead, which requires only two memory read per 

interpolation task and less number of arithmetic operations. Moreover, this linear 

interpolation can be achieved by GPU hardware via the so called texture memory. Since 

interpolation is very frequently used in the MC simulation, this modification on the 40 

interpolation method enhances the overall program efficiency considerably. It is true that 

the linear interpolation attains lower accuracy on the cross section data. Yet, no loss of 

accuracy in the final dose has been observed in all of our testing cases. 
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2.3 Other components in gDPM v2.0 

 

In addition to improving computational efficiency, we also focus on clinical practicality 

of our gDPM package. We have developed a set of necessary components, so that gDPM 5 

can be used to compute radiation dose in clinically realistic contexts. First of all, an 

interface of the gDPM package is built to load clinical treatment plans in the format of 

DICOM RT. This includes the functions of loading voxelized patient CT data, organ 

structure information, fluence map of a treatment plan, etc.. Second, computations related 

to linac geometry of a treatment plan are enabled to take into account rotations of linac 10 

gantry, multi-leaf collimator (MLC), collimator, and couch. With all the functionalities 

presented in this section, we are able to load a realistic IMRT or VMAT treatment plan 

and perform does calculation using the developed gDPM v2.0 package. 

 

2.3.1 Fluence map 15 

 

To simulate IMRT or VMAT treatment plans, generating source particles according to a 

designed photon fluence map is a key step. Let us group fluence maps from all beam 

angles together, and divide the whole fluence map from all beam angles into a total 

number of    small beamlets labeled in a certain order by an index          . Note 20 

that the index   parameterizes both the beam angle and the location of a beamlet inside an 

angle. The associated beamlet intensity    represents the relative probability that a 

particle comes from the beamlet  . The goal of sampling a photon following this fluence 

map can be achieved by first sampling a beamlet index   according to the relative 

probability determined by    and then sampling the particle inside this beamlet uniformly. 25 

To make this sampling more efficient, let us exclude those beamlets with zero photon 

fluence from consideration, so that      for all  . A straightforward way of generating 

source particles according to this fluence map is to use the accumulative probability 

                   
. Each time a particle is to be sampled, we can first generate a 

random number   uniformly distributed in       and find the beamlet   such that      30 

        . Though this method is conceptually simple, its implementation on GPU is 

quite inefficient, because the step of finding the beamlet index   satisfying        

       requires some sort of searching algorithms, which involves a large number of 

memory access to the slow GPU memory.   

To ensure high efficiency, we utilize the so called Metropolis sampling algorithm 35 

(Hastings, 1970). Key steps of this algorithm are illustrated in Algorithm A1. In this 

algorithm, the beamlet index generated for the previous one particle       is stored, used, 

and updated each time a new beamlet index is generated.  

 

Algorithm  A1: 

 Initialize       with an arbitrary beamlet index in           . 

Do the following steps each time a particle is generated: 
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1. Generate a trial beamlet               with equal probablity; 

2. Generate a random number r uniformly distributed in [0,1]; 

3. If            
, set    ; otherwise set        .  

4. Generate a particle from the beamlet   uniformly. 

5. Set         . 

 For the initialization step and in the Step 1, the beamlet index       and   can be simply 

chosen from            with equal probability. It has been proven that such an 

algorithm is able to generate a sequence of beamlet indices following the distribution 

governed by   , given that this sequence is long enough. Note that each time a new 

beamlet index is selected, searching through the fluence map is not involved, which 5 

ensures the computational efficiency by avoiding a large number of GPU memory access. 

In practice, since we are performing parallel computation, each GPU thread is initialized 

with its own       generated by a CPU random number at the initialization stage.  

To demonstrate the convergence of this algorithm, we record the particles generated 

at one beam angle in a typical IMRT plan. The desired fluence is shown in Fig. 2(a), 10 

while the photon fluence with     particles generated according to the algorithm A1 is 

depicted in Fig. 2(b). These two fluence maps are visually very similar. To quantify this 

similarity, we compute the error         
  

 
, where    and   

  are vectors composed 

of the probability at each beamlet for the generated fluence map and the ground truth, 

respectively. As shown in Fig. 2(c), this error monotonically decreases quickly, as the 15 

particle number increases. Considering the number of simulated particles is of order     

in those realistic treatment plans presented in this paper, the generated fluence is in well 

agreement with the given fluence map in treatment plans. 

