
GPU-based fast Monte Carlo simulation for

radiotherapy dose calculation

Xun Jia, Xuejun Gu, Yan Jiang Graves, Michael Folkerts, and Steve B.

Jiang

 5

Center for Advanced Radiotherapy Technologies and Department of Radiation

Oncology, University of California San Diego, La Jolla, CA 92037-0843, USA

E-mail: sbjiang@ucsd.edu

 10

Monte Carlo (MC) simulation is commonly considered to be the most accurate dose

calculation method in radiotherapy. However, its efficiency still requires

improvement for many routine clinical applications. In this paper, we present our 15

recent progress towards the development a GPU-based MC dose calculation

package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to

achieve high efficiency, while maintaining the same particle transport physics as in

the original DPM code and hence the same level of simulation accuracy. In GPU

computing, divergence of execution paths between threads can considerably reduce 20

the efficiency. Since photons and electrons undergo different physics and hence

attain different execution paths, we use a simulation scheme where photon transport

and electron transport are separated to partially relieve the thread divergence issue.

High performance random number generator and hardware linear interpolation are

also utilized. We have also developed various components to handle fluence map 25

and linac geometry, so that gDPM can be used to compute dose distributions for

realistic IMRT or VMAT treatment plans. Our gDPM package is tested for its

accuracy and efficiency in both phantoms and realistic patient cases. In all cases,

the average relative uncertainties are less than 1%. A statistical t-test is performed

and the dose difference between the CPU and the GPU results is found not 30

statistically significant in over 96% of the high dose region and over 97% of the

entire region. Speed up factors of 69.1 ~ 87.2 have been observed using an NVIDIA

Tesla C2050 GPU card against a 2.27GHz Intel Xeon CPU processor. For realistic

IMRT and VMAT plans, MC dose calculation can be completed with less than 1%

standard deviation in 36.1~39.6 sec using gDPM. 35

mailto:sbjiang@ucsd.edu

2 X. Jia et al.

2

1. Introduction

Radiation dose calculation plays a crucial role in radiotherapy treatment planning and

verification. Monte Carlo (MC) simulation is known to be the most accurate dose

calculation method for radiotherapy. In this method, one computes how a particle 5

propagates step by step according to fundamental physics principles. To achieve a desired

level of statistical accuracy, a large number of particle histories are needed, consuming a

long computation time. During past a few decades, a number of MC algorithms have

been developed, such as EGS4/5 (Nelson et al., 1985; Bielajew et al., 1994; Hirayama et

al., 2010), EGSnrc (Kawrakow, 2000), MCNP (Briesmeister, 1993), PENELOPE (Baró 10

et al., 1995; Salvat et al., 1996; Sempau et al., 1997; Salvat et al., 2009), GEANT4

(Agostinelli et al., 2003). Meanwhile, efforts have been devoted to develop high

efficiency dose calculation packages for radiotherapy, for instance VMC++ (Kawrakow

et al., 1996), MCDOSE/MCSIM (Ma et al., 1999; Li et al., 2000; Ma et al., 2002), and

DPM (Sempau et al., 2000), etc. These packages employ variance reduction techniques 15

or simplify particle transport physics to gain computation speed. Despite these

developments along with the increasing of CPU clock speed, there is still room for

improving the efficiency of MC dose calculation.

Porting MC packages onto parallel computing architectures is a straightforward way

for boosting their efficiency. Since each computing unit can work on a portion of the total 20

particle histories without interfering with each other, roughly linear scalability of

computation efficiency with respect to the number of computing units is commonly

expected. This is indeed the case for CPU cluster based MC simulation. For instance,

DPM has been parallelized on a CPU cluster and almost linear speed-up has been

observed with the number of processors, when up to 32 nodes are used (Tyagi et al., 25

2004). Recently, graphics processing unit (GPU) has been utilized to speed up

computationally intensive tasks in medical physics. Though GPU has been demonstrated

to be extremely powerful in solving many problems (Xu and Mueller, 2005; Sharp et al.,

2007; Yan et al., 2008; Samant et al., 2008; Jacques et al., 2008; Hissoiny et al., 2009;

Men et al., 2009; Gu et al., 2009; Jia et al., 2010b; Gu et al., 2010; Men et al., 2010a; 30

Men et al., 2010b; Gu et al., 2011), it is quite hard to achieve high speed-up factors for

MC dose calculations on GPU for the following two inherent conflicts between the

stochastic nature of a MC process and the GPU hardware architecture. First, GPU

employs an architecture called single-instruction multiple-thread (SIMT) (NVIDIA,

2010b), where the multiprocessor of a GPU executes a program in groups of 32 parallel 35

threads termed warps. If the paths for threads within a warp diverge due to, e.g., some if-

else statements, the warp serially executes one thread at a time, while putting all other

threads in an idle state. Thus, high computation efficiency is only achieved when all

threads in a warp process together along a same execution path. Unfortunately, in a MC

calculation the work paths on different threads are statistically independent, essentially 40

resulting in an almost serialized execution within a warp. Second, GPU memory speed is

typically very slow compared to CPU memory and it is quite expensive to have frequent

and random memory access. In the MC simulation, all threads share the usage of GPU

3 X. Jia et al.

3

global memory and each thread visits different memory addresses in a completely

unpredictable pattern. This fact also slows down the MC simulation considerably.

We have previously developed a GPU-based MC dose calculation package, gDPM

v1.0 (Jia et al., 2010a), based on a publically available dose calculation package, DPM.