 

2.3.2 Energy spectrum 20 

 

Photons coming from a real linac head are not monoenergetic. Therefore, the source 

particle energy has to be generated according to an energy spectrum for accurate dose 

calculation. A straightforward way of taking this spectrum into simulation is to randomly 

 

Figure 2.  A typical fluence map at one beam angle of an IMPT plan is shown in (a). The 

generated fluence map with     particles is shown in (b). (c) is the dependence of the error   

on the particle number simulated. 

 

(a)

(b)

10
2

10
4

10
6

10
8

10
-3

10
-2

10
-1

 

 

e

Number of particles

(c)



9             X. Jia et al. 

9 

assign the energy for each source photon accordingly. Yet, a large number of photons are 

simulated simultaneously on GPU and the computation time among them varies due to 

their different energies. As a consequence, those photons with short simulation time will 

have to wait for those with long simulation time, which reduces the overall computational 

efficiency. To resolve this issue, we evenly divide the entire energy spectrum into a set of 5 

intervals. The total number of photons to be simulated in each batch is first distributed to 

each energy interval according to the spectrum. Simulation is then performed for each 

interval sequentially with the particle energy evenly distributed inside the interval. This 

strategy ensures that, at any moment of the simulation, all GPU threads are dealing with 

particles of similar energies, removing the possibility of losing efficiency due to the 10 

variance of simulation time between GPU threads handling photos of different initial 

energies. 

 

2.3.3 Detailed source modeling 

 15 

Accurate source modeling of a linac is not a trivial problem by itself and is beyond the 

scope of this paper. In gDPM v2.0, we do not provide specific source models of any 

particular type of linac. Instead, we leave the interface of source particle generation part 

open and users can supplement their own functions to generate source particles according 

to their own source model or simply by using a phase space file. For a testing purpose, all 20 

the photon cases studied in this paper use a point source with a realistic energy spectrum.  

 

3. Results 

 

In this section, we provide the results in various cases for testing our gDPM v2.0 package. 25 

The purposes of presenting these results are twofold. First, though we did not alter DPM 

physics, the various techniques employed in gDPM, such as linear interpolation on cross 

section data, may impact the simulation accuracy. By comparing the simulation results 

obtained from the sequential DPM and our gDPM v2.0 in phantoms with different 

materials, we will show that the implementation of our gDPM does not degrade the 30 

computational accuracy. Second, the computation time is recorded and compared with 

that of the original sequential DPM code. This will clearly demonstrate the gain of 

computational efficiency achieved through the various techniques we employed and the 

powerful GPU we used. In addition, dose calculation for an IMRT case and two VMAT 

cases will also be conducted to demonstrate the feasibility of using gDPM for fast MC 35 

dose calculation in realistic clinical contexts.  

As for the hardware used in this section, the GPU results are obtained on an NVIDIA 

Tesla C2050 card. Such a GPU card is manufactured specifically for the purpose of 

scientific computing. It has a total number of 448 processor cores (grouped into 14 

multiprocessors with 32 cores each), each with a clock speed of 1.15 GHz. The card is 40 

equipped with 3 GB GDDR5 memory shared by all processor cores. It supports error 

correction codes to protect data from random errors occurred in data transfer and 

manipulation, ensuring computing accuracy and reliability. As for the CPU on which the 
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original DPM code is executed, it is equipped with a 2.26 GHz Intel Xeon E5520 

Nehalem processor and 4GB memory.  

 

3.1 Phantom studies  

 5 

We first study the performance of our gDPM v2.0 on two phantoms with slab geometries. 

The dimension of both of them are                    and the voxel size is set to be 

               . The first phantom consists of three layers along the z direction, namely 

     water,      bone, and       water. The geometry of the second phantom is same 

as the first one except that the bone slab is replaced by a lung slab. In all testing cases, we 10 

place a point source at          , and the beam impinges normally to the phantom on 

its x-o-y plane. Field size is set to be            at the isocenter with           . 