By simply distributing particles to all GPU threads and treating them as if they were 5

independent computational units, it is found that only 5.0~6.6 times speedup can be

achieved due to the aforementioned intrinsic conflicts between the randomness of the MC

simulation and the GPU SIMT architecture. Recently, Hissoiny et. al. (Hissoiny et al.,

2011) have developed a MC dose calculation package, GPUMCD. By integrating various

particle transport physics reported in literature and rewrite the code specifically designed 10

for GPU, high computation efficiency has been reported. Despite its great speed, this

code does not contain necessary features for dose calculation of realistic treatment plans.

We have recently made a tremendous progress towards the further improvement of

our gDPM code with emphases on the following two aspects. First, while focusing on

algorithm optimization for GPU architecture, we also maintain same particle transport 15

physics as in the original DPM so as to ensure simulation accuracy. In this v2.0 version,

it is found that the efficiency is 69.1 ~ 87.2 times higher than the original DPM package

on CPU and the CPU and the GPU results are in well agreement. Second, our

development also emphasizes on clinical practicality of our code by integrating various

key components such as generating particles according to planned fluence maps. To our 20

knowledge, gDPM is the first GPU based MC packages that enables the dose calculation

for real treatment plans. It is capable of calculating dose in an IMRT plan or a VMAT

plan in a sub-minute time scale.

The roadmap of this paper is as follows. In Section 2, we will briefly describe DPM

physics, algorithm structure, and some key issues in our implementation. Section 3 25

presents experimental results of our dose calculation in both heterogeneous phantoms and

realistic IMRT and VMAT plans. Finally, we conclude our paper in Section 4 and present

some discussions.

2. Methods and Materials 30

2.1 DPM Physics

The original sequential DPM MC code was previously developed for fast dose

calculations in radiotherapy treatment planning (Sempau et al., 2000). It targets at 35

simulating coupled photon-electron transport with a set of approximations valid for the

energy range considered in radiotherapy. Specifically, the photon transport is handled by

using the Woodcock tracking method which greatly increases the simulation efficiency of

the boundary tracking process (Woodcock et al., 1965). As for the electron transport,

DPM implements a condensed history technique. Step-by-step simulation is used for 40

inelastic collisions and bremsstrahlung emission involving energy losses above certain

cutoffs. It also employs new transport mechanics and electron multiple scattering

distribution functions to allow long transport steps. These mechanisms enable the

4 X. Jia et al.

4

electron cross a few heterogeneity boundaries in one step and hence increase the

simulation efficiency. The continuous slowing down approximation is employed for

energy losses below some preset energy thresholds. Positron transport is treated as

electron and two photons are created at the end of the positron path to account for the

annihilation process. The accuracy of DPM has been demonstrated to be within for 5

both clinical photon and electron beams (Chetty et al., 2002; Chetty et al., 2003). In our

gDPM code, we will maintain all the physics unchanged, while seeking for efficiency

boost using various computational techniques.

2.2 CUDA implementation 10

A GPU typically consists of a large number of scalar processor units. Though the clock

speed for each processor is lower than a typical CPU, the overall computational power is

much higher due to the large amount of processors available on GPU. Our gDPM v2.0 is

coded under the Compute Unified Device Architecture (CUDA) platform developed by 15

NVIDIA (NVIDIA, 2010b), which enables us to extend the C language to program an

NVIDIA GPU.

2.2.1 Simulation process

 20

The main structure of our code is shown in the left panel of Fig. 1. Once the simulation

starts, the code is initialized with all the necessary data including the voxelized geometry,

material properties, and all cross section data. Random number seeds are also initialized

in this step. All of these data are transferred to GPU memory during this step. After the

initialization stage, simulation is then performed in a batched fashion. We evenly divide 25

the total number of histories into batches, e.g. . For each batch, we simulate

the particle transport and record the dose deposition to each voxel. The details of this step

will be discussed later. After the simulations for all batches, statistical analysis is

performed to obtain average dose to each voxel and corresponding uncertainties. Finally,

the program transfer data from GPU to CPU and output results before exit. 30

Within each batch, particle transport will be simulated in parallel with each GPU

thread responsible for one particle. In this process, divergence between GPU threads will

take place mainly due to 1) the different physical transport processes that photons and

electrons undergo and 2) the randomness of the transport process for a given particle.

Though the thread divergence caused by the second factor is hard to remove, by carefully 35

designing the simulation scheme, we can separate the photon and electron transport and

hence partially relieve the thread divergence issue.

As such, we design the following data structure. We first allocate a particle array of

length to store all the particles currently being simulated. The particles in this array can

be either photons or electrons, but all of same type at any time during the simulation. The 40

size of this particle array should be large enough, so that GPU can fully exploit its

parallelization ability, while not too large to fit in the GPU memory. Moreover, since

GPU execute simulation in warps, i.e. a group of 32 threads run simultaneously on a

5 X. Jia et al.

5

multiprocessor, it is beneficial to choose to be a multiple of warp size to avoid of

wasting resources. In a typical setup, we choose . Meanwhile, we use two

more arrays as stacks to store any secondary particles generated during the simulation,

one of a length for photons and one of a length for electrons. The lengths of them

are chosen empirically, e.g., , to provide large enough space for 5

secondary particles.

Along with this data structure, we design a scheme to carry out the simulation within

each batch, such that photon and electron transport are not performed simultaneously.

The idea of separating the simulation of electrons and photons was originally proposed

by Hissoiny et al. (2011) and was found to be effective to speed up MC simulation on 10

GPU. This scheme is illustrated in the right panel of Fig. 1. Specifically, when the

program enters Step 3, all the counters and stacks are empty, as well as the particle array.

The exit criterion of this Step 3 is that a preset number of particle histories for this batch,

i. e. the total number of particle histories divided by the number of batches, have already

been simulated and both the electron and the photon stacks are empty. Step 3a justifies 15

this criterion and the program exits the current batch, if the criterion is met. Step 3b

checks the number of particles in both stacks. If there are more than particles left in

either of them, particles will be loaded from the corresponding stack to the particle

array (Step 3d). If neither stack has enough particles, Step 3c will guide the program to

either loading the rest of particles from the stack (Step 3d) in the case all source particle 20

histories have been simulated, or generating new source particles in the particle array

(Step 3e) otherwise. Up to now, the particle array is filled with a set of particles, all of

Figure 1. The flow chart of our gDPM v2.0 Monte Carlo simulation. Detailed steps of the

batch simulation part (Step 3 in the left panel) are shown on the right panel.

No

Yes

Start

1. Load data and transfer to GPU

6. Transfer data to CPU and output

End

3. Perform simulation of a batch

5. Perform statistics over batches

4. Enough batches?

No

Yes

No

Yes

No

3f. Simulate current particles

3e. Generate
source particles

3b. Are there
enough particles in one

of the stacks?

3d. Load particles
from a stack

Yes
3a. Is preset # of

histories reached and both
stacks are empty?

3c. Is the preset
of histories reached?

2. Clear counters and stacks

Step 2

Step 4

6 X. Jia et al.

6

same type. Depending on the particle type, a GPU kernel for the electron transport or for

the photon transport will be launched in Step 3f. Such a kernel will be executed on GPU

in parallel and each GPU thread simulates one particle in the array, till it exits the

phantom geometry or is absorbed. In this process, dose deposition to each voxel is

recorded and any secondary particles created are put into the corresponding stack. After 5

Step 3f, the program loops back to Step 3a to check if further simulation is needed.

2.2.2 Other modifications

Besides turning the sequential simulation into parallel computation utilizing the scheme 10

discussed in section 2.2.1, there are three other modifications we have made in the gDPM

v2.0 compared with the original sequential DPM. First, single-precision floating point

data type is used throughout our implementation to represent rational numbers instead of

double-precision as in the original sequential DPM code. This is due to the fact that

single-precision is sufficient for Monte Carlo dose calculation as demonstrated later in 15

this paper.

Second, we have also modified the pseudo-random number generator. In gDPM v2.0,

the pseudo-random numbers are generated using the random number generator library

CURAND (NVIDIA, 2010a) provided by NVIDIA. This library provides a light-

weighted GPU function that produces simple and efficient generation of high-quality 20

pseudo-random numbers using XORWOW algorithm (Marsaglia, 2003), a member of the

xor-shift family of pseudorandom number generators. The period of such a generator is

about and the quality of the random numbers has been tested using the TestU01

“Crush” framework of tests (L'Ecuyer and Simard, 2007).

In addition, we have also modified the interpolation method for the cross section data 25

for better performance. In an MC simulation, an array of a cross section data at a

number of discrete energy values is first loaded into the memory for each type of

interaction of interest. Interpolation of the cross section data is then necessary during the

simulation to obtain the cross section value at any arbitrary energy. In the original

sequential DPM code, cubic spline interpolation was implemented. As such, interpolation 30

coefficients are first computed during the program initialization stage for

each energy interval , such that the cross section data can be obtained as

 for . Though this provides a high

accuracy of the interpolation data, each interpolation task requires four times memory

read to obtain the four interpolation coefficients and a number of arithmetic operations, 35

which is not efficient considering the slow GPU memory access speed. In the gDPM

v2.0, we use linear interpolation instead, which requires only two memory read per

interpolation task and less number of arithmetic operations. Moreover, this linear

interpolation can be achieved by GPU hardware via the so called texture memory. Since

interpolation is very frequently used in the MC simulation, this modification on the 40

interpolation method enhances the overall program efficiency considerably. It is true that

the linear interpolation attains lower accuracy on the cross section data. Yet, no loss of

accuracy in the final dose has been observed in all of our testing cases.

7 X. Jia et al.

7

2.3 Other components in gDPM v2.0

In addition to improving computational efficiency, we also focus on clinical practicality

of our gDPM package. We have developed a set of necessary components, so that gDPM 5

can be used to compute radiation dose in clinically realistic contexts. First of all, an

interface of the gDPM package is built to load clinical treatment plans in the format of

DICOM RT. This includes the functions of loading voxelized patient CT data, organ

structure information, fluence map of a treatment plan, etc.. Second, computations related

to linac geometry of a treatment plan are enabled to take into account rotations of linac 10

gantry, multi-leaf collimator (MLC), collimator, and couch. With all the functionalities

presented in this section, we are able to load a realistic IMRT or VMAT treatment plan

and perform does calculation using the developed gDPM v2.0 package.