The electron beam is mono-energetic with it energy set to be 20 MeV, while the photon 

beam has a realistic 6 MV energy spectrum. The absorption energies are 200 keV for 

electrons and 50 keV for photons. For the cases with an electron source, a total number of 15 

        particle histories are simulated, which are evenly divided into 10 batches for 

the purpose of calculating statistical uncertainties. As for the cases with a photon source, 

        particle histories are chosen and same number of batches is used.  

In Fig. 3 and Fig. 4, the left columns are the depth dose curves along the beam’s 

central axis, while the right columns correspond to the lateral dose profiles taken at 20 

         , and       . The error bars represent the level of two standard deviations of 

the results. The error bars corresponding to the CPU results are not drawn for the purpose 

  

 

Figure 3.  Depth-dose curves (left column) and lateral dose profiles at different depths (right 

column) of a          photon beam (top row) and an electron beam (bottom row) at 

         impinging on a water-lung-water phantom.  
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of clarity, which are of similar sizes to those for the GPU results. These figures visually 

demonstrate good agreements, within statistical uncertainty, between the CPU and the 

GPU results due to the unaltered physics in our gDPM v2.0 code. To quantify the 

precision of our simulation, we calculate the uncertainty at each voxel   normalized by 

the maximum dose     . We further average the relative uncertainty        over the 5 

high dose region where the local dose   exceeds half of the maximum value      in the 

entire phantom. The quantity       
           indicates the simulation precision in the high dose 

region. In all four testing cases, we have simulated enough number of particle histories, 

so that       
           is found to be less than    for both the CPU and the GPU results, as 

indicated in Table 1.  10 

We have also quantified the agreement between the CPU results and the GPU results 

using a statistical two-tailed t-test. The dose value at each voxel is a statistical quantity, 

which fluctuates each time an MC simulation is performed. The t-test justifies whether 

the dose values at a voxel obtained from a CPU simulation and a GPU simulation agree 

with each other under a certain statistical significance level. In this test, the null 15 

hypothesis is that there is no difference between the CPU and the GPU results at a given 

voxel. In practice, we first compute the   value as                    
      

  at 

each voxel, where      and      are uncertainties corresponding to the dose      and 

     at the voxel, respectively. By comparing this   value with a threshold 

corresponding to a significance level of       , the hypothesis is accepted or rejected. 20 

If the hypothesis is not rejected at a voxel, it is implied that, with 90% confidence, the 

  

Figure 4.  Depth-dose curves (left column) and lateral dose profiles at different depths (right 

column) of a          photon beam (top row) and an electron beam (bottom row) at 

         impinging on a water-bone-water phantom. 
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dose difference at that voxel between the CPU and the GPU simulations is not 

statistically significant. To quantify the overall agreement between the two dose 

distributions in high dose region, we finally compute the passing rate of this test       as 

the ratio of the number of voxels where the hypothesis is not rejected over the total 

number of voxels in the high dose region. Similarly, the passing rate      is computed 5 

over the entire phantom region to characterize the overall agreement. As shown in Table 

1, it is observed that           and           depending on the cases studied. 

These high passing rates clearly imply well agreements between the CPU and the GPU 

results. 

Table 2 depicts the computation time for these testing cases. TCPU stands for the 10 

execution time of the CPU implementation, while TGPU is that of the GPU 

implementation including data transfer time between CPU and GPU.  Speed-up factors of 

about 69.1 ~ 87.2 have been observed for the GPU calculation compared to the CPU 

simulation.  

 15 

3.2 Realistic patient cases 

 

To further demonstrate the feasibility of using gDPM v2.0 for dose calculations in 

Table 1. Average relative uncertainty (      
          ) and t-test passing rate in high dose region 

(     ) and in entire phantom region (    )  for four different test cases. 

 

Source 

type 

# of 

Histories 
Phantom 

      
           

CPU 

(%) 

      
           

GPU  

(%) 

      

(%) 

     

(%) 

20MeV 

Electron 
2.5×106 water-lung-water 0.99 0.98 99.9 99.9 

20MeV 

Electron 
2.5×106 water-bone-water 0.98 0.99 100.0 99.8 

6MV 

Photon 
2.5×108 water-lung-water 0.71 0.72 98.5 97.7 

6MV 

Photon 
2.5×108 water-bone-water 0.64 0.64 96.9 97.5 

 

Table 2. Computation time on CPU (    ), that on GPU (    ), and the speed up factor 

(           for four different test cases. 