2.3.1 Fluence map 15

To simulate IMRT or VMAT treatment plans, generating source particles according to a

designed photon fluence map is a key step. Let us group fluence maps from all beam

angles together, and divide the whole fluence map from all beam angles into a total

number of small beamlets labeled in a certain order by an index . Note 20

that the index parameterizes both the beam angle and the location of a beamlet inside an

angle. The associated beamlet intensity represents the relative probability that a

particle comes from the beamlet . The goal of sampling a photon following this fluence

map can be achieved by first sampling a beamlet index according to the relative

probability determined by and then sampling the particle inside this beamlet uniformly. 25

To make this sampling more efficient, let us exclude those beamlets with zero photon

fluence from consideration, so that for all . A straightforward way of generating

source particles according to this fluence map is to use the accumulative probability

. Each time a particle is to be sampled, we can first generate a

random number uniformly distributed in and find the beamlet such that 30

 . Though this method is conceptually simple, its implementation on GPU is

quite inefficient, because the step of finding the beamlet index satisfying

 requires some sort of searching algorithms, which involves a large number of

memory access to the slow GPU memory.

To ensure high efficiency, we utilize the so called Metropolis sampling algorithm 35

(Hastings, 1970). Key steps of this algorithm are illustrated in Algorithm A1. In this

algorithm, the beamlet index generated for the previous one particle is stored, used,

and updated each time a new beamlet index is generated.

Algorithm A1:

 Initialize with an arbitrary beamlet index in .

Do the following steps each time a particle is generated:

8 X. Jia et al.

8

1. Generate a trial beamlet with equal probablity;

2. Generate a random number r uniformly distributed in [0,1];

3. If
, set ; otherwise set .

4. Generate a particle from the beamlet uniformly.

5. Set .

 For the initialization step and in the Step 1, the beamlet index and can be simply

chosen from with equal probability. It has been proven that such an

algorithm is able to generate a sequence of beamlet indices following the distribution

governed by , given that this sequence is long enough. Note that each time a new

beamlet index is selected, searching through the fluence map is not involved, which 5

ensures the computational efficiency by avoiding a large number of GPU memory access.

In practice, since we are performing parallel computation, each GPU thread is initialized

with its own generated by a CPU random number at the initialization stage.

To demonstrate the convergence of this algorithm, we record the particles generated

at one beam angle in a typical IMRT plan. The desired fluence is shown in Fig. 2(a), 10

while the photon fluence with particles generated according to the algorithm A1 is

depicted in Fig. 2(b). These two fluence maps are visually very similar. To quantify this

similarity, we compute the error

, where and

 are vectors composed

of the probability at each beamlet for the generated fluence map and the ground truth,

respectively. As shown in Fig. 2(c), this error monotonically decreases quickly, as the 15

particle number increases. Considering the number of simulated particles is of order

in those realistic treatment plans presented in this paper, the generated fluence is in well

agreement with the given fluence map in treatment plans.

2.3.2 Energy spectrum 20

Photons coming from a real linac head are not monoenergetic. Therefore, the source

particle energy has to be generated according to an energy spectrum for accurate dose

calculation. A straightforward way of taking this spectrum into simulation is to randomly

Figure 2. A typical fluence map at one beam angle of an IMPT plan is shown in (a). The

generated fluence map with particles is shown in (b). (c) is the dependence of the error

on the particle number simulated.

(a)

(b)

10
2

10
4

10
6

10
8

10
-3

10
-2

10
-1

e

Number of particles

(c)

9 X. Jia et al.

9

assign the energy for each source photon accordingly. Yet, a large number of photons are

simulated simultaneously on GPU and the computation time among them varies due to

their different energies. As a consequence, those photons with short simulation time will

have to wait for those with long simulation time, which reduces the overall computational

efficiency. To resolve this issue, we evenly divide the entire energy spectrum into a set of 5

intervals. The total number of photons to be simulated in each batch is first distributed to

each energy interval according to the spectrum. Simulation is then performed for each

interval sequentially with the particle energy evenly distributed inside the interval. This

strategy ensures that, at any moment of the simulation, all GPU threads are dealing with

particles of similar energies, removing the possibility of losing efficiency due to the 10

variance of simulation time between GPU threads handling photos of different initial

energies.

2.3.3 Detailed source modeling

 15

Accurate source modeling of a linac is not a trivial problem by itself and is beyond the

scope of this paper. In gDPM v2.0, we do not provide specific source models of any

particular type of linac. Instead, we leave the interface of source particle generation part

open and users can supplement their own functions to generate source particles according

to their own source model or simply by using a phase space file. For a testing purpose, all 20

the photon cases studied in this paper use a point source with a realistic energy spectrum.

3. Results

In this section, we provide the results in various cases for testing our gDPM v2.0 package. 25

The purposes of presenting these results are twofold. First, though we did not alter DPM

physics, the various techniques employed in gDPM, such as linear interpolation on cross

section data, may impact the simulation accuracy. By comparing the simulation results

obtained from the sequential DPM and our gDPM v2.0 in phantoms with different

materials, we will show that the implementation of our gDPM does not degrade the 30

computational accuracy. Second, the computation time is recorded and compared with

that of the original sequential DPM code. This will clearly demonstrate the gain of

computational efficiency achieved through the various techniques we employed and the

powerful GPU we used. In addition, dose calculation for an IMRT case and two VMAT

cases will also be conducted to demonstrate the feasibility of using gDPM for fast MC 35

dose calculation in realistic clinical contexts.

As for the hardware used in this section, the GPU results are obtained on an NVIDIA

Tesla C2050 card. Such a GPU card is manufactured specifically for the purpose of

scientific computing. It has a total number of 448 processor cores (grouped into 14

multiprocessors with 32 cores each), each with a clock speed of 1.15 GHz. The card is 40

equipped with 3 GB GDDR5 memory shared by all processor cores. It supports error

correction codes to protect data from random errors occurred in data transfer and

manipulation, ensuring computing accuracy and reliability. As for the CPU on which the

10 X. Jia et al.

10

original DPM code is executed, it is equipped with a 2.26 GHz Intel Xeon E5520

Nehalem processor and 4GB memory.

3.1 Phantom studies

 5

We first study the performance of our gDPM v2.0 on two phantoms with slab geometries.

The dimension of both of them are and the voxel size is set to be

 . The first phantom consists of three layers along the z direction, namely

 water, bone, and water. The geometry of the second phantom is same

as the first one except that the bone slab is replaced by a lung slab. In all testing cases, we 10

place a point source at , and the beam impinges normally to the phantom on

its x-o-y plane. Field size is set to be at the isocenter with .

The electron beam is mono-energetic with it energy set to be 20 MeV, while the photon

beam has a realistic 6 MV energy spectrum. The absorption energies are 200 keV for

electrons and 50 keV for photons. For the cases with an electron source, a total number of 15

 particle histories are simulated, which are evenly divided into 10 batches for

the purpose of calculating statistical uncertainties. As for the cases with a photon source,

 particle histories are chosen and same number of batches is used.

In Fig. 3 and Fig. 4, the left columns are the depth dose curves along the beam’s

central axis, while the right columns correspond to the lateral dose profiles taken at 20

 , and . The error bars represent the level of two standard deviations of

the results. The error bars corresponding to the CPU results are not drawn for the purpose

Figure 3. Depth-dose curves (left column) and lateral dose profiles at different depths (right

column) of a photon beam (top row) and an electron beam (bottom row) at

 impinging on a water-lung-water phantom.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0

D
/D

m
a

x

z (cm)

 CPU

 GPU

water lung water

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0
 CPU z = 2.5cm

 GPU z = 2.5cm

 CPU z = 7.5cm

 GPU z = 7.5cm

 CPU z = 12.5cm

 GPU z = 12.5cm

D
/D

m
a
x

x (cm)

0.0 5.0 10.0 15.0 20.0
0.0

0.5

1.0

D
/D

m
a
x

z (cm)

 CPU

 GPU

water lung water

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0
 CPU z = 2.5cm

 GPU z = 2.5cm

 CPU z = 7.5cm

 GPU z = 7.5cm

 CPU z = 12.5cm

 GPU z = 12.5cm

D
/D

m
a
x

x (cm)

11 X. Jia et al.

11

of clarity, which are of similar sizes to those for the GPU results. These figures visually

demonstrate good agreements, within statistical uncertainty, between the CPU and the

GPU results due to the unaltered physics in our gDPM v2.0 code. To quantify the

precision of our simulation, we calculate the uncertainty at each voxel normalized by

the maximum dose . We further average the relative uncertainty over the 5

high dose region where the local dose exceeds half of the maximum value in the

entire phantom. The quantity
 indicates the simulation precision in the high dose

region. In all four testing cases, we have simulated enough number of particle histories,

so that
 is found to be less than for both the CPU and the GPU results, as

indicated in Table 1. 10

We have also quantified the agreement between the CPU results and the GPU results

using a statistical two-tailed t-test. The dose value at each voxel is a statistical quantity,

which fluctuates each time an MC simulation is performed. The t-test justifies whether

the dose values at a voxel obtained from a CPU simulation and a GPU simulation agree

with each other under a certain statistical significance level. In this test, the null 15

hypothesis is that there is no difference between the CPU and the GPU results at a given

voxel. In practice, we first compute the value as

 at

each voxel, where and are uncertainties corresponding to the dose and

 at the voxel, respectively. By comparing this value with a threshold

corresponding to a significance level of , the hypothesis is accepted or rejected. 20

If the hypothesis is not rejected at a voxel, it is implied that, with 90% confidence, the

Figure 4. Depth-dose curves (left column) and lateral dose profiles at different depths (right

column) of a photon beam (top row) and an electron beam (bottom row) at

 impinging on a water-bone-water phantom.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0

waterwater

D
/D

m
a

x

z (cm)

 CPU

 GPU

bone

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0
 CPU z = 2.5cm

 GPU z = 2.5cm

 CPU z = 7.5cm

 GPU z = 7.5cm

 CPU z = 12.5cm

 GPU z = 12.5cm

D
/D

m
a
x

x (cm)

0.0 5.0 10.0 15.0
0.0

0.5

1.0

waterwater

D
/D

m
a
x

z (cm)

 CPU

 GPU

bone

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.0

0.5

1.0
 CPU z = 2.5cm

 GPU z = 2.5cm

 CPU z = 7.5cm

 GPU z = 7.5cm

 CPU z = 12.5cm

 GPU z = 12.5cm

D
/D

m
a

x

x (cm)

12 X. Jia et al.

12

dose difference at that voxel between the CPU and the GPU simulations is not

statistically significant. To quantify the overall agreement between the two dose

distributions in high dose region, we finally compute the passing rate of this test as

the ratio of the number of voxels where the hypothesis is not rejected over the total

number of voxels in the high dose region. Similarly, the passing rate is computed 5

over the entire phantom region to characterize the overall agreement. As shown in Table

1, it is observed that and depending on the cases studied.

These high passing rates clearly imply well agreements between the CPU and the GPU

results.