 

Source 

type 

# of 

Histories 
Phantom      (s)      (s)           

20MeV 

Electron 
2.5×10

6
 water-lung-water 117.5 1.70  69.1 

20MeV 

Electron 
2.5×10

6
 water-bone-water 127.0 1.65  77.0 

6MV 

Photon 
2.5×10

8
 water-lung-water 1403.7 16.1 87.2 

6MV 

Photon 
2.5×10

8
 water-bone-water 1741.0 20.5 84.9 
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realistic treatment plans, we have also loaded one IMRT plan and two VMAT plans 

generated from Varian Eclipse treatment planning system (Varian Medical Systems, Inc., 

Palo Alto, CA, USA). The IMRT plan consists of 8 non-coplanar fields for a head-and-

neck (HN) cancer patient, while one of the VMAT plans is for a HN cancer case and the 

other is for a prostate cancer case, both with two arcs. For the purpose of illustrating the 5 

principle, a simplified source model with a 6MV point photon source and a realistic 

energy spectrum is used for these cases. The calculated dose distribution is displayed in 

Fig. 5 and the simulation uncertainty and computation time are listed in Table 3. With a 

total number of 2.5×108 source photons in each case, the relative uncertainty is controlled 

to be under 1% in the high dose region (          ). As for the computation time, it 10 

takes 36.1 sec for the dose calculation in the IMRT case and 36.7 sec and 39.6 sec for the 

two VMAT cases, respectively. Compared with the simulation time for the phantom 

cases, this time is prolonged, mainly due to the source particle generation from fluence 

maps. 

  15 

 

4. Discussion and Conclusions 

 

In this paper, we reported our recent development of a GPU based MC dose calculation 

package, gDPM v2.0. The code is specifically tailored for the GPU architecture to 20 

achieve high computation efficiency. Due to the identical particle transport physics to 

that in the original DPM code, the accuracy of the gDPM package is not degraded. 

Simulations in various phantom cases indicate that results from CPU and GPU are in well 

agreement for both the electron and the photon sources. In particular, statistical t-tests are 

performed and the dose differences between the CPU and the GPU results are found not  25 

 

Figure 5. Dose calculation results for an 8 noncoplanar beam HN IMRT plan (a1) ~ (a3), a 2-arc 

HN VMAT plan (b1) ~ (b3), and a 2-arc prostate VMAT plan (c1) ~ (c2) using the gDPM v2.0 

package. 

(a1) (a2) (a3)

(b1) (b2) (b3)

(c2) (c3)(c1)



14             X. Jia et al. 

14 

statistically significant in over 96% of the high dose region and over 97% of the entire 

phantom region. With a powerful yet affordable NVIDIA Tesla C2050 GPU, speedup 

factors of 69.1 ~ 87.2 have been observed against a 2.27GHz Intel Xeon CPU processor. 

The development of gDPM v2.0 package also focuses on its clinical practicality. With a 

set of necessary components developed for dose calculation in realistic clinical plans, 5 

IMRT or a VMAT plan dose calculation using MC simulation can be achieved in 

36.1~39.6 sec with a single GPU.  

At the end of this paper, we would like to discuss a few questions that might be of 

interest to readers. First, is it possible to further improve the computation efficiency? 

Though considerable speed up factors have been achieved in gDPM v2.0 and it becomes 10 

possible to perform MC dose calculation in a sub-minute time scale for realistic clinical 

treatment plans, it would make the GPU-based MC dose calculation more clinically 

attractive, if the computation time could be further shortened. In fact, there are a number 

of ways that could potentially further increase the computational efficiency. (1) If a 

multi-GPU platform is available, all the particle histories simulated can be simply 15 

distributed among all the GPUs, which then execute simultaneously without interfering 

with each other. Only at the end of the computation will the dose distribution be collected 

from all the GPUs. Due to the negligible overhead in this process, it is expected that a 