Table 2 depicts the computation time for these testing cases. TCPU stands for the 10

execution time of the CPU implementation, while TGPU is that of the GPU

implementation including data transfer time between CPU and GPU. Speed-up factors of

about 69.1 ~ 87.2 have been observed for the GPU calculation compared to the CPU

simulation.

 15

3.2 Realistic patient cases

To further demonstrate the feasibility of using gDPM v2.0 for dose calculations in

Table 1. Average relative uncertainty (
) and t-test passing rate in high dose region

() and in entire phantom region () for four different test cases.

Source

type

of

Histories
Phantom

CPU

(%)

GPU

(%)

(%)

(%)

20MeV

Electron
2.5×106 water-lung-water 0.99 0.98 99.9 99.9

20MeV

Electron
2.5×106 water-bone-water 0.98 0.99 100.0 99.8

6MV

Photon
2.5×108 water-lung-water 0.71 0.72 98.5 97.7

6MV

Photon
2.5×108 water-bone-water 0.64 0.64 96.9 97.5

Table 2. Computation time on CPU (), that on GPU (), and the speed up factor

(for four different test cases.

Source

type

of

Histories
Phantom (s) (s)

20MeV

Electron
2.5×10

6
 water-lung-water 117.5 1.70 69.1

20MeV

Electron
2.5×10

6
 water-bone-water 127.0 1.65 77.0

6MV

Photon
2.5×10

8
 water-lung-water 1403.7 16.1 87.2

6MV

Photon
2.5×10

8
 water-bone-water 1741.0 20.5 84.9

13 X. Jia et al.

13

realistic treatment plans, we have also loaded one IMRT plan and two VMAT plans

generated from Varian Eclipse treatment planning system (Varian Medical Systems, Inc.,

Palo Alto, CA, USA). The IMRT plan consists of 8 non-coplanar fields for a head-and-

neck (HN) cancer patient, while one of the VMAT plans is for a HN cancer case and the

other is for a prostate cancer case, both with two arcs. For the purpose of illustrating the 5

principle, a simplified source model with a 6MV point photon source and a realistic

energy spectrum is used for these cases. The calculated dose distribution is displayed in

Fig. 5 and the simulation uncertainty and computation time are listed in Table 3. With a

total number of 2.5×108 source photons in each case, the relative uncertainty is controlled

to be under 1% in the high dose region (). As for the computation time, it 10

takes 36.1 sec for the dose calculation in the IMRT case and 36.7 sec and 39.6 sec for the

two VMAT cases, respectively. Compared with the simulation time for the phantom

cases, this time is prolonged, mainly due to the source particle generation from fluence

maps.

 15

4. Discussion and Conclusions

In this paper, we reported our recent development of a GPU based MC dose calculation

package, gDPM v2.0. The code is specifically tailored for the GPU architecture to 20

achieve high computation efficiency. Due to the identical particle transport physics to

that in the original DPM code, the accuracy of the gDPM package is not degraded.

Simulations in various phantom cases indicate that results from CPU and GPU are in well

agreement for both the electron and the photon sources. In particular, statistical t-tests are

performed and the dose differences between the CPU and the GPU results are found not 25

Figure 5. Dose calculation results for an 8 noncoplanar beam HN IMRT plan (a1) ~ (a3), a 2-arc

HN VMAT plan (b1) ~ (b3), and a 2-arc prostate VMAT plan (c1) ~ (c2) using the gDPM v2.0

package.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c2) (c3)(c1)

14 X. Jia et al.

14

statistically significant in over 96% of the high dose region and over 97% of the entire

phantom region. With a powerful yet affordable NVIDIA Tesla C2050 GPU, speedup

factors of 69.1 ~ 87.2 have been observed against a 2.27GHz Intel Xeon CPU processor.

The development of gDPM v2.0 package also focuses on its clinical practicality. With a

set of necessary components developed for dose calculation in realistic clinical plans, 5

IMRT or a VMAT plan dose calculation using MC simulation can be achieved in

36.1~39.6 sec with a single GPU.

At the end of this paper, we would like to discuss a few questions that might be of

interest to readers. First, is it possible to further improve the computation efficiency?

Though considerable speed up factors have been achieved in gDPM v2.0 and it becomes 10

possible to perform MC dose calculation in a sub-minute time scale for realistic clinical

treatment plans, it would make the GPU-based MC dose calculation more clinically

attractive, if the computation time could be further shortened. In fact, there are a number

of ways that could potentially further increase the computational efficiency. (1) If a

multi-GPU platform is available, all the particle histories simulated can be simply 15

distributed among all the GPUs, which then execute simultaneously without interfering

with each other. Only at the end of the computation will the dose distribution be collected

from all the GPUs. Due to the negligible overhead in this process, it is expected that a

roughly linear scalability of the computation efficiency can be achieved with respect to

the number of GPUs. In a recently work, it has been reported that this linear scalability 20

holds at least on a dual-GPU system (Hissoiny et al., 2011). We have also tested the

multi-GPU performance of our gDPM code on a 4-GPU platform. In our tests, a bash

shell script submits simulation jobs to all GPUs simultaneously and another small

program is then launched by the script after all simulations are completed to accumulate

simulation results. Speed up factors of 3.98~3.99 compared to a single GPU have been 25

observed amount various test cases. These observations clearly demonstrate the

simplicity yet feasibility of achieving a further efficiency boost utilizing a multi-GPU

platform. In particular, this 4-GPU platform will bring MC dose calculation time for

realistic plans under 10 seconds. Currently, a multi-GPU version of our gDPM package

using Massage Passing Interface is under development. (2) Since no variance reduction 30

technique is employed in gDPM v2.0, the convergence rate of the calculated dose suffers

a lot from the stochastic nature of the particle transport process. With the integration of

Table 3. Average relative uncertainty (
) and GPU computation time () for the

dose calculation in three realistic treatment plans.

Case
of

Histories
Size

Resolution

(cm
3
)

(%)

(s)

IMRT HN plan 2.5×108 0.57 36.1

VMAT HN plan 2.5×108 0.98 36.7

VMAT prostate plan 2.5×108 0.74 39.6

15 X. Jia et al.

15

variance reduction techniques such as particle splitting and track repeating, it is expected

that further improvement of the efficiency can be achieved.

Second, how is the performance of the gDPM v2.0 compared with other similar

work? Recently, another work on GPU-based MC dose calculation, GPUMCD, has been

reported by Hissoiny et. al.(2011), where the simulation scheme of separating photon and 5

electron transports was invented. To test our gDPM v2.0 against GPUMCD, we run our

code in a homogeneous water phantom with a resolution of voxels and the

voxel size is , same as in the first testing case reported in Hissoiny et

al.. A mono-energetic (15 MeV) mono-directional photon source or an electron source

normally impinges on the phantom. Photon generations in the positron annihilation 10

process are switched off as in the GPUMCD for a fair comparison. 1 million and 4

million particles are simulated for the electron source case and the photon source case,

respectively. The absolute running time is 0.47 sec for the electron source case and 0.90

sec for the photon source case on a Tesla C2050 GPU card. Compared to the running

time of 0.12 sec and 0.27 sec for GPUMCD in the two cases on a GTX 480 card, our 15

code is ~4 times slower. This speed difference can be first ascribed to the different

particle transport physics employed in two packages. Our gDPM package does not

change the complicated yet accurate DPM physics, while GPUMCD combines various

particle transport physics described in general-purpose MC packages and implements

them for GPU calculation. The different cut-off energies used in the two packages also 20

change the simulation efficiency. Moreover, part of the efficiency difference comes from

different hardware. Since C2050 is manufactured by NVIDIA dedicated for scientific

computing, it scarifies its efficiency for accuracy and reliability to some extent. For

instance, the GPU core speed, memory speed, and memory bandwidth of GTX 480 are

21.7%, 23.2%, and 22.9% higher than those for the C2050, respectively (Wikipedia). 25

Yet, detailed comparisons on the computational efficiency between GPUMCD and

gDPM are not of critical importance, as both of them have achieved high enough

efficiency for clinical applications. Though gDPM v2.0 is not currently the fastest GPU-

based MC simulation package, its development balances the speed and accuracy. In

particular, despite the various numerical techniques utilized in gDPM, it has been 30

demonstrated that similar accuracy level to the original DPM code can be achieved in

gDPM, which has been previously shown to be within for both clinical photon and

electron beams. Moreover, to our knowledge, gDPM is the first GPU based MC packages

that enables the dose calculation of realistic treatment plans. Clinical implementation of

gDPM will offer high accuracy MC dose calculation in cancer radiotherapy in a sub-35

minute time scale.

Acknowledgements

This work is supported in part by the University of California Lab Fees Research 40

Program. We would like to thank NVIDIA for providing GPU cards for this project. We

would also like to acknowledge Sami Hissoiny from Ecole Polytechnique de Montréal

and Dr. Joseph Sempau from Universitat Politècnica de Catalunya for fruitful discussions.

16 X. Jia et al.

16

References

Agostinelli S, Allison J, Amako K, et al. 2003 GEANT4-a simulation toolkit

Nuclear Instruments & Methods in Physics Research Section a-

Accelerators Spectrometers Detectors and Associated Equipment 506 250-5

303

Baró J, Sempau J, Fernández-Varea J M, et al. 1995 PENELOPE: an algorithm

for Monte Carlo simulation of the penetration and energy loss of electrons

and positrons in matter Nucl. Instrum. Methods B 100 31-46

Bielajew A F, Hirayama H, Nelson W R, et al. 1994 History, overview and recent 10