roughly linear scalability of the computation efficiency can be achieved with respect to 

the number of GPUs. In a recently work, it has been reported that this linear scalability 20 

holds at least on a dual-GPU system (Hissoiny et al., 2011). We have also tested the 

multi-GPU performance of our gDPM code on a 4-GPU platform. In our tests, a bash 

shell script submits simulation jobs to all GPUs simultaneously and another small 

program is then launched by the script after all simulations are completed to accumulate 

simulation results. Speed up factors of 3.98~3.99 compared to a single GPU have been 25 

observed amount various test cases. These observations clearly demonstrate the 

simplicity yet feasibility of achieving a further efficiency boost utilizing a multi-GPU 

platform. In particular, this 4-GPU platform will bring MC dose calculation time for 

realistic plans under 10 seconds. Currently, a multi-GPU version of our gDPM package 

using Massage Passing Interface is under development. (2) Since no variance reduction 30 

technique is employed in gDPM v2.0, the convergence rate of the calculated dose suffers 

a lot from the stochastic nature of the particle transport process. With the integration of 

Table 3. Average relative uncertainty (      
          ) and GPU computation time (    ) for the 

dose calculation in three realistic treatment plans. 

 

Case 
# of 

Histories 
Size 

Resolution 

(cm
3
) 

      
           

(%) 

     

(s) 

IMRT HN plan 2.5×108                            0.57 36.1 

VMAT HN plan 2.5×108                            0.98 36.7 

VMAT prostate plan 2.5×108                            0.74 39.6 
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variance reduction techniques such as particle splitting and track repeating, it is expected 

that further improvement of the efficiency can be achieved.  

Second, how is the performance of the gDPM v2.0 compared with other similar 

work? Recently, another work on GPU-based MC dose calculation, GPUMCD, has been 

reported by Hissoiny et. al.(2011), where the simulation scheme of separating photon and 5 

electron transports was invented. To test our gDPM v2.0 against GPUMCD, we run our 

code in a homogeneous water phantom with a resolution of          voxels and the 

voxel size is                , same as in the first testing case reported in Hissoiny et 

al.. A mono-energetic (15 MeV) mono-directional photon source or an electron source 

normally impinges on the phantom. Photon generations in the positron annihilation 10 

process are switched off as in the GPUMCD for a fair comparison. 1 million and 4 

million particles are simulated for the electron source case and the photon source case, 

respectively. The absolute running time is 0.47 sec for the electron source case and 0.90 

sec for the photon source case on a Tesla C2050 GPU card. Compared to the running 

time of 0.12 sec and 0.27 sec for GPUMCD in the two cases on a GTX 480 card, our 15 

code is ~4 times slower. This speed difference can be first ascribed to the different 

particle transport physics employed in two packages. Our gDPM package does not 

change the complicated yet accurate DPM physics, while GPUMCD combines various 

particle transport physics described in general-purpose MC packages and implements 

them for GPU calculation. The different cut-off energies used in the two packages also 20 

change the simulation efficiency. Moreover, part of the efficiency difference comes from 

different hardware. Since C2050 is manufactured by NVIDIA dedicated for scientific 

computing, it scarifies its efficiency for accuracy and reliability to some extent. For 

instance, the GPU core speed, memory speed, and memory bandwidth of GTX 480 are 

21.7%, 23.2%, and 22.9% higher than those for the C2050, respectively (Wikipedia).  25 

Yet, detailed comparisons on the computational efficiency between GPUMCD and 

gDPM are not of critical importance, as both of them have achieved high enough 

efficiency for clinical applications. Though gDPM v2.0 is not currently the fastest GPU-

based MC simulation package, its development balances the speed and accuracy. In 

particular, despite the various numerical techniques utilized in gDPM, it has been 30 

demonstrated that similar accuracy level to the original DPM code can be achieved in 

gDPM, which has been previously shown to be within     for both clinical photon and 

electron beams. Moreover, to our knowledge, gDPM is the first GPU based MC packages 

that enables the dose calculation of realistic treatment plans. Clinical implementation of 

gDPM will offer high accuracy MC dose calculation in cancer radiotherapy in a sub-35 

minute time scale.  
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