improvements of EGS4 National Research Council of Canada Report

PIRS-0436

Briesmeister J F 1993 MCNP-a general Monte Carlo N-particle transport code

Los Alamos National Laboratory Report LA-12625-M

Chetty I J, Charland P M, Tyagi N, et al. 2003 Photon beam relative dose 15

validation of the DPM Monte Carlo code in lung-equivalent media

Medical Physics 30 563-73

Chetty I J, Moran J M, McShan D L, et al. 2002 Benchmarking of the Dose

Planning Method (DPM) Monte Carlo code using electron beams from a

racetrack microtron Medical Physics 29 1035-41 20

Gu X, Choi D, Men C, et al. 2009 GPU-based ultra fast dose calculation using a

finite size pencil beam model Phys. Med. Biol. 54 6287-97

Gu X, Pan H, Liang Y, et al. 2010 Implementation and evaluation of various

demons deformable image registration algorithms on a GPU Physics in

Medicine and Biology 55 207-19 25

Gu X J, Jelen U, Li J S, et al. 2011 A GPU-based finite-size pencil beam

algorithm with 3D-density correction for radiotherapy dose calculation

Physics in Medicine and Biology 56 3337-50

Hastings W K 1970 MONTE-CARLO SAMPLING METHODS USING

MARKOV CHAINS AND THEIR APPLICATIONS Biometrika 57 97-& 30

Hirayama H, Namito Y, Bielajew A F, et al. 2010 The EGS5 code system

Stanford Linear Accelerator Center Report SLAC-R-730

Hissoiny S, Ozell B, Bouchard H, et al. 2011 GPUMCD: A new GPU-oriented

Monte Carlo dose calculation platform Medical Physics 38 754-64

Hissoiny S, Ozell B and Després P 2009 Fast convolution-superposition dose 35

calculation on graphics hardware Medical Physics 36 1998-2005

Jacques R, Taylor R, Wong J, et al. 2008 Towards Real-Time Radiation

Therapy: GPU Accelerated Superposition/Convolution. In: High-

Performance Medical Image Computing and Computer Aided Intervention

Workshop, 40

Jia X, Gu X, Sempau J, et al. 2010a Development of a GPU-based Monte Carlo

dose calculation code for coupled electron-photon transport Phys. Med.

Biol. 55 3077

Jia X, Lou Y, Li R, et al. 2010b GPU-based Fast Cone Beam CT Reconstruction

from Undersampled and Noisy Projection Data via Total Variation 45

Medical Physics 37 1757-60

17 X. Jia et al.

17

Kawrakow I 2000 Accurate condensed history Monte Carlo simulation of electron

transport. I. EGSnrc, the new EGS4 version Medical Physics 27 485-98

Kawrakow I, Fippel M and Friedrich K 1996 3D electron dose calculation using a

Voxel based Monte Carlo algorithm (VMC) Medical Physics 23 445-57

L'Ecuyer P and Simard R 2007 TestU01: A C library for empirical testing of 5

random number generators Acm Transactions on Mathematical Software

33

Li J S, Pawlicki T, Deng J, et al. 2000 Validation of a Monte Carlo dose

calculation tool for radiotherapy treatment planning Physics in Medicine

and Biology 45 2969-85 10

Ma C-M, Mok E, Kapur A, et al. 1999 Clinical implementation of a Monte Carlo

treatment planning system Medical Physics 26 2133-43

Ma C M, Li J S, Pawlicki T, et al. 2002 A Monte Carlo dose calculation tool for

radiotherapy treatment planning Physics in Medicine and Biology 47

1671-89 15

Marsaglia G 2003 Xorshift RNGs Journal of Statistical Software 8 14

Men C, Gu X, Choi D, et al. 2009 GPU-based ultra fast IMRT plan optimization

Phys. Med. Biol. 54 6565-73

Men C H, Jia X and Jiang S B 2010a GPU-based ultra-fast direct aperture

optimization for online adaptive radiation therapy Physics in Medicine and 20

Biology 55 4309-19

Men C H, Romeijn H E, Jia X, et al. 2010b Ultrafast treatment plan optimization

for volumetric modulated arc therapy (VMAT) Medical Physics 37 5787-

91

Nelson W R, Hirayama H and Rogers D W O 1985 The EGS4 code system 25

Stanford Linear Accelerator Center Report SLAC-265

NVIDIA 2010a CUDA CURAND Library

NVIDIA 2010b NVIDIA CUDA Compute Unified Device Architecture,

Programming Guide, 3.2

Salvat F, Fernández-Varea J M, Baró J, et al. 1996 PENELOPE, an algorithm and 30

computer code for Monte Carlo simulation of electron-photon showers

Ciemat (Centro de Investigaciones Energéticas, Medioambientales y

Tecnológicas) Technical Report no 799

Salvat F, Fernández-Varea J M and Sempau J 2009 PENELOPE-2008: A Code

System for Monte Carlo Simulation of Electron and Photon Transport 35

(Issy-les-Moulineaux, France: OECD-NEA)

Samant S S, Xia J Y, Muyan-Ozcelilk P, et al. 2008 High performance computing

for deformable image registration: Towards a new paradigm in adaptive

radiotherapy Medical Physics 35 3546-53

Sempau J, Acosta E, Baró J, et al. 1997 An algorithm for Monte Carlo simulation 40

of coupled electron-photon showers Nucl. Instrum. Methods B 132 377-90

Sempau J, Wilderman S J and Bielajew A F 2000 DPM, a fast, accurate Monte

Carlo code optimized for photon and electron radiotherapy treatment

planning dose calculations Physics in Medicine and Biology 45 2263-91

Sharp G C, Kandasamy N, Singh H, et al. 2007 GPU-based streaming 45

architectures for fast cone-beam CT image reconstruction and demons

deformable registration Phys Med Biol 52 5771-83

18 X. Jia et al.

18

Tyagi N, Bose A and Chetty I J 2004 Implementation of the DPM Monte Carlo

code on a parallel architecture for treatment planning applications Medical

Physics 31 2721-5

Wikipedia Comparison of Nvidia graphics processing units.

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing5

_units)

Woodcock E, Murphy T, Hemmings P, et al. 1965 Techniques used in the GEM

code for Monte Carlo neutronics calculations in reactors and other systems

of complex geometry. In: Applications of Computing Methods to Reactor

Problems: Argonne National Laboratories Report) pp ANL-7050 10

Xu F and Mueller K 2005 Accelerating popular tomographic reconstruction

algorithms on commodity PC graphics hardware Ieee Transactions on

Nuclear Science 52 654-63

Yan G R, Tian J, Zhu S P, et al. 2008 Fast cone-beam CT image reconstruction

using GPU hardware Journal of X-Ray Science and Technology 16 225-34 15

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

